
Integration of Physical Knowledge in Empirical 
Models – A New Approach to Regression Analysis

12. Nov. 2019

G. Kronberger, C. Haider, M. Kommenda, (University of Applied Sciences Upper Austria)

S. Scheidel (AVL List GmbH), M. Kordon (AVL Commercial Driveline & Tractor Engineering GmbH)



Summary

We include prior knowledge into empirical models by enforcing monotonicity 
over selected inputs

Method: Shape-constrained polynomial regression

Application: modelling diesel engine emission

Results:

• Model conforms to prior knowledge

• Extrapolation is plausible

• Slightly larger fitting errors



Background

Empirical models and model-based optimization are widely known and applied 
in engineering.

Facts:

• No analytical model required

• Relatively low computational effort (compared to CFD, FEM)

• Large set of methods from statistical learning

• Broadly applicable

• Data availability and quality is essential

• Extrapolation is (almost) impossible or risky



Example: friction systems

Miba AG, Falk Nickel, 16th International CTI Symposium 
Automotive Transmissions, HEV and EV Drives, Berlin, 
December 2017



A simple example

Empirical model for the maximum temperature of a disc brake
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Extrapolating…

The prediction does not conform to physical intuition.
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How can we enforce monotonicity?
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Another example

Empirical model for diesel engine emissions



A potential cause for the problem
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Further investigation
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Objectives

• Integrate vague knowledge into empirical models.

• The additional effort should be minimal.

• Better or equal model accuracy

• Low computational overhead

• Applicable to many methods for empirical modelling:

− Polynomial regression, artificial neural networks, kernel regression, 
symbolic regression, …



The concept of shape-constrained regression

ℒ(𝑓, 𝑋, 𝑦) is the loss function 
(e.g. sum of squared errors)

ℱ is a model class e.g.:

• polynomials of given degree 

• neural network architecture
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The optimistic and pessimistic approach

Optimistic

• Evaluate constraint on finite sample 
from input space

• Easy to implement

• Suffers from curse of dimensionality

• Result can violate the constraints

Pessimistic

• Approximate constraint for the 
infinite set

• Feasible for certain model classes

• Result conforms to constraints

• Potentially rejects optimal solution



Shape-constrained polynomial regression

A polynomial is positive if it can be expressed as a sum of squares.

𝑃 𝒙, 𝜽 = 𝑇1 𝒙, 𝜽𝟏
2 +⋯+ 𝑇𝑛 𝒙, 𝜽𝑛

2 ⇒ 𝑃 𝑥 ≥ 0

Derivatives of polynomials are polynomials.

→ Shape-constrained polynomial regression is a quadratic optimization 
problem with sum-of-squares constraints.



Shape-constrained polynomial regression

Toy-Problem:

𝑦 = tanh −𝑥 + 𝜖
𝑥 ~ 𝑁 0, 1
𝜖~𝑁(0, 0.15)

x

y



Shape-constrained polynomial regression

Fitting a polynomial with degree 4:



Shape-constrained polynomial regression

Fitting a polynomial with degree 9 and constraints:

∀𝑥∈𝑅 − 3 ≤ 𝑥 ≤ 3:
−1 ≤ 𝑃 𝑥 ≤ 1
𝜕𝑃(𝑥)

𝜕𝑥
≤ 0



Application to 
Emission Models 



Methodology

1. Gather data from test bench using DOE 

− 11 parameters

− 3 targets

− 1500 observations

2. Find and fit polynomial model

− 3rd degree 

− two-way interactions

− approx. 50 terms

3. Add monotonicity constraint 
𝜕

𝜕𝑋11
𝑃(𝑥) ≥ 0

4. Fit parameters with constraints



Model dependence plots for target Y1

manually tuned
monotonicity constraint



Detail of X1 and X11 interaction for Y1

With monotonicity constraintManually tuned model



Model dependence plots for target Y2

manually tuned
monotonicity constraint



Detail of X1 and X11 interaction for Y2

With monotonicity constraintManually tuned model



Model dependence plots for target Y3

manually tuned
monotonicity constraint



Model accuracy and runtime

• Higher training error for shape-constrained regression

• Runtime: 1 – 2 minutes

− Office PC

− a single monotonicity constraint

− ~ 1500 data points



Conclusions

• Shape constraints can be used to improve polynomial regression models.

• Successful for monotonicity constraints.

• Concavity / convexity can be enforced similarly.

• Runtime depends mainly on the number of constraints.

Limitations:

• Works only for polynomial models.

• Improved extrapolation has not been quantified
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