
Schema-based Diversi�cation in Genetic Programming

Bogdan Burlacu2,3 Michael A�enzeller1,2

1Institute for Formal Models and Veri�cation, Johannes Kepler Universität Linz

2Heuristic and Evolutionary Algorithms Laboratory, University of Applied Sciences Upper Austria

3Josef Ressel Center for Symbolic Regression, University of Applied Sciences Upper Austria

Bogdan Burlacu, Michael A�enzeller Schema-based Diversi�cation 1 / 20

Introduction Genetic Programming

Introduction

Genetic programming

� Diversity instrumental in algorithm performance
� Balance between the exploration and exploitation aspects of the search

How to maintain balance? [Goldberg and Deb, 1991]

� Use slow growth ratios to prevent premature convergence
� Use higher growth ratio followed by mutation
� Permit localized di�erential mutation rates
� Preserve useful diversity via niching, dominance, diploidy

Bogdan Burlacu, Michael A�enzeller Schema-based Diversi�cation 2 / 20

Diversity in Genetic Programming Previous Work

Diversity in Genetic Programming

Selection as the main mechanism to control diversity

� soft brood selection [Altenberg, 1994]
� �tness groups [Rosca, 1995]
� “keep best” selection [Wiese and Goodwin, 1998]
� distance-based [Ekárt and Németh, 2000, O’Reilly, 1997]
� correlative tournament selection [Matsui, 1999]
� o�spring selection [A�enzeller and Wagner, 2003]
� lineage selection [Burke et al., 2003]
� self-adaptive selection [A�enzeller and Wagner, 2004]
� “�tness segments” [Yan and Clack, 2006]
� “age layers” [Hornby, 2006]
� “genetic markers” [Burks and Punch, 2015, Burks and Punch, 2016]

Bogdan Burlacu, Michael A�enzeller Schema-based Diversi�cation 3 / 20

Schema-based Diversi�cation Overview

Schema-based Diversi�cation

Proposed Approach

� Identify genotypically and phenotypically similar individuals
◦ Genetic programming schemas as genotypic templates
◦ Correlation as phenotypic similarity measure

� Apply localized mutation within groups of similar individuals

Main Steps

1 Generate relevant schemas and calculate their frequencies
2 Calculate phenotypic similarity within schema groups
3 Apply mutation (larger group→ more mutation)
4 Re-evaluate mutated individuals

Bogdan Burlacu, Michael A�enzeller Schema-based Diversi�cation 4 / 20

Schema-based Diversi�cation Schema De�nition

Schema-based Diversi�cation

Schema De�nition
We adopt the de�nition from [Poli and McPhee, 2003], where schemas are rooted
trees with internal nodes from F ∪ {=} and leaf nodes from T ∪ {=, #}.
� The = symbol matches any symbol of the same arity
� The # symbol matches any valid subtree

Bogdan Burlacu, Michael A�enzeller Schema-based Diversi�cation 5 / 20

Schema-based Diversi�cation Schema Generation

Schema-based Diversi�cation

Schema Generation

×

Root parent

+

a b

−

a b

−

Non-root parent

×

a a

×

b b

×

0

Schema

+

a b

=

a b

×

0

Schema

+

a b

#=⇒

Subtree swap

� Under selection pressure, �t individuals selected multiple times
� Multiple cutpoint locations in root parent’s structure
� Replace symbols at cutpoint locations with = or #
� Several possible replacement strategies

Bogdan Burlacu, Michael A�enzeller Schema-based Diversi�cation 6 / 20

Schema-based Diversi�cation Schema Matching

Schema-based Diversi�cation

Schema Matching

� Bottom-up query matching algorithm by [Götz et al., 2009]
� Matches a data tree D (GP individual) against a query tree Q (GP schema)
� Additional restrictions: two nodes are matched if

◦ They are on the same tree level
◦ Their parent and children nodes also match
◦ Commutative symbols matched regardless of child order

Phenotypic Similarity

� De�ned as the R2 between individual responses on the training data
� Two constant responses considered completely similar
� A constant and non-constant response considered completely dissimilar

Bogdan Burlacu, Michael A�enzeller Schema-based Diversi�cation 7 / 20

Schema-based Diversi�cation Mutation Strategy

Schema-based Diversi�cation

Mutation Strategy

� Goal: improve diversity without a�ecting convergence.
� Restrictions: minimum threshold for phenotypic similarity or schema frequency
� Adaptive mutation rates within schema-groups

0.0 0.2 0.4 0.6 0.8 1.0
Schema frequency

0.0

0.2

0.4

0.6

0.8

1.0

M
ut

at
io

n
ra

te

f(x) = x
f(x) = tanh(4x)

Bogdan Burlacu, Michael A�enzeller Schema-based Diversi�cation 8 / 20

Schema-based Diversi�cation Algorithm

Schema-based Diversi�cation

Algorithm
Input:
◦ minimum schema frequency fsmin

◦ minimum phenotypic similarity psmin

1 S ← generate schemas;
2 for every schema s in S do
3 M ← GetMatchingIndividuals(s);
4 fs ←

|M |
|POPi |

; // calculate schema frequency

5 ps ← CalculatePhenotypicSimilarity(M);
6 if fs > fsmin and ps > psmin then
7 apply mutation within M;
8 recalculate �tness for mutated individuals;

Practical Advantage

� Can be applied to any existing genetic algorithm �avors
� Will not harm performance (when reasonably con�gured)

Bogdan Burlacu, Michael A�enzeller Schema-based Diversi�cation 9 / 20

Empirical Analysis Test Problems

Empirical Analysis

Test Problems
Name Function Training Test

Friedman-2 f (x1, ..., x10) = 10 sin(π x1x2) + 20(x3 − 1/2)2 + 10x4 + 5x5 + Noise 500 rows 5000 rows
Poly-10 f (x1, ..., x10) = x1x2 + x3x4 + x5x6 + x1x7x9 + x3x6x10 250 rows 250 rows
Pagie-1 f (x, y) = 1

1+x−4 +
1

1+y−4 676 rows 1000 rows

Vladislavleva-4 f (x1, ..., x5) =
10

5+
∑5
i=1 (xi−3)2

1024 rows 5000 rows

Test Algorithm

� O�spring Selection Genetic Algorithm (OSGA) [A�enzeller and Wagner, 2003]
� O�spring must outperform their parents (strict OS)
� Selection pressure as adaptive stopping criteria
� 50 repetitions for each con�guration

Bogdan Burlacu, Michael A�enzeller Schema-based Diversi�cation 10 / 20

Empirical Analysis Algorithm Con�guration

Empirical Analysis

Algorithm Settings
Parameter Value
Tree initialization PTC2 [Luke, 2000]
Maximum tree length 50 nodes
Maximum tree depth 12
Population size 500 individuals
Elites 1 individual
Selection Gender speci�c selection

[Wagner and A�enzeller, 2005]
(random & proportional)

Crossover probability 100%
Crossover operator Subtree crossover
Mutation probability 25%
Mutation operator Change symbol

Single point mutation
Remove branch
Replace branch

Fitness function Maximize R2

Termination criterion Selection pressure ≥ 100
Terminal symbols constant, weight ∗ variable
Function symbols binary functions (+, −, ×, /)

Diversi�cation Strategy
Parameter Value
Min schema frequency 1%
Min semantic similarity 99%
Min schema length 5 nodes
Adaptive mutation rate True
Mutation rate function f (x) = x

f (x) = tanh(4x)
Schema wildcard set W = {=}

W = {#}
W = {=, #}

Schema generation Use the best 20% individuals
Schema matching Ignore numerical constants

and variable weights
Termination criterion Selection pressure ≥ 100

Evaluated solutions ≥ 2 · 106

R2 �tness value ≥ 0.99

Bogdan Burlacu, Michael A�enzeller Schema-based Diversi�cation 11 / 20

Empirical Analysis Experimental Results

Empirical Analysis

Results (median ± stdev)

Algorithm con�guration Friedman-1 Poly-10 Pagie-1 Vladisl.-4

OSGP 0.837 ± 0.027 0.836 ± 0.116 0.952 ± 0.027 0.831 ± 0.098
0.824 ± 0.172 0.780 ± 0.200 0.919 ± 0.309 0.795 ± 0.280

OSGP-S (W = {=}, f (x) = x) 0.849 ± 0.029 0.878 ± 0.063 0.951 ± 0.026 0.830 ± 0.083
0.833 ± 0.129 0.843 ± 0.190 0.919 ± 0.257 0.795 ± 0.276

OSGP-S (W = {#}, f (x) = x) 0.862 ± 0.034 0.889 ± 0.097 0.960 ± 0.023 0.835 ± 0.066
0.859 ± 0.120 0.839 ± 0.126 0.911 ± 0.298 0.796 ± 0.271

OSGP-S (W = {=, #}, f (x) = x) 0.834 ± 0.034 0.865 ± 0.131 0.971 ± 0.026 0.870 ± 0.093
0.815 ± 0.114 0.784 ± 0.228 0.907 ± 0.311 0.799 ± 0.222

OSGP-S (W = {=}, f (x) = tanh(4x)) 0.848 ± 0.032 0.894 ± 0.122 0.969 ± 0.022 0.915 ± 0.104
0.847 ± 0.060 0.869 ± 0.192 0.913 ± 0.333 0.865 ± 0.234

OSGP-S (W = {#}, f (x) = tanh(4x)) 0.862 ± 0.036 0.905 ± 0.100 0.970 ± 0.022 0.840 ± 0.090
0.841 ± 0.177 0.876 ± 0.190 0.919 ± 0.291 0.801 ± 0.269

OSGP-S (W = {=, #}, f (x) = tanh(4x)) 0.847 ± 0.030 0.843 ± 0.115 0.974 ± 0.024 0.877 ± 0.089
0.832 ± 0.145 0.794 ± 0.177 0.953 ± 0.298 0.798 ± 0.254

� Limited bene�ts for problems where �nding good constants takes precedence over structure discovery
(eg., Poly-10 vs. Pagie-1)

� No best con�guration, depends on �tness landscape. Results favor more aggresive mutation rates.
� Overall good results with # wildcards, but higher runtime costs. Reasonable compromise with = wildcards.

Bogdan Burlacu, Michael A�enzeller Schema-based Diversi�cation 12 / 20

Empirical Analysis Experimental Results

Empirical Analysis

Mutation Overhead

Friedman-2 Poly-10 Pagie-1 Vladislavleva-4
0%

2%

4%

6%

8%

10%

12%
Percentage of Mutated Individuals

W = {=}, f (x) = x

W = {=,#}, f (x) = x

W = {#}, f (x) = x

W = {=}, f (x) = tanh(4x)

W = {=,#}, f (x) = tanh(4x) W = {#}, f (x) = tanh(4x)

Bogdan Burlacu, Michael A�enzeller Schema-based Diversi�cation 13 / 20

Empirical Analysis Experimental Results

Empirical Analysis

Mutation Overhead

0 10 20 30 40 50 60 70 80
Generation

0%

10%

20%

30%

Percentage of Mutated Individuals per Generation

W = {=}, f (x) = tanh(4x)

Bogdan Burlacu, Michael A�enzeller Schema-based Diversi�cation 14 / 20

Empirical Analysis Runtime Analysis

Empirical Analysis

Evaluation Overhead

Friedman-2 Poly-10 Pagie-1 Vladislavleva-4
0.0M

0.5M

1.0M

1.5M

2.0M

Evaluated Solutions

OSGP

W = {=}, f (x) = x

W = {=,#}, f (x) = x

W = {#}, f (x) = x

W = {=}, f (x) = tanh(4x)

W = {=,#}, f (x) = tanh(4x)

W = {#}, f (x) = tanh(4x)

Bogdan Burlacu, Michael A�enzeller Schema-based Diversi�cation 15 / 20

Empirical Analysis Runtime Analysis

Empirical Analysis

Number of Generations

Friedman-2 Poly-10 Pagie-1 Vladislavleva-4
0

20

40

60

80

100

Generations

OSGP

W = {=}, f (x) = x

W = {=,#}, f (x) = x

W = {#}, f (x) = x

W = {=}, f (x) = tanh(4x)

W = {=,#}, f (x) = tanh(4x)

W = {#}, f (x) = tanh(4x)

Bogdan Burlacu, Michael A�enzeller Schema-based Diversi�cation 16 / 20

Empirical Analysis Runtime Analysis

Empirical Analysis

Evaluation Overhead per Generation

Friedman-2 Poly-10 Pagie-1 Vladislavleva-4
0

5000

10000

15000

20000

25000

Evaluations Per Generation

OSGP

W = {=}, f (x) = x

W = {=,#}, f (x) = x

W = {#}, f (x) = x

W = {=}, f (x) = tanh(4x)

W = {=,#}, f (x) = tanh(4x)

W = {#}, f (x) = tanh(4x)

Bogdan Burlacu, Michael A�enzeller Schema-based Diversi�cation 17 / 20

Empirical Analysis Runtime Analysis

Empirical Analysis

Runtime Overhead

Friedman-2 Poly-10 Pagie-1 Vladislavleva-4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e
(m

s)

Execution Time Per Evaluation

OSGP

W={=}, f(x)=x

W={=,#}, f(x)=x

W={#}, f(x)=x

W={=}, f(x)=tanh(4x)

W={=,#}, f(x)=tanh(4x)

W={#}, f(x)=tanh(4x)

Bogdan Burlacu, Michael A�enzeller Schema-based Diversi�cation 18 / 20

Empirical Analysis Discussion

Discussion

Benchmark Results
� OSGP-S overall better than OSGP
� Di�erent degrees of e�ectiveness for schema diversi�cation
� Extra mutation decreases active selection pressure, increases # of generations
� Small e�ect of =-schemas on mutation rates and # of evaluations
� {#}-schema frequency indicates common top-level tree structures

Computational Overhead

� Low overhead in terms of evaluated solutions per generation
� Increased CPU-time due to schema matching (becomes small relative to

increasing # of training samples)
� Implementation not currently optimized for speed

Bogdan Burlacu, Michael A�enzeller Schema-based Diversi�cation 19 / 20

Empirical Analysis Discussion

Conclusion

Schema-based Diversi�cation
� Introduces pattern matching to GP
� Able to identify common structural templates
� Does not alter the behaviour of standard GP operators
� Multi-level strategy combining existing concepts:

◦ Structural: schemas as structural templates
◦ Semantic: phenotypic similarity within schema groups
◦ Hereditary: schema generation method based on hereditary relationships
◦ Adaptive: di�erential mutation rates based on schema frequency

Future Work
� Improved schema generation
� Persist schemas over generations
� Hybridize with other algorithms
� Additional benchmarks

Bogdan Burlacu, Michael A�enzeller Schema-based Diversi�cation 20 / 20

Empirical Analysis Discussion

A�enzeller, M. and Wagner, S. (2003).
A Self-adaptive Model for Selective Pressure Handling within the Theory of Genetic Algorithms, pages
384–393.
Springer Berlin Heidelberg, Berlin, Heidelberg.

A�enzeller, M. and Wagner, S. (2004).
Sasegasa: A new generic parallel evolutionary algorithm for achieving highest quality results.
Journal of Heuristics, 10(3):243–267.

Altenberg, L. (1994).
The evolution of evolvability in genetic programming.
In Kinnear, Jr., K. E., editor, Advances in Genetic Programming, chapter 3, pages 47–74. MIT Press.

Burke, E., Gustafson, S., Kendall, G., and Krasnogor, N. (2003).
Is increased diversity in genetic programming bene�cial? an analysis of lineage selection.
In Evolutionary Computation, 2003. CEC ’03. The 2003 Congress on, volume 2, pages 1398–1405 Vol.2.

Burks, A. and Punch, W. (2016).
An analysis of the genetic marker diversity algorithm for genetic programming.
Genetic Programming and Evolvable Machines, pages 1–33.

Burks, A. R. and Punch, W. F. (2015).
An e�cient structural diversity technique for genetic programming.
In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO ’15,
pages 991–998, New York, NY, USA. ACM.

Bogdan Burlacu, Michael A�enzeller Schema-based Diversi�cation 20 / 20

Empirical Analysis Discussion

Ekárt, A. and Németh, S. Z. (2000).
A metric for genetic programs and �tness sharing.
In Proceedings of the European Conference on Genetic Programming, pages 259–270, London, UK, UK.
Springer-Verlag.

Goldberg, D. E. and Deb, K. (1991).
A comparative analysis of selection schemes used in genetic algorithms.
In Foundations of Genetic Algorithms, pages 69–93. Morgan Kaufmann.

Götz, M., Koch, C., and Martens, W. (2009).
E�cient algorithms for descendant-only tree pattern queries.
Inf. Syst., 34(7):602–623.

Hornby, G. S. (2006).
Alps: the age-layered population structure for reducing the problem of premature convergence.
In GECCO 2006: Proceedings of the 8th annual conference on Genetic and evolutionary computation,
volume 1, pages 815–822, Seattle, Washington, USA. ACM Press.

Luke, S. (2000).
Two fast tree-creation algorithms for genetic programming.
IEEE Transactions on Evolutionary Computation, 4(3):274–283.

Matsui, K. (1999).
New selection method to improve the population diversity in genetic algorithms.
In Systems, Man, and Cybernetics, 1999. IEEE SMC’99 Conference Proceedings. 1999 IEEE International
Conference on, volume 1, pages 625–630. IEEE.

Bogdan Burlacu, Michael A�enzeller Schema-based Diversi�cation 20 / 20

Empirical Analysis Discussion

O’Reilly, U.-M. (1997).
Using a distance metric on genetic programs to understand genetic operators.

Poli, R. and McPhee, N. F. (2003).
General schema theory for genetic programming with subtree-swapping crossover: Part I.
Evolutionary Computation, 11(1):53–66.

Rosca, J. (1995).
Entropy-driven adaptive representation.
In Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications,
pages 23–32. Morgan Kaufmann.

Wagner, S. and A�enzeller, M. (2005).
Sexualga: Gender-speci�c selection for genetic algorithms.
In Proceedings of the 9th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI),
number 9, pages 76–81, Orlando, United States of America.

Wiese, K. and Goodwin, S. D. (1998).
Keep-best reproduction: A selection strategy for genetic algorithms.
In Proceedings of the 1998 ACM Symposium on Applied Computing, SAC ’98, pages 343–348, New York,
NY, USA. ACM.

Yan, W. and Clack, C. D. (2006).
Behavioural GP diversity for dynamic environments: an application in hedge fund investment.
In GECCO 2006: Proceedings of the 8th annual conference on Genetic and evolutionary computation,
volume 2, pages 1817–1824, Seattle, Washington, USA. ACM Press.

Bogdan Burlacu, Michael A�enzeller Schema-based Diversi�cation 20 / 20

	Introduction
	Genetic Programming

	Diversity in Genetic Programming
	Previous Work

	Schema-based Diversification
	Overview
	Schema Definition
	Schema Generation
	Schema Matching
	Mutation Strategy
	Algorithm

	Empirical Analysis
	Test Problems
	Algorithm Configuration
	Experimental Results
	Runtime Analysis
	Discussion

