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Abstract

Symbolic regression is a data-based machine learning approach that creates
interpretable prediction models in the form of mathematical expressions with-
out the necessity to specify the model structure in advance. Due to numerous
possible models, symbolic regression problems are commonly solved by meta-
heuristics such as genetic programming. A drawback of this method is that
because of the simultaneous optimization of the model structure and model
parameters, the effort for learning from the presented data is increased and
the obtained prediction accuracy could suffer. Furthermore, genetic pro-
gramming in general has to deal with bloat, an increase in model length
and complexity without an accompanying increase in prediction accuracy,
which hampers the interpretability of the models. The goal of this thesis is
to develop and present new methods for symbolic regression, which improve
prediction accuracy, interpretability, and simplicity of the models.

The prediction accuracy is improved by integrating local optimization
techniques that adapt the numerical model parameters in the algorithm.
Thus, the symbolic regression problem is divided into two separate subprob-
lems: finding the most appropriate structure describing the data and find-
ing optimal parameters for the specified model structure. Genetic program-
ming excels at finding appropriate model structures, whereas the Levenberq-
Marquardt algorithm performs least-squares curve fitting and model param-
eter tuning. The combination of these two methods significantly improves
the prediction accuracy of generated models.

Another improvement is to turn the standard single-objective formula-
tion of symbolic regression into a multi-objective one, where the prediction
accuracy is maximized while the model complexity is simultaneously mini-
mized. As a result the algorithm does not produce a single solution, but a
Pareto front of models with varying accuracy and complexity. In addition,
a novel complexity measure for multi-objective symbolic regression is de-
veloped that includes syntactic and semantic information about the models
while still being efficiently computed. By using this new complexity measure
the generated models get simpler and the occurrence of bloat is reduced.



Kurzfassung

Symbolische Regression ist ein datenbasiertes, maschinelles Lernverfahren
bei dem Vorhersagemodelle in Form mathematischer Ausdrücke ohne vorge-
gebener Modellstruktur erstellt werden. Wegen der Vielzahl möglicher Mo-
delle, welche die Daten beschreiben, werden symbolische Regressionsproble-
me meist mittels genetischer Programmierung gelöst. Ein Nachteil dabei ist,
dass wegen der gleichzeitigen Optimierung der Modellstruktur und deren Pa-
rameter, der Aufwand zum Lernen der Modelle erhöht ist und deren Genauig-
keit verringert sein kann. Zusätzlich wird die Interpretierbarkeit der Modelle
durch das Auftreten überflüssiger Ausdrücke (engl. bloat), welche die Model-
le verkomplizieren ohne deren Genauigkeit zu erhöhen, erschwert. Das Ziel
dieser Dissertation ist es neue Methoden zur Verbesserung der Genauigkeit
und Interpretierbarkeit symbolischer Regressionsmodelle zu entwickeln.

Die Genauigkeit der Modelle wird durch die Integration lokaler Optimie-
rung, welche die numerischen Parameter der Modelle anpasst, erhöht. Da-
durch wird das Regressionsproblem in zwei Aufgaben unterteilt. Zuerst wird
eine passende Modellstruktur identifiziert und anschließend deren numeri-
schen Parameter adaptiert. Genetische Programmierung wird zur Identifika-
tion der Modellstruktur verwendet, während der Levenberg-Marquardt Algo-
rithmus eine nichtlineare Anpassung der numerischen Parameter vornimmt.
Durchgeführte Experimente zeigen, dass die Kombination dieser Methoden
in einer deutlichen Verbesserung der Modellgenauigkeit resultiert.

Die Interpretierbarkeit der Modelle wird durch eine Änderung der Pro-
blemformulierung von einzelkriterieller zu multikriterieller Optimierung ver-
bessert, wodurch die Genauigkeit der Modelle maximiert während gleichzei-
tig deren Komplexität minimiert wird. Das Ergebnis ist somit nicht mehr ein
einzelnes Modell, sondern eine Pareto-Front, welche den Kompromiss zwi-
schen Genauigkeit und Komplexität widerspiegelt. Zusätzlich wird ein neues
Komplexitätsmaß für symbolische Regression vorgestellt, welches syntakti-
sche und semantische Informationen berücksichtigt. Durch den Einsatz dieses
neuen Komplexitätsmaßes werden die erzeugten Modelle besser interpretier-
bar und überflüssige Ausdrücke vermieden.
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Chapter 1

Introduction

1.1 Motivation

The importance of data-based modeling techniques has risen with the vast
increase of available data and computing power during the last years. Sev-
eral methods such as linear regression [Draper et al., 1966], random forests
[Breiman et al., 1984], support vector machines [Vapnik, 1999], artificial neu-
ral networks [Haykin, 1998], Gaussian processes [Rasmussen, 2004] have been
developed to extract the most information from the data and build accurate
regression models.

Symbolic regression is another data-based modeling technique that dis-
tinguishes itself from other methods due to the fact that the model structure
need not be predefined, but is automatically adapted to the data. Another
advantage is that the generated model is represented as mathematical expres-
sion that is open for inspection and interpretation [Affenzeller et al., 2014].
Symbolic regression problems are commonly solved by genetic programming,
because the variable-length encoding of solutions in genetic programming is
especially suited for representing mathematical expressions and due to the
enormous search space heuristic methods are preferred.

Genetic programming is well suited to search for the model structure
describing the data, but is not the very good in determining the appropriate
numerical constants to fit the model structure to the data. As a result
of inappropriate numerical values in the generated model, their prediction
accuracy is reduced. This has also been noted by O’Neill et al. [2010], where
a quote of John Koza is presented:

... the finding of numerical constants is a skeleton in the GP closet

... [and an] area of research that requires more investigation ...

1



CHAPTER 1. INTRODUCTION

Another issue regarding genetic programming for solving symbolic regres-
sion problems is that the algorithm is hard to configure and parameterize to
achieve high quality solutions. Furthermore, not only the algorithm con-
figuration affects the obtained quality, but also the restrictions imposed to
the symbolic regression problem. These restriction include the mathematical
functions occurring in the models; Is it allowed to use trigonometric functions
during model creation or are only arithmetic functions usable?

In addition, it is common in most genetic programming systems to im-
poses a static size limit to the model length, because otherwise the models
would grow infinitely and their interpretability would be severely hampered.

The major problem with these two restrictions that are enforced during
modeling is that they are highly problem specific. They should be set as
tight as possible without affecting the accuracy of the generated models. In
general simpler models are preferred to complex ones as long as they general-
ize equally well. However, to achieve simple models by genetic programming
several different size limits and function configurations have to be tested
for the problem at hand, because appropriate values cannot be identified a-
priori. These issues further complicate the use of symbolic regression and are
primarily addressed in this thesis.

1.2 Main Research Contributions

The broad research topic of this thesis is to identify new ways for improv-
ing symbolic regression by addressing its weak points. Therefore, constants
creation and the complexity of solutions are studied in detail and based on
empirical observations improved methods are derived. This research has been
performed by using tree-based genetic programming for symbolic regression
and also the new methods are derived and tested with this optimization
method. However, these improvements are not specific to tree-based genetic
programming, but are applicable to any kind of algorithm solving symbolic
regression problems.

All of the described experiments, methodological improvements, and anal-
yses are implemented in and have been performed with the open-source
framework for heuristic optimization HeuristicLab [Wagner et al., 2014].

2



CHAPTER 1. INTRODUCTION

Local Optimization

The main advancements for the creation and identification of constants for
symbolic regression is a new local optimization technique termed constants
optimization by nonlinear least squares (CO-NLS). CO-NLS is integrated in
the genetic programming algorithm by adapting the numeric values in the
models before a solution is evaluated. However, CO-NLS is more generally
applicable and can be integrated in any algorithm and can be even utilized
as a post-processing step to improve the accuracy of generated models. The
detailed research contributions in the field of constants creation and local
optimization are the following:

− Review of constants creation, constants adaptation, and local optimiza-
tion methods in symbolic regression

− Comparison of different objective functions and linear scaling on bench-
mark problems

− Development and implementation of CO-NLS by combining automatic
differentiation and gradient-based nonlinear least squares optimization

− Performance evaluation of CO-NLS in genetic programming and off-
spring selection genetic programming to highlight its advantages and
disadvantages as well as the influence of its parameters

Complexity Control

The second main topic of this thesis is to investigate ways of creating sim-
pler models. Therefore, the role of the tree length restriction in genetic pro-
gramming is evaluated and its effect on the obtained solutions is presented.
Afterwards more advanced complexity metrics for symbolic regression mod-
els are discussed and from these observations another complexity metric is
derived. The newly defined recursive complexity is easily implemented and
can be calculated with a single tree iterations without evaluating the models
on the presented data. In contrast to other complexity metrics that share
these benefits, it takes the semantics of the model into account. The recur-
sive complexity does not provide the most accurate estimation of the model’s
complexity, but gives the algorithm a strong enough search direction so that
simple models can be obtained. Furthermore, it becomes unnecessary to
specify the mathematical functions that can occur in the models, because
the appropriate ones are automatically detected.

3



CHAPTER 1. INTRODUCTION

The detailed research contributions to complexity control while generating
symbolic regression solutions are the following:

− Review of complexity metrics and methods for complexity control in
symbolic regression

− Definition and discussion of the recursive complexity and its parame-
terization for multi-objective symbolic regression

− Evaluation of the suitability of NSGA-II for performing multi-objective
symbolic regression

− Adaptations of NSGA-II by changing the dominance criterion and dis-
cretizing objective functions

− Comparison of single and multi-objective symbolic regression on noise-
free and noisy benchmark problems

1.3 Research Background

This methods and ideas contributing to this thesis have been mainly devel-
oped within the Josef Ressel-Center for heuristic optimization Heureka! and
the K-Project HOPL - Heuristic Optimization in Production and Logistics,
both supported by the Austrian Research Promotion Agency (FFG).

Parts of the work and ideas presented in this thesis have already appeared
in previous publications by the author:

− M. Kommenda, G. K. Kronberger, M. Affenzeller, S. M. Winkler, C. Feil-
mayr, S. Wagner - Symbolic Regression with Sampling - 22nd European
Modeling and Simulation Symposium EMSS 2010, Fes, Morocco, 2010,
pp. 13-18

− M. Kommenda, G. K. Kronberger, S. Wagner, S. M. Winkler, M. Affen-
zeller - On the Architecture and Implementation of Tree-based Genetic
Programming in HeuristicLab - Companion Publication of the 2012 Ge-
netic and Evolutionary Computation Conference, GECCO’12 Compan-
ion, Philadelphia, United States of America, 2012, pp. 101-108

− M. Kommenda, M. Affenzeller, G. K. Kronberger, S. M. Winkler - Non-
linear Least Squares Optimization of Constants in Symbolic Regression
- Computer Aided Systems Theory EUROCAST 2013, Las Palmas de
Gran Canaria, Spain, 2013, pp. 420-427

4



CHAPTER 1. INTRODUCTION

− M. Kommenda, G. K. Kronberger, S. M. Winkler, M. Affenzeller, S. Wag-
ner - Effects of Constant Optimization by Nonlinear Least Squares Min-
imization in Symbolic Regression - Companion Publication of the 2013
Genetic and Evolutionary Computation Conference, GECCO’13 Com-
panion, Amsterdam, Netherlands, 2013, pp. 1121-1127

− M. Kommenda, A. Beham, M. Affenzeller, G. K. Kronberger - Complex-
ity Measures for Multi-Objective Symbolic Regression - Proceedings of
the International Conference on Computer Aided Systems Theory (EU-
ROCAST 2015), Las Palmas, Gran Canaria, Spain, 2015

− M. Kommenda, G. Kronberger, M. Affenzeller, S.M. Winkler, B. Burlacu
- Evolving Simple Symbolic Regression Models by Multi-objective Genetic
Programming - Genetic Programming Theory and Practice XIII, (Editors:
Rick Riolo, Jason H. Moore, Mark Kotanchek) - Springer, 2016

1.4 Chapter Overview

Chapter 2 introduces the problem of symbolic regression and discusses its
differences to standard regression analysis. It is organized to introduce more
generally applicable concepts first and focuses more and more on relevant
topics for thesis. The most common approach to solve symbolic regression
is genetic programming, which is discussed in Section 2.1. Starting with a
general description of genetic programming and its historical development,
the main concepts of the algorithm are detailed. Afterwards, tree-based ge-
netic programming is presented, where solutions are represented as symbolic
expression trees, and the connection between symbolic regression and genetic
programming is established. Genetic programming and symbolic regression
are already established techniques and in Section 2.2 popular frameworks and
software to implement and perform symbolic regression are listed. Finally,
this chapter is concluded by Section 2.3 that discusses two alternative ap-
proaches for deterministic symbolic regression that are not based on genetic
programming.

Chapter 3 focuses on local optimization and starts by discussing the role
of constants in symbolic regression. Section 3.1 introduces ephemeral random
constants and how they are manipulated, constants handling in HeuristicLab,
and the benefits of linear scaling. After this introduction to the topic, existing
constants optimization approaches are discussed in Section 3.2. In Section 3.3
constants optimization by nonlinear least squares (CO-NLS) is presented,
the implementation details are described, and first effects of including CO-
NLS in genetic programming are visualized. An extensive analysis is then

5



CHAPTER 1. INTRODUCTION

performed in Section 3.4, where the advantages and disadvantages of CO-
NLS are assessed using an extensive benchmark suite. Section 3.5 concludes
this chapter by summarizing and discussing the presented content.

Chapter 4 presents the work performed for complexity control in symbolic
regression and motivates the benefit of simpler symbolic regression models.
In Section 4.1 existing complexity measures for symbolic regression meth-
ods are reviewed and the recursive complexity is defined. In Section 4.2 the
advantages of multi-objective symbolic regression are motivated and the ap-
plicability of NSGA-II is evaluated. Based on the observations during the
evaluation, NSGA-II is slightly adapted to increase its performance when
solving multi-objective symbolic regression problems. The performance of
NSGA-II with varying complexity measures is compared to standard genetic
programming in Section 4.3. Artificial and real-world benchmark problems
are used in the performed experiments, where the accuracy as well as the
simplicity of generated models is evaluated. Afterwards, the content of this
chapter are summarized in Section 4.4.

Finally, the whole thesis is concluded by Chapter 5, which highlights the
main research contributions and gives an outlook for future research on the
topics discussed in the thesis.

6



Chapter 2

Symbolic Regression

Symbolic regression is the task of finding a model that describes the rela-
tionship between a dependent variable and several independent variables as
accurately as possible. This definition applies in general for all regression
methods. However, the characteristics that make symbolic regression stand
out compared to other regression techniques are that no assumption about
the model structure is made a-priori and that the model is generated in sym-
bolic form as an analytical mathematical expression [Koza, 1992]. Hence,
symbolic regression is primarily used for function discovery or system iden-
tification [Schmidt and Lipson, 2008].

When performing symbolic regression the appropriate model structure, an
analytical mathematical expression, to describe the data has to be discovered
and simultaneously the parameters for a concrete model structure have to
be identified. On the other hand the greater part of regression methods
work with a predefined fixed model structure and optimize the parameters of
this structure to fit the data. As there are no restrictions and assumptions
about the model structure imposed for symbolic regression, the search space
of possible solutions to the regression problem is much larger compared to
other regression methods. In fact the search space when performing symbolic
regression is infinitely large. Due to the finite amount of data used to train
the models, there is an arbitrary number of symbolic models describing the
data equally well.

Therefore, symbolic regression is generally slower compared to other re-
gression techniques, where only the model parameters of a predefined struc-
ture have to be adapted to the given data. Furthermore, due to the size of the
search space, heuristic algorithms, which cannot guarantee a certain result
in contrast to deterministic algorithms, are generally used to solve symbolic
regression problems.

7



CHAPTER 2. SYMBOLIC REGRESSION

The largest benefit of symbolic regression is that the generated models
are present in symbolic form and thus are easily accessible to the user. The
symbolic form enables the user to inspect and interpret the models with
the goal of gaining knowledge about the underlying system generating the
data. Furthermore, the models can be simplified by performing mathematical
transformation, their behavior can be analyzed by calculating the according
gradient and they can be easily incorporated in other software. However,
the benefit of the symbolic form is weakened the more complex a model is.
Although a symbolic model compromising of several thousand terms and
operands is theoretically still open for interpretation and could be studied
in detail, the necessary effort to do so is drastically increased and sometimes
interpretation is virtually impossible. Therefore, restrictions on the model
complexity are commonly introduced when performing symbolic regression
to limit and shrink the search space and to ensure the interpretability of the
models.

Another benefit is that symbolic regression exhibits no bias towards spe-
cific functions occurring in the models and no domain knowledge about the
analyzed data has to be given. For example, when using linear regression to
generate a symbolic model, nonlinear relations cannot be learned. A possibil-
ity for creating nonlinear symbolic models is to specify the model structure
and tune the model parameters accordingly to the data. However, the struc-
ture specification has to be performed manually according to the given data
and is thereby affected by human bias. On the contrary, symbolic regres-
sion does not assume a specific model structure and is therefore not biased
towards particular functions, but rather utilizes the most promising ones to
model the data. Consequently, symbolic regression can generate unexpected
and surprising results, which in turn lead to a deeper understanding about
the modeled data.

8



CHAPTER 2. SYMBOLIC REGRESSION

2.1 Genetic Programming

Symbolic regression has first been introduced by John R. Koza in his book
’Genetic Programming: On the Programming of Computers by Means of
Natural Selection’ [Koza, 1992], which is one of the reasons, despite the enor-
mous search space, why symbolic regression problems are commonly solved
by genetic programming or other heuristic optimization methods. In this
section an overview about genetic programming for symbolic regression will
be given.

2.1.1 Introduction

Genetic programming has been developed as an evolutionary algorithm that
searches for programs that solve a given problem or defined task. The main
motivation for the development of genetic programming was to teach com-
puters a general way to solve problems without explicitly programming them.
Instead of programming them, examples are provided to the algorithm that
should be solved by the generated program.

Genetic programming has been inspired by genetic algorithms [Holland,
1992] and still shares lots of commonalities with them. The main difference
is that while genetic algorithms have been developed to work with a fixed
length encoding (initially a bit-string), genetic programming uses a variable-
length encoding that enables solving problems where the length of a solution
is variable. In the first definition of genetic programming programs were
encoded as abstract syntax trees that can be easily converted in LISP S-
expressions for evaluating the program outcome. Since then other variants
of representing programs have been developed, such as stack-based programs
that are evaluated on virtual machines [Perkis, 1994], direct acyclic graphs
(Cartesian genetic programming) [Miller and Thomson, 2000], binary vectors
that are mapped to an arbitrary Backus-Naur form grammar (grammatical
evolution) [O’Neill and Ryan, 2012], linear instructions (linear genetic pro-
gramming) [Brameier, 2005], or as a character string representing individual
genes (gene expression programming) [Ferreira, 2006].

Genetic programming, similar to other evolutionary algorithms, works by
iteratively creating new solutions from existing ones until a defined stopping
criteria is reached. It uses a pool of solutions, the population, which is ini-
tially built from randomly created solutions. These solutions are evaluated
on the given problem and their performance is expressed as a numerical value
termed fitness (objective value). Based on their fitness value solutions are
chosen to reproduce (parent selection), where it is more likely for solutions
with a high fitness to be selected by introducing a selection bias. The re-

9
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Figure 2.1: Schematic illustration of the genetic programming algorithm.

production works by combining two or more selected solutions to form a
new solution. A common method for reproduction is crossover, where parts
of the genotype of selected parents is exchanged. Afterwards some of the
new solutions are randomly manipulated to introduce new genetic material
in the population and to enable the formation of previously unreachable so-
lutions. The newly created solutions are then evaluated on the provided
examples and their fitness is calculated. The last step of one iteration of ge-
netic programming is replacing the existing population (or parts of it) with
new solutions that again are chosen based on their fitness value (offspring
selection). This cycle of parent selection, recombination and manipulation,
evaluation, offspring selection and replacement is repeated until the stopping
criteria is reached (maximum number of evaluated solutions or a desired ob-
jective value is reached) and the best solution found so far is returned as
result. A schematic representation of genetic programming is depicted in
Figure 2.1.

The main driving forces of population-based and evolutionary algorithms
like genetic programming are fitness-based selection and a recombination
step that creates new solutions that share some commonalities with their
parents. This behavior mimics natural evolution and high quality solutions
should evolve over time, as long as necessary building blocks to build high
quality solutions are present in the population. This has been proven for
genetic algorithms that use a binary encoding for solution representation
[Goldberg et al., 1989; Holland, 1992], where short fragments of high quality,
so called building blocks, accumulate in solution and at least partially for
genetic programming as well [Poli and Langdon, 1998a].

10



CHAPTER 2. SYMBOLIC REGRESSION

The solution representation, how programs are represented, genetic pro-
gramming works with, is referred to as genotype, whereas the semantics, what
a program does when executed, is called phenotype. Because of the variable-
length of the genotype and the possibility to express the same phenotype in
multiple ways, the mapping between genotypes and phenotypes is not bijec-
tive and different genotypes could be translated to the same phenotype. The
program represented by the phenotype is evaluated on the provided exam-
ples, where again different phenotypes could lead to the same behavior with
respect to the provided examples. As the search for programs is performed in
the genotype space, the mapping between the genotype, phenotype and asso-
ciated program introduces neutrality, where syntactically different programs
express exactly the same behavior, and makes the search for good programs
more difficult.

Another difficulty genetic programming is affected by is bloat [Poli, 2003],
an increase of the genotype without an accompanying increase in fitness.
Basically the individuals get larger and hence more complicated without in-
creasing their quality. One reason for bloat is the neutrality of the search
space and another is the destructiveness of recombination operations. While
recombining parent individuals to form a new individual, important and ben-
eficial building blocks can be destroyed and a larger genotype makes those
occurrences less likely. However, more compact genotypes, hence solutions
to the optimization problem, are more desirable as these allow an easier in-
terpretation and a faster execution of the programs. One of the simplest
controls to counter the phenomenon of bloat is to impose static size limits
on the genotype [Poli et al., 2008], which also reduces the search space for
possible solutions, but at least partially counters the benefits of a variable
length encoding.

2.1.2 Tree-based Genetic Programming

The first developed and still most common encoding for genetic program-
ming individuals are symbolic expression trees; hence the name tree-based
genetic programming. Tree structures have the benefit that they are easily
extendable and therefore, fit the purpose of genetic programming needing
a variable length encoding quite well. A symbolic expression tree consists
of internal and leaf nodes, where every leaf node represents a self-contained
function or data object and every internal node represents a function with
its subtrees as arguments. For example a symbolic expression tree encoding
a logic gate is depicted in Figure 2.2. The leave nodes are binary inputs A1,
A2, and B1 and the internal nodes logical functions.

The main principles of genetic programming are independent of the en-

11
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NOT

AND

A1 OR

B1A2

Figure 2.2: Example of a symbolic expression tree encoding a logic gate.

coding used to describe solutions of the optimization problem such as fitness-
based parent selection, iterations until a stopping criteria is met, or that
newly created child individuals should combine aspects of all parents. How-
ever, all the concrete operations for creating, manipulating and evaluating
a solution are indeed specific to the used encoding and these operations for
tree-based genetic programming are described in the following.

Initialization

Genetic programming starts in general with a population of randomly cre-
ated individuals. Although, techniques for adapting the initial population
to the problem at hand exists (population seeding) and could improve the
algorithm’s performance, these are only suitable if prior knowledge about the
problem exists.

The first methods for random tree initialization have been the full and
grow tree creation methods [Koza, 1992]. Both methods start at a given root
node and extend it by adding child nodes until a complete tree is formed. The
full method chooses only function nodes while a predetermined maximum tree
depth is not reached. When the maximum tree depth is reached only terminal
nodes are inserted as child nodes and the tree is completed. As a result all
terminal nodes are located on the same tree level and a tree as depicted in
Figure 2.2 could not have been created with the full method, because the
terminal node ’A1’ is not on the same level with the other terminal nodes
’A2’ and ’B1’. Another consequence of the full method is that the depth of
every created tree is always equal to the maximum tree depth.

The grow method works similarly to the full method with the difference
that whenever a new child has to be added, the new node is chosen ran-
domly among all available nodes including terminal nodes. This is the main
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difference to the full method that does not allow the insertion of terminal
nodes until the maximum tree depth is reached. Therefore, it is possible
with the grow method to generate unbalanced trees with terminal nodes in
varying levels and the resulting tree does not necessary reach the maximum
tree depth at all.

Trees created by the full method are in general larger compared to trees
created by the grow method, but also structurally more similar to each other.
As none of the two methods for tree creation is regarded better than the
other and both methods only require the maximum tree depth as a param-
eter the so-called ramped half and half method for tree creation has been
implemented. When using the ramped half and half method 50% of the ini-
tial population is created with the full method and the other 50% with the
grow method yielding to a more diverse initial population.

The disadvantages of the grow and full method, hence also of the ramped
half and half, are that they allow no fine grained control of the particularly
created trees with respect to the tree size and frequency of the occurring sym-
bols. The size of the created trees is only bound by the maximum tree depth
and all symbols are chosen with equal likelihood. These short comings are
addressed by the probabilistic tree creators PTC1 and PTC2 [Luke, 2000a].
Both methods allow the definition of an expected tree size, which should be
achieved while creating a new tree. Additionally, PTC2 enables the defi-
nition of symbol frequencies for internal and leaf nodes that are respected
during tree creation. PTC1 and PTC2 work by maintaining a look-ahead
queue of boundary positions at which the tree can be further extended until
the desired tree size is reached.

The choice of the tree creator has a strong effect on the size distribution
of the created trees. Figure 2.3 highlights this influence by showing the size
histogram for the different tree creators when 1000 random trees are created.
The maximum tree depth has been restricted to 8 and there have been four
binary function symbols and two terminal symbols allowed. The results for
the full method are omitted, because the full method always creates trees
with a size of 28 = 256 nodes, the maximum possible size for binary trees
with a depth restriction of 8. The grow tree creator builds lots of small
trees and did not produce any trees containing more than 220 nodes. The
behaviors and size distributions of the full and grow tree creators are reflected
by the results of the ramped half and half method, where one half of the trees
are allocated to the last bin (those created by the full method) and the other
half follows the distribution of the grow method. The trees produced by
the PTC2 have been created using a uniform distribution U [1, 256] for the
expected tree size, which is clearly visible in Figure 2.3.
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Figure 2.3: Size histogram of tree creators building 1000 random trees with
a maximum tree depth of 8.

The reason why the choice of the tree creator in genetic programming is
crucial, is that genetic programming depends on the genetic material of the
initial population. Therefore, the tree creator highly affects the individuals
that can be built by recombination and manipulation during the algorithm
execution. A detailed comparison of the effects of the described tree initial-
ization algorithms is performed in Luke and Panait [2001].

Reproduction

In most evolutionary algorithms, recombination and manipulation are re-
sponsible for generating new individuals from existing ones and thus navi-
gating through the search space of possible solutions. A prerequisite is the
probabilistic selection of parent individuals that are allowed to reproduce.
Preferably, individuals with a high fitness are selected for recombination and
manipulation, because these should generate fitter individuals.

Selection in genetic programming works similar to genetic algorithms and
is based on the fitness of the individuals; in general the higher the fitness value
the more likely it is for an individual to be selected as parent. The most
common methods for parent selection are ranking selection [Baker, 1985],
tournament selection [Brindle, 1980; Poli et al., 2008] and fitness proportion-
ate selection [DeJong, 1975]. More specialized selection methods for genetic
programming include no same mates selection [Gustafson et al., 2005] or
sexual selection [Wagner and Affenzeller, 2005]. The effects of using different
selection schemes in evolutionary algorithms are highlighted in Goldberg and
Deb [1991]; Blickle and Thiele [1996]. Selection mechanisms are in general
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independent of genetic programming encodings and can be easily adapted
from other evolutionary algorithms as long as they are only dependent on
the fitness value. A detailed study on selection mechanisms and their effects
on the search behavior of genetic programming was performed in Xie [2009].

After the selection of parent individuals for reproduction, new individuals
forming the next generation are created. There are three different ways to
generate individuals from existing ones:

− Copying

− Recombination

− Manipulation

Depending on the genetic programming variant used, the three reproduc-
tion operations are either used mutually exclusive or occur in combination, for
example copying or recombination in conjunction with manipulation. Gen-
erally, every reproduction operation is stochastically applied according to a
given probability during the algorithm execution. However, it is also possible
to specify the number of new individuals that have to be created for each
operation, which is especially important for copying.

The simplest reproduction operation is building an exact copy / clone
of the selected parent. Copying is used, if at all, on a small portion of the
population and the main motivation is to maintain genetic material in the
population. Another reason for copying is that elites, the best individuals in
the current population, are passed to the next generation without any mod-
ifications so that a steady fitness increase without any decline is guaranteed.

Another reproduction operation is the recombination of several parent
individuals to form new offspring. The newly created offspring should dif-
fer from its parents while still containing parts of their genetic material.
The most common form of recombination is crossover, which is an encod-
ing specific operation. Therefore, subtree crossover [Koza, 1992] is used in
tree-based genetic programming. Subtree crossover works by selecting one or
multiple random crossover points in each of the parent individuals and swap-
ping the subtrees beneath the selected crossover points, which is illustrated
in Figure 2.4. In its original form crossover points are chosen uniformly and
due to the prevalence of crossover points with only a single terminal node
below them, terminal nodes as crossover points are more often selected. To
counteract this phenomena it is common to determine first whether terminal
and function nodes should be selected before choosing the concrete crossover
point.
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Figure 2.4: Genetic programming crossover exchanging the highlighted sub-
trees in the parents to form a new offspring individual.

All crossover operations exchange subtrees between the parent individ-
uals. However, more advanced crossovers choose the crossover points, and
therefore the exchanged subtrees, more sophisticatedly. For example, the
one-point crossover for symbolic expression trees [Poli and Langdon, 1998a]
chooses the crossover point in one parent, aligns the tree structures and de-
termines the corresponding crossover point to the one chosen in the second
parent, therefore maintaining the position of the exchanged genetic material.
Other crossovers choose the crossover points according to the size of the ex-
changed subtrees [Langdon, 2000; Harries and Smith, 1997] or the semantics
of the exchanged subtrees [Majeed and Ryan, 2006; Nguyen et al., 2009; Uy
et al., 2010]. Although several crossovers have been proposed in recent years
and their effects on the search algorithm have been studied [Poli and Lang-
don, 1998b; Kronberger et al., 2009], the standard subtree crossover is most
commonly used, presumably due to its simplicity.

The last reproduction operation is manipulation, which is either applied
to a copied individual or the resulting individual of a recombination oper-
ation. The main purpose of manipulation is the modification of existing
individuals and the introduction of new genetic material. Without manip-
ulation, only variations and combinations of genetic material in the initial
population can be created. As a result, the space of possible solution that
can be reached by genetic programming would be completely dependent on
and limited by the genetic material present in the initial population.

The most common form of manipulation is mutation that is responsible
for randomly altering the generated individuals. A simple way of introducing
new genetic material is to replace an existing subtree with an randomly
created one. This operation is called subtree mutation or headless chicken
crossover [Angeline, 1997], because the same effect could be achieved by
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performing a subtree crossover with the selected individual and newly created
one. Other mutation operations range from point mutation, where a single,
specific node is changed, permutation mutation, which alters the argument
order of a node (the order of its subtrees) [Koza, 1992] to hoist mutation
[Kinnear Jr., 1993] that sets the root of the tree to a random node and
thereby creates a new smaller individual. The number of different possible
mutation operations seems to be unlimited, yet subtree and point mutation
are prevalent.

Despite mutation that introduces new genetic material in the popula-
tion, other manipulation operations exist. Simplification is an operation
that changes the genotype of an individual without affecting the phenotype.
Simplification is termed editing in Koza [1992] and the most general editing
rule is that any function without side effects, no context dependency and only
constants as arguments is replaced with its constant evaluation results; for
example the expression (3+2) will be replaced by (5). More specific rules for
simplification can be implementing if domain knowledge about the expression
semantics is available. For example, the boolean expression (TRUE AND X)
gets replaced with (X).

Other common manipulation operations are pruning and encapsulation.
Pruning removes or replaces arbitrary subtrees from an individual to reduce
the genotype size and counter the phenomena of bloat. Encapsulation is ex-
tracting the functionality encoded by a certain tree structure in a separate
function so that it can be reused from multiple locations. This can be imple-
mented either by generating automatically defined functions [Koza, 1994],
or tagging substructures for reuse [Angeline and Pollack, 1993], or saving
partial program evaluation in an additional memory segment [Teller, 1994].

Canonical Genetic Programming

After a rough overview of genetic programming and an explanation of its
building blocks, in this section a simple version of the algorithm is described.
The genetic programming algorithm is stated in Algorithm 1. Two essential
parameters are the population size PopSize and the maximum generations
Genmax that should be performed, because these parameters predefine how
many solutions are evaluated in total.

First the generations counter g is initialized with zero and the first popula-
tion is filled with randomly created individuals. Afterwards the fitness of the
individuals is evaluated. How this is performed is dependent on the problem
that should be solved and the objective values, which should get optimized.
Next the iterative part of the algorithm starts, which is executed until the
generations counter reaches the maximum generations. A new empty popu-

17



CHAPTER 2. SYMBOLIC REGRESSION

lation is created and until this new population is not completely filled, new
individuals are created. This works by selecting parent individuals and gen-
erating an offspring individual by copying, recombination, mutation, or a
combination thereof. Then the fitness of the offspring is evaluated and it is
added to the new population. When the new population is filled, is replaces
the existing population and the generations counter is increased. This loop is
repeated until the maximum number of generations is reached and the best
solution found so for is returned as the result of the algorithm.

This description provides an overview of the necessary steps for genetic
programming. In practice several modifications and additional details to this
algorithm exists, but the described parts are in one way or another executed
for each genetic programming variant.

Algorithm 1 Canonical Genetic Programming

Require: Population size PopSize, Maximum generations Genmax
g ← 0
Population0 ← Create PopSize Individuals
Evaluate fitness of Population0

while g < Genmax do
Populationg+1 ← {}
while |Populationg+1| < PopSize do

Select parent individuals from Populationg
Generate Offspring from selected parents
Evaluate fitness of Offspring
Populationg+1 ←Populationg+1∪ Offspring

end while
g←g+1

end while

Grammar-based Genetic Programming

In the initial definition of genetic programming all function and terminal
symbols had to fulfill the closure property [Koza, 1992] that guarantees type
consistency and evaluation safety. The closure property requires that every
function can handle any function or terminal symbol as its input argument
and is well defined regardless of its arguments. The easiest way to ensure
type safety is to work with only one representation internally. For example,
when logical expressions should be generated, only binary inputs and boolean
operations are used. Another simple implementation of type safety is to
define automatic conversions between data types such as converting a floating
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point number x to a boolean input by a function f : < → [T, F ] that returns
T when x > 0 and F otherwise, which is automatically applied when a type
mismatch is encountered.

The second requirement of the closure property evaluation safety ensures
that every function returns a valid evaluation result. This is necessary be-
cause functions could fail during program execution such as a division by zero.
A way to handle evaluation safety is to redefine the semantics of potentially
faulty functions either by ignoring their result or by returning a different
value. In the case of a division by zero x/0 the inverse of the numerator 1/x
is returned instead of an error [Koza, 1992].

The type and evaluation limitations of the closure property are overcome
by defining types for each function and terminal nodes and in turn imposing
limitations on the validity of trees. Functions can only be nested if the
return type of its arguments match the necessary argument type of itself.
Such a system has been developed under the name of strongly typed genetic
programming [Montana, 1995]. Resulting by the restrictions on possibly valid
trees, all genetic operations that manipulate expression trees such as creation,
crossover, mutation, and editing have to be adapted to take these restrictions
into account. While in the standard implementation of the subtree crossover
two randomly selected subtrees are exchanged, this is no longer possible,
because the choice of the first crossover point in the receiving parent restricts
the possible crossover points in the donating parent due to the incompatibility
of crossover points with different return types.

Another possibility to impose constraints on allowed expression trees is
by extending the concept of strongly typed genetic programming to a more
general one, where for every argument of a function and the set of allowed
functions and terminals is specified. As an example the unary square root
function sqrt can be restricted in a way that its argument has to be a function
abs that calculates the absolute value of its argument. Therefore, evaluation
safety is automatically ensured by guaranteeing a positive argument value
for the sqrt function.

This concept of imposing constraints on allowed expression trees can be
further extended and generalized by using grammars, which explicitly define
the space of valid expression trees. An extensive survey on the different
approaches to grammar guided genetic programming is given in Mckay et al.
[2010]. Eventually, the benefits of grammars for guiding the search process
and the simple inclusion of semantics in the generated programs led to the
separate search algorithm Grammatical Evolution [O’Neill and Ryan, 2012].
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2.1.3 Symbolic Regression with Genetic Programming

As stated before symbolic regression is a regression analysis method that
models the relationship between one dependent and several independent vari-
ables in form of a mathematical expression without making any a-prior as-
sumptions about the model structure. When performing genetic program-
ming to solve symbolic regression problems the search for programs that solve
a given task becomes the search for mathematical expressions that describe
the data most accurately.

Changing a genetic programming system to generate mathematical ex-
pressions is achieved by choosing an appropriate function and terminal set.
In case of symbolic regression the function set contains mathematical opera-
tions, such as arithmetic, trigonometric, or power functions, but in principle
any mathematical operation is suitable. The terminal set consists of constant
numerical values and variables. An illustrative example is the function set
F = {+,−, ∗} and terminal set T = {x, 1.0} that allows the construction
of any polynomial of x with integer coefficients. The explanation is that
by recursive application of addition and subtraction of the numeric value
1.0 any integer and by multiplication of x with itself any power of x can
be created. For instance the polynomial 3x2 + x + 1 can be represented as
(1 + 1 + 1) ∗ (x ∗ x) + x + 1 which can be constructed from the previously
defined function and terminal set.

Besides the function set, the minimum and maximum arity of each func-
tion in the set has to be defined. For most cases unary and binary operations
are used and the minimum and maximum arity is the same. However, for
associative operations a higher maximum arity allows the formation of denser
and easier to interpret trees, representing the same expression. Keeping the
previous polynomial example 3x2 +x+1, if only binary functions are allowed,
the representation would be (((1 + 1) + 1) ∗ (x ∗x)) +x) + 1 as shown in Fig-
ure 2.5 on the left side. The extension of addition and multiplication to allow
more subtrees, enables a more compact representation (1+1+1)∗(x∗x)+x+1
indicated in Figure 2.5 on the right side. Exactly the same representation of
the polynomial as expression tree cannot be achieved, because the power or
square function is not included in the function set F and the terminal set T
does not include the numeric constant 3.0.

All three representation of the example polynomial are semantically equiv-
alent and can be transformed into each other by applying associative trans-
formation. However, their syntax is different (tree sizes in Figure 2.5) and
as genetic programming operates in general on the syntax of the symbolic
expression tree, these three representations are not treated as equal (see also
genotype-phenotype mapping in Section 2.1.1).
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Figure 2.5: Symbolic expression tree representations of the polynomial
3x2 + x+ 1 in binary and compacted form.

Solution evaluation

Symbolic regression can be reformulated as an optimization problem, where
the model which minimizes the error between its estimations and the desired
target variable has to be found. Genetic programming is used for navigating
through the search space of possible solutions by applying the previously
discussed operations for tree creation, parent selection, recombination, and
manipulation. The final missing part to solve symbolic regression problems
with genetic programming is the solution evaluation, which assigns a fitness
(objective) value to a solution candidate. Solution evaluation always depends
on the encoding used in genetic programming and the problem which should
be solved; in this case tree-based genetic programming solving a symbolic
regression problem.

Solution evaluation consists of two consecutive steps, program interpreta-
tion and objective value calculation. The interpreted program in combination
with provided input data calculates the program result for specific test cases.
In the case of symbolic regression, the program is the mathematical expres-
sion and the input data are the concrete variable values occurring in the
mathematical expression. The interpretation results in a numerical value.
How the program interpretation works in detail depends on the genetic pro-
gramming implementation, but commonly the symbolic expression tree is
iterated from the leaf node to its root and the variable values are aggregated
according to the encountered functions during this tree traversal. A detailed
description of how symbolic expression trees are interpreted in the heuristic
optimization framework HeuristicLab is given in Kommenda et al. [2012].

The program interpretation is repeated for every supplied test case yield-
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ing a vector of estimated values y′, that describes the semantics of the pro-
gram for the given input data x. As previously stated, the deviation be-
tween the actual target values y and the estimated values y′ of the solution
candidate should be minimized identically to other regression methods. In
evolutionary computation, the function mapping the program semantics to
a single value is called fitness function. For symbolic regression it is closely
related to cost functions in machine learning, with the difference that fitness
is maximized, whereas costs are minimized. However, a cost function can
easily be turned into a fitness function, for example by taking the inverse
value, and vice versa. Therefore, the term ’objective’ or ’objective function’
is used for the remainder, which should either be minimized or maximized.

Common objective functions in symbolic regression are the mean abso-
lute error (MAE) or the mean squared error (MSE) between the estimated
values and the target values. Other often used object functions are the root
mean squared error (RMSE), the normalized mean squared error (NMSE),
also termed fraction of variance unexplained, and the coefficient of determi-
nation (R2).

2.2 Genetic Programming and Symbolic Re-

gression Software

Although the basic principles of evolutionary algorithms and genetic pro-
gramming are easily described, the details and necessary operations for a
feature complete and efficient genetic programming algorithm solving sym-
bolic regression problems can be hard to implement correctly. A framework
can simplify this work tremendously and provides additional functionality for
the user, so that the focus can be set on new algorithmic advances and meth-
ods. Furthermore, lots of frameworks are shipped with standard algorithms
and operations to which new developments can be compared to. The choice
of the right framework for a given task depends on the user’s proficiency with
the used programming language, the already gained experience with the con-
crete framework, the provided functionality on which new developments can
be built upon, as well as available documentation and tutorials to ease its
usage. In general, there is no single best framework, only the best framework
for the task at hand and for the person performing this task.

In the following, a short overview of existing, actively developed frame-
works and programs that support symbolic regression by genetic program-
ming is given. This represents by no means a complete compilation of genetic
programming frameworks, but the most frequently used and still actively de-
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veloped and maintained programs in the author’s opinion are described. A
more general and comprehensive list of genetic programming frameworks can
be found at the genetic programming homepage1.

ECJ

ECJ 2[Luke, 2002] is a Java open-source and general-purpose framework for
evolutionary computation developed at George Mason University’s Evolu-
tionary Computation Laboratory ECLab3. It is one of the most widely used
[White, 2012; Parejo et al., 2012] and longest available yet actively devel-
oped frameworks in evolutionary computation research. ECJ ’s development
has been inspired by the classic genetic programming system lil-gp [Zongker
and Punch, 1998] that is directly based on the work by Koza [1992]. lil-gp
is hard to extend and customize which has been the major reason for the
development of ECJ. Another reason for the development was to have an
industrial-grade framework for evolutionary computation and not just ge-
netic programming available that provides useful functionality over a longer
period of time.

ECJ provides tree-based genetic programming out of the box with prede-
fined problems such as boolean multiplexer and parity or symbolic regression.
It has been widely used for genetic programing research for example on tree
creation [Luke and Panait, 2001] or parsimony pressure [Luke, 2002]. Addi-
tionally, a reference implementation of well-defined genetic programming and
symbolic regression benchmark problems [White et al., 2013] is maintained
in ECJ.

DEAP

DEAP4 [Fortin et al., 2012] is the abbreviation for distributed evolutionary
algorithms in python and has been developed to test new ideas and for rapid
prototyping in the context of evolutionary computation. It is available as
open source framework in Python and is maintained by Computer Vision and
Systems Laboratory at Université Laval in Quebec, the same research group
that is actively developing the C++ framework for evolutionary computation
Open BEAGLE [Gagne and Parizeau, 2002].

Contrary to other evolutionary computation frameworks, DEAP does not
necessarily provide ready-to-use algorithms, but rather their essential build-

1 http://geneticprogramming.com/software/ [Accessed 06-Dec-2016]
2 http://cs.gmu.edu/~eclab/projects/ecj/ [Accessed 06-Dec-2016]
3 http://cs.gmu.edu/~eclab/ [Accessed 06-Dec-2016]
4 https://github.com/DEAP/deap [Accessed 10-Jan-2017]

23

http://geneticprogramming.com/software/
http://cs.gmu.edu/~eclab/projects/ecj/
http://cs.gmu.edu/~eclab/
https://github.com/DEAP/deap


CHAPTER 2. SYMBOLIC REGRESSION

ing blocks. Evolutionary algorithms and meta-heuristics are then constructed
by combining these building blocks. The framework directly supports and
eases the algorithm construction and therefore enables the rapid prototyp-
ing concept. DEAP provides an extensive documentation and tutorials and
in combination with the rich Python ecosystem, an easy way to create new
algorithms or new variations of existing ones.

Support for genetic programming is provided directly in the form of
tree-based genetic programming5 and utility functions for tree creation, re-
combination or manipulation, and plotting. Furthermore, DEAP supports
strongly-typed genetic programming, where for each function its input and
output data types are specified and only valid trees according to these type
definitions are created. Symbolic regression can be setup similarly to genetic
programming6 and due to the simplicity of DEAP it has been used in vari-
ous research for example on bloat control [Gardner et al., 2011] or dynamic
system predictions [Quade et al., 2016].

HeuristicLab

HeuristicLab7 [Wagner, 2009] is another general purpose framework for evo-
lutionary computation and heuristic optimization methods. It is actively
developed by the research group HEAL, located at the University of Applied
Sciences Upper Austria since 2002 and available as open-source program
since the version HeuristicLab 3.3 [Wagner et al., 2014]. HeuristicLab is
implemented in C# and actively used in teaching, research8 and industrial
projects.

Distinguishing features of HeuristicLab are its graphical user interface
that allows algorithm configuration, execution, and modeling [Elyasaf and
Sipper, 2014] as well as an integrated programming environment for pro-
totyping ideas [Beham et al., 2014]. Furthermore, HeuristicLab includes a
distributed computing environment that automatically distributes, executes
and gathers the results of evolutionary algorithms [Neumüller et al., 2012].

Genetic programming is supported in HeuristicLab by an extensive tree-
based implementation [Kommenda et al., 2012] that further offers strongly

5 http://deap.readthedocs.io/en/master/tutorials/advanced/gp.html

[Accessed 06-Dec-2016]
6 http://deap.readthedocs.io/en/master/examples/gp_symbreg.html

[Accessed 06-Dec-2016]
7 http://dev.heuristiclab.com

[Accessed 10-Jan-2017]
8 http://dev.heuristiclab.com/trac.fcgi/wiki/Research

[Accessed 10-Jan-2017]
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typed symbolic expression trees, grammatical constraints in the form of syn-
tax restrictions, automatically defined functions and a basic implementation
of grammatical evolution for comparison purposes. Although, control (e.g.,
artificial ant or lawn mower problem) or boolean logic problems (e.g., mul-
tiplexer or parity problems) are implemented as well, most of the genetic
programming functionality is tailored towards symbolic regression and clas-
sification problems [Affenzeller et al., 2014].

GPTIPS

GPTIPS 9 [Searson et al., 2010] is a free, open source MATLAB toolbox
for performing symbolic regression developed by Dominic Searson. An im-
proved version GPTIPS 2 [Searson, 2015] is available since May 2015. Us-
ing MATLAB as the foundation for the implementation, GPTIPS provides
an easy to use interface and interactive environment, out of the box multi-
platform support, and fast, robust, and trustable matrix and vector opera-
tions and algorithms as well as the use of the symbolic engine of MATLAB
for post-run analysis and model simplification. Most of the functionality of
GPTIPS is command line driven and configured by adapting a MATLAB M
file that contains the relevant parameters.

Contrary to the other frameworks GPTIPS is specifically tailored to-
wards symbolic regression and does not support genetic programming in
general. It is a widespread software for performing multi gene genetic pro-
gramming [Searson, 2002], where a linear combination of multiple expression
trees referred to as genes, form a solution to the regression problem at hand.
Additional features of GPTIPS include steady-state and multi-start [Sear-
son, 2015] genetic programming, various mutation, selection, and termination
operations, different complexity measures for expression trees and various re-
porting and exporting options.

DataModeler

DataModeler 10 is a commercial package extending Wolfram Mathematica
for solving symbolic regression problems. Similar to GPTIPS, which uses
MATLAB internally, DataModeler benefits from the powerful functionality,
visualization support and symbolic computation engine provided by Wolfram
Mathematica.

The main genetic programming paradigm followed in DataModeler is
ParetoGP [Smits and Kotanchek, 2005] that combines multi-objective op-

9 https://sites.google.com/site/gptips4matlab/ [Accessed 17-Jan-2017]
10 http://www.evolved-analytics.com/?q=datamodeler [Accessed 02-Aug-2017]
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timization with an additional archive of Pareto-optimal solutions. Due to
ParetoGP the problems of bloat and selecting an appropriate model com-
plexity to describe the data, are implicitly reduced, as model accuracy and
complexity are equally important optimization objectives. Further features
of DataModeler are automatic data balancing, extensive model analysis, se-
lection, and life-cycle support, sensitivity analysis and ensembling to build
more trustable models [Kotanchek et al., 2008].

Eureqa

Eureqa11 is a proprietary software for searching analytical models describ-
ing provided data. It has been initially developed by the Creative Machines
Lab12 and has subsequently been commercialized by Nutonian. The un-
derlying evolutionary system for generating data-based models is based on
research on coevolving fitness predictors [Schmidt and Lipson, 2006, 2008],
where multiple subpopulations are used to identify accurate models and sub-
sets of data points that discriminate the models well, which in turn speeds
up the optimization significantly. Furthermore, Pareto front exploitation by
using age-layered populations [Hornby, 2006; Schmidt and Lipson, 2011] has
been investigated for symbolic regression. Eureqa gained public attention by
a scientific publication [Schmidt and Lipson, 2009], where the laws of conser-
vation of angular momentum of a double pendulum have been automatically
discovered by the system. Until the present day a free version of Eureqa is
available upon request for non-profit academic research.

11 http://www.nutonian.com/products/eureqa/ [Accessed 02-Aug-2017]
12 http://www.creativemachineslab.com/eureqa.html [Accessed 02-Aug-2017]
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2.3 Deterministic Symbolic Regression

Commonly symbolic regression problems are solved by evolutionary algo-
rithms such as genetic programming or variants of it. A consequence of the
heuristic nature of evolutionary algorithm is that the same algorithm ap-
plied on the same data yields different results for each execution. This might
be beneficial to search enormous solution spaces efficiently, but several ad-
vanced machine learning concepts are either rendered useless or significantly
hampered in their applicability, such as meta parameter tuning or valida-
tion concepts. Furthermore, a technique yielding different results with every
execution is less trustable and researchers always have to perform multiple
repetitions of the algorithms to report statistical results on obtained solu-
tions, to rule out the possibilities of lucky outliers.

Few deterministic methods have been developed for solving symbolic re-
gression to diminish the disadvantages of heuristic methods. Most of the
deterministic symbolic regression algorithms reduce the space of solutions
by limiting possible model structures. For example, if the search space is
restricted to only contain linear combinations of the input variables, a de-
terministic algorithm would be to perform ordinary least squares regression
for every possible input variable combination and returning the best found
model. This algorithm would create 2N linear models, where N is the number
of input variables, and solve the problem of searching for models containing
only linear parameters deterministically. The constraint enabling this rather
primitive algorithm is to only search for linear combination of untransformed
input variables as possible models.

Additionally, determinism is supported by a structured way of navigating
the search space and hence avoiding duplicate and already evaluated solu-
tions. In this example algorithm it is achieved by creating solutions in a
structured way from the most simplistic to the most complex, which con-
tains all input features. Intelligent iteration of possible solutions, limitation
of the search space, and integration of other machine learning algorithms are
the main components of deterministic algorithms for symbolic regression and
a few algorithms are presented in the following.
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2.3.1 Fast Function Extraction

Fast Function Extraction (FFX) [McConaghy, 2011] has been introduced by
Trent McConaghy in 2011. The main motivation for developing FFX has
been to have a symbolic regression tool that is fast, deterministic and can
handle many input variables. In turn symbolic regression should become a
technology delivering accurate solutions without the necessity for parameter
tuning. FFX has been implemented in Python 2.713 using SciPy [Jones et al.,
2001–], NumPy [Van Der Walt et al., 2011], and scikit-learn [Pedregosa et al.,
2011] for performing numerical computations and machine learnining. FFX
is available as open source for non-commercial use at the personal webpage
of Trent McConaghy14 or GitHub15.

The main idea of FFX is to generate several new features on which reg-
ularized learning strategies are applied to create multiple regression models.
The generation of new features is done by applying several different basis
functions B to the original input variables. As a result FFX is not able to
generate arbitrary models, but generates models that belong to the class of
generalized linear models (GLMs) [McCullagh and Nelder, 1989] displayed
in Equation (2.1).

f(x) = a0 +

|B|∑
i=1

aiBi(x) (2.1)

There are two different kinds of basis functions used, univariate and bi-
variate bases. In a first step all exponential bases of x, 1

xi
, 1√

xi
,
√
xi, and xi

itself, are created and added to the set of basis functions. On all of these
basis functions the operators abs(b),max(b, 0),min(b, 0), and log10(b) are ap-
plied and included in the set of basis functions B. Afterwards hinge functions
[Friedman, 1991]max(0, x−t) or max(0, t−x), where the threshold t depends
on the range of xi, and squares x2

i are added. The last step for the creation of
the basis functions B is to add all products of already existing bases. In the
implementation of FFX a maximum on bivariate bases (either 4,000 or 8,000
depending on whether fractions are enabled or disabled) is applied to speed
up the calculation, where bivariate bases consisting of univariate bases which
have a higher influence on the model are preferred. Furthermore, the created
bases are automatically filtered to exclude ill behaving functions (evaluations
to ∞ or undefined evaluations), functions without any effect (e.g., abs(x2)),
and constant bases (max(x, 0)|max(x) < 0).

13 http://www.python.org [Accessed 16-Aug-2017]
14 http://trent.st/ffx/ [Accessed 16-Aug-2017]
15 http://github.com/natekupp/ffx [Accessed 16-Aug-2017]
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After the creation of the basis functions, the actual models are built us-
ing the elastic net model building technique [Zou and Hastie, 2005]. Elastic
net is convex combination of ridge regression [Hoerl and Kennard, 1970] and
lasso regression [Tibshirani, 1996]. Ridge regression uses the L2-norm for pe-
nalizing large coefficients, but is unable to generate sparse models, whereas
lasso regression uses to L1-norm and performs shrinkage and variable selec-
tion simultaneously. Equation (2.2) shows formulation of the naive elastic
net, which has to be minimized for a specific combination of λ1 and λ2 to
obtain the model coefficients β.

L(α, β) = ||y −Xβ||22 + λ1||β||1 + λ2||β||22 (2.2)

FFX uses a mixing parameter p and combines λ1 and λ2, so that λ1 = pλ
and λ2 = (1 − p)λ. An elastic net fit is performed for different, decreasing
values of λ. As a result the training data has to be modelled more accurately
and more bases with non-zero coefficients are included in the model until
a predefined maximum value is reached. The learning of the coefficient is
repeated for different sets of basis functions and different values of λ to create
a diverse set of models. These models are afterwards filtered to remove
dominated models with respect to the prediction accuracy and number of
used features and a Pareto-front of the non-dominated models is returned as
a result.

The advantages of FFX are that it combines well-established machine
learning techniques to perform symbolic regression and scales well with the
number of samples and variables in the dataset. The default configuration
of FFX produces accurate models and because FFX is a deterministic algo-
rithm, cross-validation is easily applicable for parameter tuning. A drawback
of FFX is that it is only able to learn models in the form of GLMs (see Equa-
tion (2.1)), which are specified by the used basis functions. Furthermore, the
generated models can become quite large (≥ 100 basis functions) and al-
though the model is expressed as a linear combination of the basis functions,
these large models are quite difficult to interpret.
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2.3.2 Prioritized Grammar Enumerations

Prioritized Grammar Enumeration (PGE) [Worm and Chiu, 2013] is another
technique to perform deterministic symbolic regression implemented in the
GO programming language and available at GitHub16. PGE reformulates
the symbolic regression problem to a grammatical optimization one, where
possible sentences defined by a grammar have to be explored. Generated
sentences consist of mathematical expressions and terms depending on the
used grammar and represent a prediction model when interpreted correctly.
An exemplary grammar for building regression models as defined in Worm
and Chiu [2013] is shown in Figure 2.6.

Start → E
E → E + T | E ∗ T | T
T → T −N | T/N | N
N → sin(E) | cos(E) | tan(E) |

log(E) | exp(E) |
√
E | L

L → (E) | −(E) | (E)(E) | Term
Term → Constant | Variable

Figure 2.6: Grammar used to create regression models with Prioritized Gram-
mar Enumeration.

PGE starts with a set of minimal sentences (basis functions) such as c0∗xi,
c0 + c1 ∗ xi, c0

xi
, and c0 ∗ f(xi) and stores these basis functions in a Pareto

Priority Queue (PPQ). The PPQ is generated by non-dominate sorting of all
generated sentences according to their accuracy and length and pushing the
resulting Pareto frontiers to the queue, where each frontier is sorted ascending
by length. After the initial generation of basis functions and creation of the
priority queue, the first p sentences are popped from the queue and according
the expansion rules new sentences are created. The expansion rules applied
to sentences are directly related to the production rules of the grammar and
include methods for adding new terms, widening, or deepening existing terms.
The newly generated sentences are afterwards inserted in the PPQ and the
process continues until a defined stopping criteria such as a desired accuracy
or execution time is reached. The PPQ balances the trade-off between the
exploration of accurate and parsimonious sentences.

16 http://github.com/verdverm/go-pge [Accessed 18-Aug-2017]
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PGE reduces the infinite search spaces of possible sentences by including
the semantics of a sentences and reducing them to their canonical form. For
example, constant expressions such as 2+4 or sin(π) are automatically folded
and terms of commutative symbols (addition and multiplication) are ordered
to achieve the canonical form. Therefore, the search space is structured and
reduces isomorphic formulas to their simplest representation. The formulas
already evaluated by PGE are kept in a trie structure to avoid reevaluation
of equivalent equations, hence saving execution time.

The reduction of the search space is only possible due to omitting of con-
crete numerical values for constants. Instead of specifying numerical values
for generated formulas, a parameter ci is inserted representing an arbitrary
numerical value. Otherwise, formulas with the same structure (operators
and variables) but different numerical values, could not be matched in the
trie and would be treated as distinct. Afterwards, if the formula has not
been previously encountered and therefore is not present in the trie, the nu-
merical parameters ci are fitted to the training data by using a nonlinear
regression method, the Levenberg-Marquards algorithm [Levenberg, 1944].
This approach is similar to the one presented in Section 3.3 and allows the
separation of searching for structures from their concrete parameterization,
thus narrowing the search space of possible formulas even more.

In summary, PGE achieves deterministic symbolic regression by recursive
application of expansion rules on already generated formulas or initially on
defined basis functions, the use of a priority queue for steering the search,
intelligent structuring of the search space by only considering the canoni-
cal representation of the formula, and the separation of the structure and
parameters of a formula by using nonlinear regression to find the best nu-
merical values. It contains only two parameters, p to steer the search and
the stopping criteria and due to its determinism does not need to be exe-
cuted multiple times in contrast to heuristic symbolic regression methods. A
drawback of PGE is that with an increasing number of features its runtime
increases drastically, because the search space grows exponentially with the
number of features and the feature selection capabilities of PGE have not
been evaluated yet.
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Local Optimization

In contrast to global optimization, where the global optimum should be
found, local optimization aims to quickly find a local optimum based on
a specific starting point. Hence, local optimization can be interpreted as re-
finement method for solutions. Memetic algorithms combine such refinement
methods with global optimization methods, often population-based, evolu-
tionary algorithms [Chen et al., 2011]. In their initial definition a memetic
algorithm [Moscato et al., 1989] is a genetic algorithm [Goldberg et al., 1989]
hybridized with hill climbing.

In the context of symbolic regression, local optimization refers to a further
improvement of existing solutions towards a local optimum, as for example
in Krawiec [2001] or Juárez-Smith and Trujillo [2016]. In the past several
attempts to hybridize evolutionary algorithms with machine learning meth-
ods have been implemented to achieve more accurate solution to symbolic
regression [Raidl, 1998; Lane et al., 2014; La Cava et al., 2015; La Cava and
Moore, 2017; Castelli et al., 2015] or classification problems [Wang et al.,
2011].

In this chapter the focus lies on local optimization methods for adapting
the numerical constants of symbolic regression solutions and how this helps
genetic programming to produce more accurate results.
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3.1 Constants in Symbolic Regression

3.1.1 Overview

When performing symbolic regression the numerical constant values are of
prime importance. Numerical values, referred to as constants, form together
with variables the terminal set T . Elements from the terminal set are chosen
whenever a leaf node is created in a symbolic expression tree. Constants
can be explicitly stated in the terminal set T . For example, the terminal
set can be defined as T = {X, 1.0, 2.0, π} containing one variable X and the
three numerical values 1.0, 2.0, and π. Adding predefined and immutable
numerical constants directly to the terminal set has a few implications.

Firstly, the ratio between variables and constants is altered resulting in
different probabilities for the terminals to be chosen. In the previous example,
it is three times as likely for a constant to be selected during tree creation
when a terminal symbol is picked. Hence, the created trees will contain more
constants and fewer variables. Whether this poses a problem for solving
the symbolic regression at hand depends on the concrete problem. However,
the user should be aware of the introduced bias towards selecting constants
as leaf nodes. This can be mitigated if the genetic programming algorithm
supports symbol frequencies and if these frequencies are adapted according to
the number of variables and constants. Symbol frequencies specify a weight
according to which possible symbols during tree creation are selected. To
achieve a uniform distribution between variables and constants, the symbol
frequencies are 1

2
for X and 1

6
for the constants. Hence, it is three times

as likely for X to be included during tree creation compared to a concrete
constant, which compensates the fact that there are three constants and only
one variable.

Secondly, due to the immutability of the symbol it is hard or sometimes
even impossible to create arbitrary numeric values. Other numeric values,
except the predefined ones in the terminal set, can only be created by combin-
ing existing constants through the allowed function symbols. In the provided
example, the number 4.0 cannot be referenced directly, but can be generated
by addition, multiplication or power functions that combine the constant 2.0
with itself. Although there are multiple rather simple ways to generate the
number 4.0, 0.2 has to be expressed as 2

10
and takes several calculation steps

(e.g., 1+1
((2+2)+1)∗2)

). The more calculation steps are necessary to compute a
numeric value the harder it is for the algorithm solving the symbolic regres-
sion problem to achieve high quality solutions, because more time is spent
on generating the appropriate constants that would be better dedicated to
evaluating different model structures and variables.
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3.1.2 Ephemeral Random Constants

Instead of adding every numerical constant to the terminal set beforehand,
which yields the problems described in the previous section, numerical con-
stants can be introduced by the use of ephemeral random constants ERCs
[Koza, 1992]. When ERCs are used, the special symbol R is added to the
terminal set and every time the ERC symbol R is selected during tree cre-
ation a new constant value is drawn from a predefined distribution. Common
distributions the numeric values are drawn from are the uniform distribution
or the Gaussian distribution. The properties of the distributions, such as the
lower and upper limit or the average and mean, for the ERC symbol have
to be adapted at the problem at hand to generate appropriate real-valued
constants. Once the numeric values are generated, these values remain fixed
and are not sampled again. In its initial definition, similarly to the constants
added directly as symbols, ERCs once generated are not modified anymore
and are moved between the individual solutions by the crossover operator.
As a result the constant values can be combined in a way to generate inter-
mediate values necessary for solving the symbolic regression problem. ERCs
provide a greater flexibility, because it is possible to create real-values con-
stants according to a predefined distribution, compared to adding constants
directly to the terminal set.

A disadvantage of the discussed methods for constant creation is that
once created values are immutable. Therefore, the set of potentially reach-
able constant values through recombination of solutions, depends solely on
the initial constant values during tree creation. To mitigate this influence, it
is recommended to add special manipulation operators to the algorithm that
alter the constant values of a solution. These manipulation operators have
been described in Schoenauer et al. [1996], where a random Gaussian variable
is added to the constant, which is inspired by mutation in evolution strate-
gies [Schwefel, 1981]. A similar technique by Gaussian mutation is detailed in
Ryan and Keijzer [2003] that additionally indicates the problems of finding
appropriate numeric constant values. Another possibility inspired by simu-
lated annealing [Kirkpatrick et al., 1983] is to replace all numeric constants
with new values, sampled at random from a uniform distribution adapted
by a temperature factor [Fernandez and Evett, 1998]. Hence, new numeric
values can either be created by the combination of constants through math-
ematical operations or by manipulation of existing constants. As a result it
becomes easier for the algorithm to find the appropriate constant numeric
values.
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Constant Creation in HeuristicLab

As stated previously, the terminal set for symbolic regression contains con-
stants and variables. If ERCs are used, only one symbol is responsible for
handling all numeric values in the generated solutions. In HeuristicLab the
same applies to the variable symbol. Instead of having distinct symbols for
each different variable, there is one general variable symbol v that ,when
chosen during tree creation, is instantiated with one of the allowed variables.
Therefore, the terminal set for symbolic regression in HeuristicLab only con-
sists of the ERC symbol and variable symbol; T = {r, v}.

Another difference to most other programs for solving symbolic regression
problems is that numerical values are not only used in the ERC symbol. In
general r represents a numeric constant and v represents a variable. However
in HeuristicLab, v is actually a combined symbol that represents a selected
feature and additionally contains a weighting factor w. During solution eval-
uation, the weighting factor is multiplied with the variable value and acts as
a scaling term. The weighting factor w is identically generated as ERCs val-
ues, but a different sampling distribution can be specified. The combination
of the variable symbol with a weighting term can be seen as the more general
approach, because weighting can be easily disabled. If w is sampled from a
custom distribution that always returns exactly 1.00, the symbol behaves as
if no weighting factor would be used, due to the fact that 1.00 is the neutral
element for multiplication.

HeuristicLab provides a general concept for manipulating nodes of sym-
bolic expression trees termed shaking operation. A shaking operation adapts
the local parameters of tree nodes. The local parameters of a tree node de-
pend on the symbol represented by the node. Most internal nodes of the
expression tree use mathematical operations such as addition or division and
do not have any local parameters. In contrast to these, both types of termi-
nals (constants and variables) have local parameters. The numeric value of
constants is a local parameter and variables consist of the weighting value
and the selected variable itself.

Shaking Operations adapt these local parameters. Numeric values such
as the variable weight or the constant values are altered by either addition
or multiplication of a value sample from a Gaussian distribution. Addition-
ally, with a given probability a shaking operation changes the currently se-
lected variable. Per default, constants are initialized uniformly U [−20.0, 20.0]
and the Gaussian for additive manipulation is N (0, 1) and for multiplicative
manipulation N (1, 0.03). Variable weights are initialized from a Gaussian
N (1, 1), the Gaussian for additive manipulation is N (0, 0.05) and for multi-
plicative manipulation N (1, 0.03) and the probability to change the selected
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variable is 0.2. Whether a numeric constant is manipulated by addition or
multiplication is decided randomly with equal probability.

There are two distinct operators that perform shaking operations of tree
nodes that differ in the number of affected tree nodes. The one point shaker
adapts one randomly selected tree node with local parameter, whereas the
full tree shaker adapts every tree node.

3.1.3 Linear Scaling

In the previous section two different ways of integrating numerical constants,
by direct addition to the terminal set or by using ERCs, have been discussed.
Additionally, possibilities to generate new numeric values based on combina-
tion of existing constants or manipulation of the numeric values have been
introduced. These are the main concepts for handling numeric values in
symbolic regression.

However, in more powerful symbolic regression systems a method called
linear scaling [Keijzer, 2003, 2004] is integrated, which also touches constant
creation. Instead of directly using the output values of the symbolic expres-
sion tree for objective value calculation, the outputs are scaled to the range
of the target variable. This changes the search goal from finding the best
solution f(x,w) (a function f of the available input variables x and weights
w) to finding the best solution that can be scaled linearly α+β ∗f(x,w) and
minimizes the objective value. As a result the algorithm solving the symbolic
regression problem does not need to find the correct offset and scale for the
estimates.

The scaling parameters are dependent on the objective value that should
be optimized. For example, if the mean squared error is used to assess
solutions, then

β =
cov(e, y)

var(e)

α = ȳ − β ē

where e are the estimated values by the model and y are the target val-
ues [Keijzer, 2004]. When using the scaled mean squared error as objective
value, the quality of solutions changes and the selection mechanism of genetic
programming is highly affected. The scaled mean squared error is bounded
by the variance of the target values y [Keijzer, 2004] and therefore the worst
possible solution is a constant prediction model that predicts the average of
the target values.

An example highlighting the benefits of linear scaling is depicted in Fig-
ure 3.1 (adapted from [Keijzer, 2004]). The target values Y that have to be
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estimated are calculated by Y = 0.3x sin(6.5x) and displayed in blue and the
estimates of two possible symbolic regression models M1 and M2 are plotted
as well. M1 is a constant model always predicting 0.0 while M2 depends on
x. If both models are unscaled (Figure 3.1a) the constant model M1 has
obviously a smaller mean squared error than M2, mainly because it predicts
the mean of Y rather accurately. Nonetheless, M1 fails to capture the char-
acteristics of Y . If these two models were part of the genetic programming
population, the likelihood of M1 to be selected for reproduction would be
increased due to its better fitness.

The whole picture changes if both models are linearly scaled to fit the
target values Y . Because M1 does not depend on x, it is altered to estimate
the average of Y . The unscaled model M2 already has a similar shape to
the target values Y , although its range of values is different. Linear scaling
adjusts M2 to the same value range and the scaled model achieves a very
good fit to the target values (Figure 3.1b). Therefore, in contrast to the
unscaled case, the mean squared error reflects the intuitive assumption that
M2 is better suited to model Y than M1.

An alternative to linear scaling is to use the Pearson’s R2 [Draper et al.,
1966], also termed coefficient of determination, as objective value instead of
the scaled mean squared error.

R2(x, y) =
cov2(x, y)

var(x)var(y)

When using the Pearson’s R2 the objective value is maximized, whereas
if an error measure is used as objective value it will be minimized. The R2

describes the linear correlation between two variables and ranges from 1.0 for
a perfect linear relationship to 0.0 for no dependence between the variables.
It is proven that maximization of the R2 is equivalent to minimizing the
scaled mean squared error [Keijzer, 2004], with the exception that the R2

value is bounded on both sides.
Using linear scaling improves algorithms solving symbolic regression prob-

lems significantly, as it removes the necessity to find the optimal scale and
offset for the models while only adding a minimal overhead for calculating
the scaling factors. As a result it is always recommended to integrate linear
scaling when solving symbolic regression problems. However, linear scaling
can only adjust linear shifts in the model. This is indicated in the example
in Figure 3.1, where the scaled model M2 does not achieve a perfect fit, be-
cause of the wrong numeric constant inside the sine function that cannot be
adapted by linear scaling.
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Figure 3.1: Effects of linear scaling of two symbolic models M1 and M2

estimating y. While the constant model M1 has a lower error in the unscaled
case (a), M2 estimates y better when both models are linearly scaled (b).
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3.2 Constants Optimization

In the previous section numerical constants in symbolic regression, and the
concept of linear scaling are detailed. Following this theme of improving the
creation and adaption of numerical constants in symbolic regression solu-
tions, constants optimization is the next logical step. Constants optimization
specifically deals with adapting numerical values to increase the accuracy of
generated solutions. The term constants optimization originates from the
initial definition of symbolic regression, where either a variable or constant
symbol is used in the leaf nodes of symbolic expression trees. Although,
constants optimization alters the constants of symbolic regression solutions,
thus contradicting its definition, the term indicates that the numerical values
of a model are adapted. To put constants optimization in the right context
and to illustrate its benefits, the main properties of symbolic regression have
to be recalled.

The distinguishing characteristics of solving symbolic regression problems
are that solutions are learned in the form of mathematical formula, without
the necessity of a-priori assumptions about the structure of the model and
the necessary input features. As a consequence three interrelated subtasks
have to be solved for generating high quality solutions to symbolic regression
problems:

1. Selection of the appropriate subset of variables (feature selection)

2. Detection of the best suited model structure containing these variables

3. Determination of optimal numerical constants and weights of the model

Each of these subtask depends on the results of the previous step to
generate optimal solutions and therefore improvements of one task can lead to
significant improvements to the whole algorithm solving symbolic regression
problems. Although, these three subtasks have to be solved in any case, most
algorithms create solutions without explicitly addressing the necessary steps.
For example, symbolic regression problems are commonly solved by tree-
based genetic programming that combines all characteristics of a solution
such as the appropriate subset of variables, model structure, and numerical
constants and weights in one entity, the individual. Furthermore, individuals
are in general manipulated as a whole (by crossover or mutation), which
results in additional difficulties for generating good solutions. The reason is
that the crossover simultaneously modifies the structure, occurring variables,
and weights and only if all those three properties are appropriately adapted,
a good solution is discovered.
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Constants optimization deals with the last subtask on how to determine
optimal numerical constants and weights for a model with a fixed structure
and subset of variables. Now instead of handling all three subtasks simulta-
neously, the parameterization of a model through adapting its numerical con-
stants is separated and solved independently. Hence, genetic programming
is responsible for variable selection and model structure generation, whereas
determining numeric values is performed by constants optimization. This
is a particular appropriate division of tasks, because genetic programming
is already well suited for variable selection [Stijven et al., 2011] and could
be further improved by integrating established feature selection techniques
[Guyon and Elisseeff, 2003; Chen et al., 2017].

Furthermore, generating the best-suited model structure can be reformu-
lated as a combinatorial optimization problem (if restrictions on the model
size are applied to limit the solution space). As genetic programming orig-
inates from genetic algorithms,which were invented for binary and adapted
to combinatorial optimization problems, the suitability of genetic program-
ming for this task is ensured. In contrast to this, genetic algorithms and
programming are not the best suited algorithms for real-valued optimiza-
tion, to which determining optimal numerical constants belongs to. Genetic
algorithms and genetic programming are often outperformed by variants of
evolution strategies [Schwefel, 1981; Hansen et al., 2003] when performing
real-valued optimization.

3.2.1 Related Work

Since the first attempts to solve symbolic regression problems with genetic
programming, several methods have been implemented to improve handling
of numeric constants in the models. In general, the applied methods can be
divided into the following three different research directions:

− Hybridization of genetic programming with other algorithms

− Usage of genetic programming as feature generator for other machine
learning algorithms

− Alternative encoding of solutions or reformulation of the optimization
goals

Algorithm Hybridization

The most common approach that affects how numerical constants are treated
in symbolic regression is the hybridization of genetic programing with other
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algorithms. These hybridized algorithms are often heuristic or even evolu-
tionary algorithms as well, possibly due to the attribution of genetic pro-
gramming to this field, and consequentially the expertise of the researchers
with evolutionary algorithms.

One of the first algorithmic hybridization has been GA-P [Howard and
D’Angelo, 1995] that combines a linear genetic algorithm with genetic pro-
gramming for performing symbolic regression. In GA-P the encoding of indi-
viduals is split into the symbolic expression representing the model structure
manipulated by genetic programming and a binary string that represents the
parameterization of this model structure (numeric coefficients) manipulated
by a genetic algorithm. Before an individual is evaluated, the constants of
the model are replaced by the according part of the binary string and only
then the quality of the model can be assessed. This in general increases the
runtime of genetic programming by the additional optimization step, but in
turn should lead to better symbolic regression solutions.

A similar attempt for constant optimization and creation [Zhang et al.,
2007] has been the hybridization of gene expression programming with dif-
ferential evolution [Storn and Price, 1997]. Differential evolution has also
been used in Mukherjee and Eppstein [2012] for co-evolving constants, where
it is combined with tree-based genetic programming. Sharman et al. [1995]
used genetic programming for the evolution of signal process algorithms that
has been enhanced by simulated annealing [Kirkpatrick et al., 1983] to adapt
the numeric parameters of the evolved algorithms. The same concept but
using evolution strategies [Schwefel, 1981] instead of differential evolution or
simulated annealing has been employed by Winkler [2008] or Alonso et al.
[2009].

All these methods have in common that meta-heuristics have been applied
for tuning the numerical constants of the symbolic expression trees evolved
by genetic programming. A difference between the methods is the concrete
algorithm used and whether all trees in the genetic programming population
or only selected ones are tuned and how the additional effort for constants
optimization is distributed.

Integration of Machine Learning Approaches

Another possibility for the optimization of constants is to integrate machine
learning approaches. This is especially suitable, because symbolic regression
itself belongs to the field of machine learning, where prediction models have
to be created. One of the first attempts has been made by Raidl [1998], where
genetic programming is combined with multi-variate linear regression [Draper
et al., 1966]. There, the separability of the models is exploited by dividing a
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model into several parts whenever an addition or subtraction is encountered.
These parts are then weighted by numerical factors and because all these
parts are linearly combined, linear regression (method of least squares) is
applied to determine the individual weights.

A related idea of linearly combining parts of the solutions has been imple-
mented in multiple regression genetic programming (MRGP) [Arnaldo et al.,
2014]. A significant difference is that MRGP internally builds all possible
subtrees instead of only the ones that are linked by addition and subtrac-
tion. As a result much more different parts are created, more weights have
to be determined and additionally the individual parts can highly corre-
late with each other, due to the fact that the created parts are overlapping.
Subsequently, instead of applying the method of least-squares for weights
determination, least angle regression (LARS) [Efron et al., 2004] is applied
that includes constraints on the regression coefficients (weights) and forward
feature selection.

Another perspective of the two presented approaches for combining parts
of the model is that genetic programming is used as an algorithm for feature
construction and the final symbolic regression model is built by least-squares
or least angles regression. The benefit of linear model creation is that these
linear models are still open for inspection and interpretation. The same con-
cept has also been applied for feature construction for classification tasks
[Neshatian et al., 2012] and provides a good overview on the topic. It can
be argued that FFX [McConaghy, 2011] can also be regarded as a combi-
nation of feature construction, feature selection and parameter optimization
method. However, a deterministic basis function creation algorithm (see
Section 2.3.1 Fast Function Extraction for further details) is used for feature
construction instead of an evolutionary, heuristic algorithm and the models
are constructed by multiple linear regression with elastic net regularization.

One of the first attempts of specifically improving the numeric parame-
ters of a genetic programming solution with mathematical optimization algo-
rithms has been performed by Toropov and Alvarez [1998]. This publication
introduces genetic programming for generating the model structure for the
multipoint approximation method. Its benefits are demonstrated by solving
an exemplary problem, where a three-bar truss has to be designed. An new
aspect of the publication is that the model generated by genetic programming
is not used directly, but simplified and improved before it is reported. Simpli-
fication is performed by removing model parts with little or no contribution
to the model output, e.g. addition and subtraction of multiple constants.
The improvement is performed by taking the original solution and applying
a derivative-based optimization method that adapts the numerical param-
eters so that the sum of squared errors between the model output and the
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observation is minimized. However, the advantages and disadvantages of this
improvement or model tuning are not discussed in this paper and it remains
unclear which derivate-based optimization method has been used in detail.

Gradient-based Optimization

The idea to use gradient-based or derivative-based optimization for tuning
the numeric constants of symbolic regression solutions has been picked-up
in several studies. Z-Flores et al. [2014, 2015] use a Gauss-Newton method,
specifically the Trust Region optimizer [Coleman and Li, 1996], for improving
the performance of genetic programming when solving symbolic regression
and binary classification problems. A distinction to other constant opti-
mization methods is that for each distinct function of the model a numeric
coefficient or parameter is linked to it and the result of the function when
evaluated is multiplied by this coefficient. Hence, instead of manipulating the
naturally evolved constants of the model, the artificially introduced param-
eters are adapted. Furthermore, if the model contains for example multiple
instances of the same function (e.g., several occurrences of divisions) all these
functions share the same coefficient. In the cited research several different
ways of integrating this local search have been compared to each other and to
standard genetic programming. In detail the number of optimized solutions
of the algorithm have been varied, whether only the best, the worst, a specific
subset, a randomly chosen, or all solutions per iteration are adapted. The
results across six different, representative benchmark problems show that
adapting all solutions performs best. Concluding, the local search investi-
gated here, uses a gradient-based optimization method for adapting newly
introduced coefficients of the model, but reformulates the overall objective
function of genetic programming from generating the most accurate model
to generating the model, which can be adapted best to the given data, when
additional parameters are introduced.

A similar line of research is followed by Chen et al. [2015], where the gener-
alization aspects of genetic programming with gradient descent for symbolic
regression are investigated. In addition to varying the number of individuals
that are chosen for constants optimization, the number of steps the gradient
descent is applied and at which algorithm iteration gradient descent is per-
formed is varied as well. In total six different configurations for constants
optimization, ranging from applying it to every individual each generation to
only applying it to the best individual in the last generation, are compared
with each other and with standard genetic programming on five noise-free
benchmark problems. The algorithm performance in terms of achieved qual-
ity and computation time, as well as the generalization capabilities of the
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generated solutions on data of a different domain are compared. It is con-
cluded that constants optimization generally improves training performance,
but test performance could be decreased due to overfitting the data.

Using gradient-based or derivative-based optimization techniques for con-
stants optimization in symbolic regression applications has been introduced
by Topchy and Punch [2001] and this publication builds the foundation for
the discussed studies [Z-Flores et al., 2014, 2015; Chen et al., 2015]. There,
gradient descent in combination with automatic differentiation (also termed
algorithmic or computation differentiation) [Griewank and Walther, 2008] is
presented and an increase in training performance is demonstrated on five
benchmark problems. The test performance has not been evaluated, however
the same algorithm and benchmark problems were used in Chen et al. [2015]
that focuses on the generalization aspects. Gradient-based optimization of
constants in symbolic regression provides an efficient solution for numeric pa-
rameterization of model structures and therefore enables different approaches
than genetic programming for solving symbolic regression problems [Worm
and Chiu, 2013].

Although the results obtained by including constants optimization in ge-
netic programming show an improvement compared to standard genetic pro-
gramming, the use of constants optimization is not as wide-spread as one
might expect and just in recent years started gaining momentum. Reasons
for this might be that constants optimization further complicates the algo-
rithm in terms of finding appropriate parameter settings and implementing
it correctly.

Another more compelling reason might be that Keijzer [2003] compared
linear scaling directly with the results obtained by genetic programming with
gradient descent [Topchy and Punch, 2001] and observed that the improve-
ments of linear scaling considerably outperform the improvements obtained
by gradient descent. Admittedly, the performance of the two approaches have
not been compared directly, because the underlying genetic programming al-
gorithms differ, but the performance improvements have been evaluated on
the same test problems and the base line for comparison has always been
calculated for the system at hand. These findings seem counterintuitive, be-
cause constants optimization should be a more general approach than linear
scaling for optimizing solutions to a symbolic regression problem, but high-
light the importance of determining the appropriate scale and offset for the
output values of the solutions.
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3.3 Constants Optimization by

Nonlinear Least Squares

We developed a new approach for constants optimization in symbolic regres-
sion that combines the strength of linear scaling with gradient-based opti-
mization techniques [Kommenda et al., 2013a,b]. This new implementation
has been that inspired by the improvements obtained by linear scaling. We
believe symbolic regression solutions can benefit even more from a general
constants optimization methodology. Furthermore, due to the advances in
hardware and computing technologies the drawback of spending additional
resources for constants optimization is negligible if better solutions for the
problem at hand are discovered. This new approach for constants optimiza-
tion is termed Constants Optimization by Nonlinear Least Squares (CO-NLS)
and has been implemented in HeuristicLab [Wagner et al., 2014]. In the pre-
vious Section 3.2 the concept of constants optimization and several related
techniques have been explained. In the following, the details of CO-NLS are
explained and its advantages and disadvantages are shown.

The goal of symbolic regression is to find the model which minimizes
the prediction error between its estimates f(x) and target values y. Con-
stants optimization on the other hand tries to optimize the numerical values
β of a concrete model f(x, β) so that the prediction error of this model
is minimal. For example, a symbolic regression model is depicted in Fig-
ure 3.2. This model is equivalent to the mathematical formula shown in
Equation (3.1), where numerical values are displayed in decimal notation
instead of scientific notation and every term encompassed by parentheses
represents a terminal node in the symbolic expression tree. Four numer-
ical constants, β = [0.65106,−1.3160, 1.5156,−17.619], are present in the
symbolic regression model, where two of them act as weighting factors for
variables. The question remains whether these concrete values are optimal
in a way that the model’s prediction error is minimized, or if a better pa-
rameterization of the model with respect to β exists.

f(x1, x2) =
(0.65106 · x2)− (−1.3160)

(1.5156 · x1)− (−17.619)
(3.1)

3.3.1 Levenberg-Marquardt Algorithm

The adaptation of the constants in the symbolic regression model is per-
formed by the Levenberg-Marquardt (LM) algorithm [Levenberg, 1944; Mar-
quardt, 1963]. It is a least squares minimization algorithm for models that
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Figure 3.2: Exemplary symbolic regression model

are nonlinear in their parameters (e.g., f(x) = eβ1x). When solving sym-
bolic regression problems the candidate models that have to be evaluated
are not guaranteed to be linear in their parameters. Hence, nonlinear re-
gression methods, such as the LM algorithm have to be chosen for constants
optimization.

The LM algorithm minimizes the sum of squares between a model f(x, β)
and target values y (Equation (3.2)) over m data points by adapting the
parameters β of a model.

argmin
β

m∑
i=0

(yi − f(xi, β))2 (3.2)

The LM algorithm performs an iterative update of the parameter vector
β starting from given initial values. It can be interpreted as a mixture be-
tween steepest descent and Gauss-Newton algorithm [Björck, 1996]. Similar
to other gradient-based optimization methods the LM algorithm does not
guarantee to find the global minimum, but rather converges to the next local
minimum depending on the initial starting values.

The update of the parameter vector depends on the gradient with re-
spect to β and a scaling factor δ (Equation (3.4)). As the optimization is
performed for multiple data points and parameters the gradient information
5f (Equation (3.3)) for each data point is stored as a matrix commonly
referred to as Jacobian. A consequence of using the LM algorithm for con-
stants optimization is that only differentiable functions can be used in the
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symbolic expression trees, because otherwise gradient calculation and in turn
the LM algorithm would fail.

5 f =

(
∂f

∂β1

,
∂f

∂β2

, ...,
∂f

∂βn

)
(3.3)

βnew = β + δ · 5f (3.4)

The iterative update of the parameter vector β is performed until a prede-
fined stopping criteria is reached. The number of calculated iterations or the
convergence of the algorithm regarding the gradient norm, the step size, or
the change in the function evaluation are commonly used as stopping criteria.

In a recent publication several methods for constants optimization of sym-
bolic regression models have been benchmarked against each other [de Melo
et al., 2015]. The compared methods were simulated annealing (SA) [Kirk-
patrick et al., 1983], the Broyden-Fletcher-Goldberg-Shannon (BFGS) al-
gorithm [Fletcher, 1987], the conjugate gradient (CG) method [Hestenes
and Stiefel, 1952], the LM algorithm [Levenberg, 1944], the Nelder-Mead
(NM) method [Nelder and Mead, 1965], and Powell’s (P) method [Powell,
1964]. These methods differentiate how the numerical values are updated
and whether they incorporate gradient information (BFGS, CG, LM) or not
(SA, NM, P). If gradient information is required it has been numerically
calculated by taking finite differences. The performance of the methods has
been evaluated on 15 different test functions using the correct model structure
with varying starting values for each of the 50 repetitions. Overall the NM
and LM algorithms worked best on the test functions, further strengthening
the point of using LM for constants optimization in symbolic regression.

3.3.2 Gradient Calculation

Crucial for the success of constants optimization is an accurate gradient
information 5f of the symbolic regression models. In general there are three
ways for gradient calculation:

− Numeric differentiation

− Symbolic differentiation

− Automatic differentiation

CO-NLS uses automatic differentiation [Rall, 1981; Griewank and Walther,
2008] for gradient calculation. Numeric differentiation has the disadvantages
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of introducing inaccuracies and cancellation effects due to floating point arith-
metics and choosing the step width h. Symbolic differentiation on the other
hand is not the optimal way for gradient calculations by computer programs
and could lead to inefficient execution. These disadvantages are addressed
by automatic differentiation that is specifically designed to be performed by
computer programs.

Automatic differentiation exploits the chain rule for derivative calculation
and either forward or reverse accumulation is applied. Forward accumulation
is more straight-forward to implement, because the calculation starts from
the most inner function. Reverse accumulation [Linnainmaa, 1976] starts
from the outer functions and is thus more difficult to implement, but requires
fewer calculations. The same principle is used by backpropagation [Dreyfus,
1962] of errors in multilayer perceptrons, which is a special case of reverse
accumulation automatic differentiation.

Before the gradient of symbolic expression trees can be calculated, the
trees have to be transformed to a data structure with which automatic dif-
ferentiation can operate. This can be achieved by one tree iteration, which
simultaneously extracts the numeric parameters of the tree that act as start-
ing values for the LM algorithm. An optional extension during this transfor-
mation step is that artificial tree nodes for linear scaling are inserted, whose
numerical values are optimized by the LM algorithm as well. This achieves a
straight-forward hybridization of linear scaling with constants optimization.
The reason behind the explicit inclusion of linear scaling is that it is not
guaranteed that the symbolic expression tree contains tree nodes that can
achieve linear scaling of the output values.

The individual steps of tree transformation for gradient calculation are
displayed in Figure 3.3. The same symbolic regression model represented
by Equation (3.1) (symbolic expression tree representation in Figure 3.2) is
reused. In the first step (Figure 3.3a) artificial linear scaling nodes, high-
lighted in light blue, are inserted in the symbolic expression tree. The reason
for the inclusion of the artificial linear scaling nodes is that the LM algorithm
minimizes sum of squared errors (Equation (3.2)) and it is not guaranteed
that the model already contains linear scaling parameters. The numeric val-
ues were chosen as the neutral elements of addition and multiplication so
that the model output is not altered before constants optimization. In the
second step (Figure 3.3b) numerical values are extracted into the param-
eter vector β = [0.65106,−1.3160, 1.5156,−17.619, 1.00, 0.00] including the
newly introduced values 1.00 and 0.00. Afterwards the gradient according
to β (Equation (3.3) is calculated and utilized by the LM algorithm for con-
stants optimization.
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Figure 3.3: Transformation of symbolic expression trees for constants opti-
mization and gradient calculation. In the first step (a) four artificial tree
nodes for linear scaling are inserted. Afterwards (b) all numerical values are
replaced by the parameters β1 − β6.

3.3.3 CO-NLS Algorithm

The two most important building blocks for performing constants optimiza-
tion by nonlinear least squares (CO-NLS), the gradient calculation by auto-
matic differentiation and the Levenberg-Marquardt algorithm for adapting
the numerical values, have been explained in the previous sections. The com-
plete algorithm for constants optimization of a symbolic expression tree is
stated as pseudo code in Algorithm 2.

The first few statements account for the tree transformation to make
automatic differentiation applicable. There scaling nodes are inserted and
numeric values that act as starting values for the LM algorithm are extracted.
Afterwards, the LM algorithm is started and for each iteration the gradient
at the current values of β is evaluated and the values are updated until
the defined stopping criteria is reached. Then the quality of the symbolic
expression tree is calculated, according to the defined objective value of the
algorithm solving the symbolic regression model. The reason therefore is that
the LM algorithm optimizes the mean squared error, but another objective,
for example the correlation coefficient R2 or the mean relative error, could be
used to assess the quality of the generated model. Eventually, the optimized
numerical values are written back to the symbolic expression tree.
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Algorithm 2 Constants optimization of a symbolic expression tree.

if Apply linear scaling? then
Insert artificial scaling tree nodes

end if
Extract numerical values
Transform the tree for gradient calculation
Start the LM algorithm with the extracted values
while Stopping criterion of LM not reached do

Calculate the gradient by automatic differentiation
Perform LM iteration

end while
Calculate quality with optimized values
Write optimized values to the according tree nodes

The performance of CO-NLS is demonstrated for a linear model (shown
in Equation (3.5)) that contains 4 variables (x1−x4) and 5 numerical param-
eters (w1−w5). The data, the model has to be adapted to, is generated from
the same function without any noise added, assuming the model structure
has already been identified correctly. Therefore, data containing 60 observa-
tions of the input features x and the target has been created. The correct
parameter values for w1−w4 have been generated from a uniform distribution
U [0.0, 10.0] and w5 has been set to exactly zero. The initial starting values for
constants optimization have been sampled from another uniform distribution
U [−50.0, 50.0], thus the model has a rather large prediction error.

f(x,w) = w1 · x1 + w2 · x2 + w2 · x2 + w3 · x3 + w4 · x4 + w5 (3.5)

The progression of CO-NLS for each iteration is shown in Table 3.1. In
the first row the initial starting values for CO-NLS are stated. The model
parameterized with these values has a high mean squared error of approx-
imately 1.40 E+5. The target values that have to be identified are stated
in the last row and a correct identification would yield a model without any
prediction error.

The values for each parameter w and each iteration show the difference
of the current values and the correct values. In detail, Iteration 0 shows
the difference of the initial starting values to the target ones. The following
data rows show the progression of CO-NLS after each iteration of the LM
algorithm until it has converged. The final identified parameters after five
iterations have a difference of at most 1.0 E-14 to the correct values and this
model yields a mean squared error of 1.38 E-28.
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Table 3.1: Progression of CO-NLS for the linear model displayed in Equa-
tion (3.5). The start and target values are displayed in the first and last row
respectively. The progress of the algorithm for each parameter wi is stated
for every iteration as the difference between the current and the target values.

w1 w2 w3 w4 w5

Start Values 34.1363 9.2578 −38.3939 −19.0711 0.3228

Iteration 0 27.28 2.15 −40.95 −27.46 0.32
Iteration 1 4.5E−2 3.0E−3 −7.8E−2 −3.9E−2 −2.80
Iteration 2 2.4E−5 9.8E−7 −5.0E−5 −1.7E−5 −1.1E−6
Iteration 3 4.5E−9 −4.5E−11 −1.0E−8 −2.1E−9 −5.5E−10
Iteration 4 2.8E−13 −9.7E−15 −7.8E−13 −4.0E−14 −6.5E−14
Iteration 5 0.0 1.0E−14 0.0 0.0 2.9E−16

Target Values 6.8546 7.1073 2.5583 8.3876 0.0000

Although no noise has been added to the data, the correct values could
not be identified to an arbitrary precision due to restrictions in floating point
accuracies of the computing system. However, a difference in parameter
values below the 10th digit or a prediction error smaller than 10−20 can
be neglected in practice. The prerequisites to achieve such accurate results
are that the model structure is correct, no noise affects the identification of
the model parameters, and that the starting values of the methodology are
within the range of the global optimal values. In this simplistic example these
prerequisites are fulfilled by manually defining the data generating function
and the explicit omission of noise. Furthermore, least squares optimization
of linear models is a convex optimization problem for which only one global
minimum exists and the algorithm converges towards this minimum. For
arbitrary symbolic regression models it cannot be guaranteed that the model
is linear in its parameters, which is another reason for choosing the LM
algorithm for optimizing the numerical values.

3.3.4 Inclusion in Genetic Programming
for Symbolic Regression

The described CO-NLS algorithm (depicted Algorithm 2) can be applied to
any symbolic regression model that contains only of differentiable functions.
Therefore, it is not specific to any algorithm solving symbolic regression
problems. In fact, prioritized grammar enumeration (see Section 2.3.2) uses a
similar constants optimization method by the LM algorithm for the adaption
of the individual model parameters. Another example for the application
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of CO-NLS is to adapt the numerical values of symbolic regression models
as a post-processing step, after the model has been generated. However,
instead of applying CO-NLS as a post-processing step, the direct inclusion
in the search for appropriate symbolic regression models generates even more
accurate results. This section explains how CO-NLS is integrated in genetic
programming for symbolic regression.

The genetic programming algorithm is depicted in Figure 2.1 and stated
as pseudo-code in Algorithm 1. If tree-based genetic programming is used
for solving symbolic regression problems, every individual encodes a math-
ematical term encoded as symbolic expression tree, thus making CO-NLS
directly applicable. The integration into genetic programming is achieved by
applying CO-NLS inside the evaluation step of the algorithm, which assesses
the quality of generated models. Before CO-NLS is performed on a specific
model, the quality of the model with the initial constants is assessed. This
enables genetic programming to discard new numerical values for constants,
if the quality of the model would get worse. Although unlikely, this could
happen due to misleading gradient information that is for example caused by
asymptotes in the model’s response. Another possible cause would be differ-
ing optimization objectives of CO-NLS and the general symbolic regression
problem. Due to the use of the LM algorithm in CO-NLS it minimizes the
mean squared error, but the objective of the symbolic regression problem
could be to generate a model that is optimal with respect to the mean rela-
tive or absolute error.

Additionally to calculating the quality twice (once before and after con-
stants adaption) CO-NLS performs several gradient and model evaluations
inside the LM algorithm. This leads to an overhead when compared to ge-
netic programming solving symbolic regression problems without constants
optimization. Therefore, it is possible to specify whether all available data
points or only a specific subset should be used by CO-NLS to reduce the
computational effort. This behavior is specified by the rows parameter that
determines the relative amount data points that are used by CO-NLS and is
set to 100% per default. If the parameter value is smaller, a different subset
of the data points is sampled before each execution of CO-NLS.

Another parameter that heavily influences the computational effort is
the probability of CO-NLS to be applied to a model. The default value is
again 100%, indicating that CO-NLS is performed for every model in the
genetic programming population. If CO-NLS is applied probabilistically, the
decision if a model is subject to constants optimization is decided for each
model individually.
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Improvements

The effects of using CO-NLS in genetic programming solving symbolic regres-
sion problems are highlighted by an exemplary algorithm execution solving
the noise-free Poly-10 problem (see Section 3.4.2 for further details). The
genetic programming algorithm uses a population size of 500 and is stopped
after 100 iterations. The quality of a symbolic regression model is assessed
as the squared correlation coefficient R2, thus linear scaling is enabled in
CO-NLS and it is applied to every individual and uses every present data
point.
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Figure 3.4: Improvements obtained by CO-NLS integrated in genetic pro-
gramming for an exemplary algorithm execution.

The progression of the objective values in terms of the squared correla-
tion coefficient R2 and aggregates of the improvements obtained by CO-NLS
are displayed in Figure 3.4. This exemplary algorithm execution solves the
presented problem and generates a model with perfect predictions, indicated
by reaching a value of 1.0 for the best quality. More interesting are the
improvements due to constants optimization. The objective value of every
generated model in each iteration is assessed before and after the applica-
tion of CO-NLS and the difference is plotted in the chart. The average and
median improvement fluctuate below 0.2 and 0.1 respectively.

53



CHAPTER 3. LOCAL OPTIMIZATION

However, the best improvement is only slightly below the current best qual-
ity. This shows that just by adaption of the numerical values of a model
its prediction accuracy can be drastically increased. Furthermore, the as-
sumption and the reasoning to use constants optimization, namely that high
quality models are not identified by the algorithm correctly due to misleading
numerical values, is at least verified for this exemplary algorithm execution.

Unfortunately, it is not possible to compare the effects of CO-NLS on such
detailed level for each generated model to what would happen without con-
stants optimization. The reason therefore are the stochastic aspects of genetic
programming, so that every slight change in terms of individuals or their fit-
ness value changes the generated models completely. If only one fitness value
is different other parents are selected, resulting in other created child indi-
viduals and the whole population in further iterations changes. Therefore,
the improvements of CO-NLS can only be studied by performing multiple
repetitions of the algorithm with and without constants optimization and
comparing the obtained results. Such results are presented in Section 3.4.

Implementation Details

The methodology for constants optimization has been implemented in Heuris-
ticLab [Wagner et al., 2014] described in Section 2.2 and is available since
HeuristicLab version 3.3.8. CO-NLS has been implemented directly as an
evaluator for symbolic regression, the ConstantOptimizationEvaluator1.
This evaluator handles the parameterization of the LM algorithm, the trans-
formation of the symbolic expression trees for automatic differentiation, the
inclusion of linear scaling, and the calculation of the objective values. In ad-
dition it provides a static application programming interface (API) so that
the CO-NLS could be reused by other parts of the framework.

CO-NLS is reused by nonlinear regression in HeuristicLab, which parses
an arbitrary model structure in text form and adapts all numeric constants
in the model to the data at hand. A prerequisite is again, due to the use of
LM and automatic differentiation, that all functions of the model are differ-
entiable. Another example that uses CO-NLS is the simplification view that
enables post-processing of symbolic regression models. The simplification
view, shown in Figure 3.5, allows mathematical transformation of the mod-
els, assessment of the evaluation impact of model parts, and optimization of
constants while directly observing the results [Affenzeller et al., 2014].

1 https://src.heuristiclab.com/svn/core/trunk/HeuristicLab.Problems.

DataAnalysis.Symbolic.Regression/3.4/SingleObjective/Evaluators/

SymbolicRegressionConstantOptimizationEvaluator.csf [Accessed

10-Jan-2018]
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Figure 3.5: Simplification view for symbolic models in HeuristicLab.

The LM algorithm has not been implemented anew, instead the C#version
of the free edition of ALGLIB2 has been included. ALGLIB is a high quality
numerical analysis and data processing library and provides a robust imple-
mentation of the LM algorithm, which is used for constants optimization.

Automatic differentiation is provided by the AutoDiff library3. AutoDiff
has been implemented for research on geosemantic snapping [Shtof et al.,
2013] and is provided as open-source library for C#. It provides fast and ac-
curate gradient calculation in linear time by reverse accumulation automatic
differentiation and is easily extensible for custom functions.

2 http://www.alglib.net [Accessed 21-Dec-2017]
3 https://github.com/alexshtf/autodiff [Accessed 27-Dec-2017]
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3.4 Experiments

After the description of constants optimization and exemplary, preliminary
results to underline the concepts, this section contains experiments to inves-
tigate the effects of CO-NLS when solving symbolic regression problems with
genetic programming.

3.4.1 Comparison with Linear Scaling

Keijzer [2003] presented linear scaling and compared the results with the
constants optimization approach by Topchy and Punch [2001] and observed
the following:

... the magnitude of the differences indicate that scaled GP per-
forms at the very least as good as the use of gradient descent.
It is however left as future work to compare simple linear scaling
as is done here with more involved coefficient fitting methods ...
[Keijzer, 2003]

As highlighted in the quote, linear scaling performs as good or better than the
gradient descent approach. Although the cited publication does not compare
the gradient descent methodology directly to linear scaling, both methods
were compared to standard genetic programming and their particular im-
provements have been collected. We pick up what has been left as future
work and compare CO-NLS with standard GP and linear scaling.

In the original paper the performances of the different algorithm variants
have been evaluated on five exactly defined benchmark problems that are
listed in Table 3.2. These problems are numbered the same way as they
are in the original publication. Each problem contains two features (x, y)
and does not incorporate any noise. 20 samples are allowed to be used for
training that are generated from a uniform distribution U [−3, 3]. The 3712
test samples have been sampled by E[−3, 0.1, 3] that generates all numbers
between [−3, 3] with a step size of 0.1. The only difference to the original
definition is that we increased the step size from 0.01 to 0.1, which reduces
the size of the test partition by a factor of 100 (originally the test partition
contained 371, 200 data points).
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Table 3.2: Definition of Keijzer benchmark problems.

Problem Function Training Test

Keijzer-11 f(x, y) = xy + sin((x− 1)(y − 1)) 20 samples 3721 samples

Keijzer-12 f(x, y) = x4 − x3 + y2/2− y 20 samples 3721 samples

Keijzer-13 f(x, y) = 6 ∗ sin(x) ∗ cos(y) 20 samples 3721 samples

Keijzer-14 f(x, y) = 8/(2 + x2 + y2) 20 samples 3721 samples

Keijzer-15 f(x, y) = x3/5 + y3/2− y − x 20 samples 3721 samples

The results reported by previous publications and achieved by gradient de-
scent and linear scaling are listed as the mean squared error on the training
partition in Table 3.3. The first two result columns show the average of
10 repetitions obtained by genetic programming (unscaled GP) and genetic
programming with gradient descent (HGP), taken from Topchy and Punch
[2001]. The two last columns show the average of 50 repetitions obtained by
genetic programming (unscaled GP) and genetic programming with linear
scaling (scaled GP), taken from Keijzer [2003].

When comparing scaled GP to HGP, it can be observed that the average
mean squared error is always lower when performing scaled GP. However, the
base line for comparision (unscaled GP) varies significantly between the two
genetic programming systems and thus the improvement between unscaled
GP and either HGP or scaled GP has to be evaluated. Judging from this
limited amount of data it seems that scaled GP performs better on these five
benchmark problems. We have reimplemented these problems and based on
the already presented results, further investigated the improvements obtained
by linear scaling and CO-NLS and compared the results to standard genetic
programming.

Table 3.3: Comparison of training performances (mean squared error) on
Keijzer benchmark problems. Unscaled GP states the base lines against
gradient descent (HGP) [Topchy and Punch, 2001] and linear scaling (scaled
GP) [Keijzer, 2003] are compared to.

Problem unscaled GP HGP unscaled GP scaled GP

Keijzer-11 0.80 0.47 0.37 0.11
Keijzer-12 2.18 1.03 2.80 0.10
Keijzer-13 6.59 5.98 2.74 0.43
Keijzer-14 4.41 4.06 0.47 0.001
Keijzer-15 0.78 0.27 1.60 0.12
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We could not perform exactly the same experiments as reported in these
two discussed publications, but we tried to replicate the experiments as
closely as possible. The reasons therefore are that subtle changes in the
genetic programming implementations could lead to significant changes in
the obtained results. For example, we use a weighting factor for each vari-
able (see Section 3.1.2), handle divisions by zero differently, or apply other
mutation operators to the symbolic regression solutions and all of these differ-
ences change the genetic programming system. Furthermore, Keijzer [2003]
performed the experiments using a steady-state algorithm with specialized
handling of constants.

We allowed the genetic programming system to build symbolic expres-
sion trees with a maximum tree length of 100 and a maximum depth of
50. PTC2 [Luke, 2000a] has been used for tree creation with a function
set F = {+,−, ∗, /,√}, where all functions are binary functions except the
unary square root function. The terminal set is T = {w ∗ v, r}, where v
is the variable symbol (for these benchmark problems either x or y), w the
weighting factor for variables, and r the ERC symbol representing constant
values.

The genetic programming algorithm uses rather standard parameter set-
tings. The population size has been set to 500 and 50 generations have
been performed resulting in 25, 000 solution evaluations. Tournament selec-
tion with a group size of 5 has been used for parent selection and a 100%
crossover rate with standard subtree crossover for child creation. The mu-
tation rate has been 25%, where either tree shaking (adaption of constants
or weights), replace or remove branch, or change node type mutation has
been performed. Additionally, the best individual (elite) has been passed to
the next generation without any modification to achieve a steady increase in
solution quality.

These described settings have been kept the same for all algorithm vari-
ants. The difference among the variants is the solution evaluation, where
either the mean squared error (MSE unscaled), the mean squared error with
linear scaling (MSE scaled), the coefficient of determination with linear scal-
ing (R2 scaled), or the coefficient of determination with optimization of con-
stants including linear scaling (CO-NLS) has been used. CO-NLS performs
additional evaluations of the solutions to adapt the numeric constants and
therefore has an increased computational effort. Therefore, we also included
one additional configuration (CO-NLS fast) that performs constants opti-
mization, but works with a reduced population size of 100 to account for this
additional effort.
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Table 3.4: Training performance in terms of the mean squared error as the
average and standard deviation (±) of 50 algorithm repetitions.

Problem
MSE MSE R2 CO-NLS CO-NLS

unscaled scaled scaled scaled fast

Keijzer-11
0.57 0.10 0.17 0.00 0.01

± 0.75 ± 0.03 ± 0.04 ± 0.00 ± 0.01

Keijzer-12
30.96 1.42 1.33 0.00 0.12

± 57.50 ± 0.95 ± 1.26 ± 0.00 ± 0.24

Keijzer-13
4.21 2.28 2.61 0.00 0.18

± 1.34 ± 0.92 ± 0.91 ± 0.00 ± 0.44

Keijzer-14
0.15 0.05 0.18 0.00 0.03

± 0.06 ± 0.03 ± 0.09 ± 0.02 ± 0.05

Keijzer-15
1.70 0.21 0.22 0.00 0.05

± 1.48 ± 0.07 ± 0.06 ± 0.00 ± 0.07

For each algorithm variant 50 repetitions have been performed and the
best solution on the training partition is returned as result. The results are
afterwards aggregated and the averages and standard deviations are reported.
Table 3.4 reports the performance of the best solutions on the training par-
tition as the mean squared error between the model estimates and the target
values. The results obtained by standard genetic programming without any
improvements (MSE unscaled) are in a comparable range as the ones ob-
tained by Topchy and Punch [2001] and Keijzer [2003]. The only exception
is on the Keijzer-12 problem, where the MSE is much higher due to the large
variance of the response values, especially when both present variables are
negative the variance increases further.

The improvements obtained by the inclusion of linear scaling (MSE scaled
or R2 scaled) are again very similar to the previously reported values and
reduce the MSE by a significant factor. Furthermore, there is almost no
difference if the coefficient of determination R2 is maximized or the mean
squared error is minimized, when linear scaling is enabled.

The best results have been achieved by CO-NLS that reduces the MSE
to 0.00 for all tested problems. Even the CO-NLS configuration that worked
with a fifth of the population size (CO-NLS fast) achieved a smaller MSE
and standard deviation than the other algorithm variants.
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Table 3.5: Test performance in terms of the mean squared error as the average
and standard deviation (±) of 50 algorithm repetitions.

Problem
MSE MSE R2 CO-NLS CO-NLS

unscaled scaled scaled scaled fast

Keijzer-11
68.99 67.15 193.82 146.13 100.87

± 129.37 ± 63.00 ± 221.37 ± 138.03 ± 116.63

Keijzer-12
763.62 1742.25 332.44 2907.91 2936.63

± 2271.44 ± 2857.81 ± 1054.95 ± 6263.82 ± 6869.15

Keijzer-13
126.27 94.46 35.69 247.42 279.88

± 170.73 ± 108.17 ± 43.64 ± 250.10 ± 270.39

Keijzer-14
3.28 3.17 4.74 2.03 4.94

± 4.33 ± 4.51 ± 5.76 ± 3.83 ± 5.28

Keijzer-15
98.44 61.87 56.32 102.60 519.57

± 197.69 ± 141.37 ± 131.15 ± 242.98 ± 596.97

Table 3.5 shows the performance of the best training solution per algorithm
execution on the test partition in terms of the averages and standard devia-
tions of the mean squared errors. It is immediately obvious that all of these
test results are several magnitudes higher than the results on the training
partitions. The difficulty is to identify rather complex mathematical equa-
tions from only 20 data points. Although, CO-NLS returns models that
estimate the data points on the training partition perfectly, they do not gen-
eralize well and are unable to estimate the unknown data points of the test
partition accurately.

Furthermore, the standard deviations lies in the same range as the av-
erages of the MSE indicating that the range of the prediction errors is very
high. When examining these results more closely, we could verify that these
are signs of overfitting and divisions by zero that only occur when evaluating
models on the test partition. Therefore, we can conclude that the 20 data
points sampled for training the models are too little to be representative for
the whole range of the test partition. This might be a reason why Topchy
and Punch [2001] and Keijzer [2003] only reported training performances and
no test performances.

From these performed experiments we can conclude that linear scaling im-
proves the performance of a genetic programming algorithm regardless of the
objective function used. In addition, CO-NLS, even with a reduced popula-
tion size, outperforms genetic programming with linear scaling. However, all
these conclusions only hold true when comparing training performances due
to the difficulties when applying the identified models on the test partitions.
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3.4.2 Benchmark Problems

Due to the difficulties with the benchmark problems used for the comparison
of the new approach with linear scaling, we have chosen a different, more
comprehensive benchmark suite to investigate the improvements obtained
by CO-NLS. The detailed definitions of the new benchmark problems are
given in Table 3.6.

The problems Nguyen-7, Keijzer-6, Valdislavleva-4, and Pagie-1 were sug-
gested as symbolic regression benchmark problems [White et al., 2013]. The
Poly-10 problem has been taken from [Poli, 2003], the Friedman-II problem
has been introduced in [Friedman, 1991], and the Tower problem has been
used in [Vladislavleva et al., 2009].

Table 3.6: Definition of benchmark problems.

Problem Definition

Nguyen-7 f(x) = log(x+ 1) + log(x2 + 1)

Training 20 samples, U[0, 2]

Test 500 samples, U[0, 2]

Keijzer-6 f(x) =
∑x

i=1
1
i

Training 20 samples, E[1, 1, 50]

Test 120 samples, E[1, 1, 120]

Vladislavleva-4 f(x1, ..., x5) = 10
5+

∑5
i=1(xi−3)2

Training 1024 samples, U[ 0.05, 6.05]

Test 5000 samples, U[-0.25, 6.35]

Pagie-1 f(x, y) = 1
1+x−4 + 1

1+y−4

Training 676 samples, E[-5, 0.4, 5]

Test 1000 samples, U[-5, 5]

Poly-10 f(x1, ..., x10) = x1x2 + x3x4 + x5x6 + x1x7x9 + x3x6x10

Training 250 samples, U[-1, 1]

Test 250 samples, U[-1, 1]

Friedman-2 f(x1, ..., x10) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε

Training 500 samples, U[0, 1]

Test 5000 samples, U[0, 1]

Tower Real world data

Training 3135 samples

Test 1863 samples
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Each of these problems has different characteristics, which make it more
or less challenging for an algorithm to create accurate symbolic regression so-
lutions. The problems are approximately sorted by problem difficulty, where
the first few problems should be solved without any deviation (if possible)
between the model estimations and the data used for training and test.

The Nguyen-7 problem only uses 20 data points for training and yet
a mathematical formula containing two terms with logarithms has to be
identified. However, a difference to the benchmark problems studied in the
previous section is that this function can be rather well approximated by
using other mathematical functions.

The Keijzer-6 and Vladislavleva-4 problems define a larger test than train-
ing range and thus require the identified solutions to be able to extrapolate
correctly. The Pagie-1 problem is difficult to solve accurately, because of
the highly nonlinear response. Contrary to the Pagie-1 problem, the Poly-10
problem is built of interactions between two or three variables that are com-
bined linearly without any numerical constants. Nevertheless, it is hard to
solve, because of the limited number of available samples. It would become
much easier if more samples would be available for training.

The Friedman-2 problem tests the feature selection capabilities of the
studied algorithm, because it defines 10 features, but actually there are only
five necessary to calculate the response. Additionally, the noise term ε is
added that is responsible for 4% of the target variance, which further com-
plicates the identification of the correct function. The Tower problem is the
only problem containing real world measurements, in this case of a chem-
ical production plant. It contains 26 different measurements as well as an
unknown amount of noise and presents similar challenges as the Friedman-2
problem. In general all except the last two problems (Friedman-2 and tower)
can theoretically be solved without any prediction errors, because these prob-
lems do not contain any noise term.

For all of these problems we limited the available function set to build
symbolic regression models from to binary arithmetic functions (+, -, *, /).
Therefore, the problems and data generating functions, which contain more
complex functions, such as logarithmic or trigonometric functions, have to
be approximated.
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3.4.3 Genetic Programming Results

In this section the results obtained by standard genetic programming on
the defined benchmark problems are presented. The goal is to investigate
whether CO-NLS improves the performance of the algorithm in terms of
solution accuracy and how well the benchmark problems can be solved by
different algorithm variants. The general algorithm settings for genetic pro-
gramming are listed in Table 3.7.

The restrictions on the generated symbolic solutions are that their sym-
bolic expression tree representation has a maximal tree length of 50 and a
maximum of 10 tree levels. These 10 tree levels already account for linear
scaling nodes (a ∗ f(x) + b), hence the maximum level for the trees is eight.
The function set consists of strictly binary, arithmetic functions and either
numerical constants or variables multiplied by a weighting factor are allowed
as terminal nodes. The probabilistic tree creator (PTC2) [Luke, 2000a] is
used for creating the initial population with an uniform size distribution
U [1, 50].

Table 3.7: Standard genetic programming settings.

Parameter Value

Maximum tree length 50 nodes
Maximum tree depth 10 levels
Function set binary functions(+,−,×, /)
Terminal set constant, weight ∗ variable
Tree initialization PTC2
Population size 500 individuals
Termination criterion 200 generations
Elites 1 individual
Selection Tournament selection

Group size 4
Crossover probability 100%
Crossover operator Subtree crossover
Mutation probability 25%
Mutation operator Change symbol,

Single point mutation,
Remove branch,
Replace branch

Objective function Maximize R2

Linear scaling Enabled

CO-NLS probability 0% | 25% | 50% | 100%
CO-NLS iteration 3 | 5 | 10 Iterations
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The settings for the crossover and the mutation operators, as well as
their according probability, are the same as in the experiments performed for
the comparison of CO-NLS with linear scaling. Again one elite individual
is passed to the next generation without any modification and tournament
selection is used in the recombination step.

The objective function optimized by genetic programming is the coeffi-
cient of determination R2 that requires linear scaling of the models to be
enabled. The reason therefore is that the R2 is invariant to linear trans-
formations, hence model estimations can be shifted and must be rescaled
before they could be interpreted correctly. The population size has been set
to 500 and the algorithm performs exactly 200 generations resulting in a to-
tal of 100,000 evaluated solutions. The settings are the same for all tested
algorithm variants and have been chosen to generate as accurate as possible
symbolic regression solutions.

The differing feature between the algorithm variants is whether constants
optimization is enabled, with which probability and for how many iterations
it is applied. The algorithm variants performing CO-NLS are in the following
termed as CO-NLS probability iterations, for example CO-NLS 50% 5 Itera-
tions. As stated already, constants optimization increases the computational
effort for the algorithm, because additional gradient and function evaluations
have to be performed to adapt the numerical constants. Nevertheless, the
number of evaluated solutions when omitting the numerical parameters, is
capped by a maximum of 100,000. However, to ensure a fair comparison
additional standard genetic programming variants with an increased popu-
lation size of 1,000 and 5,000 and adapted tournament group size have been
tested. Theses variants termed GP Pop 1,000 and GP Pop 5,000 without
CO-NLS evaluated a total of 200,000 or 1,000,000 solutions respectively.

Each algorithm variant is executed 50 times for each benchmark problem
and the normalized mean squared error (NMSE, also termed fraction of vari-
ance unexplained) is reported for the best training solution. The NMSE is
calculated as the mean squared error divided by the variance of the target
values and can be interpreted as the amount of variance that is not explained
by the model. The results are reported as the median and interquartile range
(IQR) to be more robust against occasional outliers. For each problem the
training performance is listed in the first row (median ± IQR) and the test
performance in the second row. The results are grouped according to the
probability of CO-NLS to be applied. The configurations without CO-NLS
are listed in Table 3.8, with 25% probability of CO-NLS in Table 3.9, with
50% probability in Table 3.10, and when CO-NLS is applied to all models
(100%) in Table 3.11.
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Table 3.8: Genetic programming results without CO-NLS.

Problem GP Pop 500 GP Pop 1,000 GP Pop 5,000

Nguyen-7
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
0.001 ± 0.012 0.000 ± 0.009 0.000 ± 0.003

Keijzer-6
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
0.020 ± 0.027 0.019 ± 0.042 0.014 ± 0.020

Vladislavleva-4
0.572 ± 0.131 0.461 ± 0.154 0.213 ± 0.195
7.088 ± 19.27 9.933 ± 13.65 3.287 ± 6.418

Pagie-1
0.096 ± 0.082 0.077 ± 0.063 0.028 ± 0.047
0.313 ± 36.25 0.238 ± 5.064 0.063 ± 0.142

Poly-10
0.162 ± 0.236 0.138 ± 0.228 0.069 ± 0.005
0.185 ± 0.240 0.180 ± 0.312 0.108 ± 0.023

Friedman-2
0.242 ± 0.057 0.205 ± 0.095 0.128 ± 0.042
0.238 ± 0.042 0.210 ± 0.079 0.161 ± 0.990

Tower
0.144 ± 0.025 0.135 ± 0.018 0.123 ± 0.011
0.146 ± 0.026 0.136 ± 0.023 0.124 ± 0.016

Table 3.9: Genetic programming results with 25% CO-NLS.

Problem
CO-NLS 25%
Iterations 3

CO-NLS 25%
Iterations 5

CO-NLS 25%
Iterations 10

Nguyen-7
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Keijzer-6
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
0.003 ± 0.003 0.001 ± 0.002 0.000 ± 0.001

Vladislavleva-4
0.462 ± 0.170 0.372 ± 0.170 0.309 ± 0.134
2.327 ± 5.636 0.553 ± 3.173 0.499 ± 4.926

Pagie-1
0.026 ± 0.057 0.020 ± 0.035 0.012 ± 0.017
0.081 ± 0.141 0.080 ± 3.664 0.111 ± 15.00

Poly-10
0.067 ± 0.081 0.065 ± 0.014 0.065 ± 0.010
0.111 ± 0.132 0.105 ± 0.039 0.112 ± 0.035

Friedman-2
0.100 ± 0.024 0.079 ± 0.067 0.035 ± 0.034
0.167 ± 0.999 0.137 ± 0.540 0.044 ± 0.102

Tower
0.130 ± 0.020 0.116 ± 0.027 0.106 ± 0.013
0.135 ± 0.018 0.117 ± 0.028 0.107 ± 0.020
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Table 3.10: Genetic programming results with 50% CO-NLS.

Problem
CO-NLS 50%
Iterations 3

CO-NLS 50%
Iterations 5

CO-NLS 50%
Iterations10

Nguyen-7
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Keijzer-6
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
0.001 ± 0.002 0.000 ± 0.001 0.000 ± 0.000

Vladislavleva-4
0.349 ± 0.145 0.284 ± 0.102 0.164 ± 0.188
0.788 ± 5.125 0.394 ± 1.182 0.250 ± 0.281

Pagie-1
0.017 ± 0.018 0.006 ± 0.014 0.004 ± 0.014
0.082 ± 13.58 0.107 ± 19.64 0.026 ± 18.75

Poly-10
0.057 ± 0.069 0.059 ± 0.063 0.020 ± 0.063
0.100 ± 0.115 0.102 ± 0.122 0.034 ± 0.110

Friedman-2
0.042 ± 0.056 0.035 ± 0.001 0.034 ± 0.001
0.066 ± 0.569 0.043 ± 0.013 0.044 ± 0.018

Tower
0.114 ± 0.023 0.105 ± 0.012 0.095 ± 0.008
0.119 ± 0.025 0.107 ± 0.016 0.095 ± 0.012

Table 3.11: Genetic programming results with 100% CO-NLS.

Problem
CO-NLS 100%

Iterations 3
CO-NLS 100%

Iterations 5
CO-NLS 100%
Iterations 10

Nguyen-7
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Keijzer-6
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
0.000 ± 0.001 0.000 ± 0.000 0.000 ± 0.000

Vladislavleva-4
0.253 ± 0.134 0.164 ± 0.154 0.061 ± 0.052
0.331 ± 0.551 0.287 ± 0.250 0.115 ± 0.075

Pagie-1
0.008 ± 0.017 0.005 ± 0.009 0.000 ± 0.003
0.042 ± 9.148 0.109 ± 19.95 0.000 ± 0.085

Poly-10
0.000 ± 0.066 0.000 ± 0.056 0.000 ± 0.000
0.000 ± 0.115 0.000 ± 0.115 0.000 ± 0.000

Friedman-2
0.035 ± 0.001 0.034 ± 0.001 0.034 ± 0.001
0.043 ± 0.017 0.043 ± 0.014 0.044 ± 0.019

Tower
0.106 ± 0.010 0.093 ± 0.010 0.088 ± 0.008
0.107 ± 0.019 0.096 ± 0.014 0.087 ± 0.009
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The Nguyen-7 problem is solved almost perfectly by all algorithm con-
figurations. Although the algorithms cannot build solutions that model the
data generating function exactly, because logarithms are not included in the
function set, highly accurate estimates for the range of the input feature x are
built and no significant difference between the algorithm variants is detected.

The algorithms applied to the Keijzer-6 problem show a similar perfor-
mance as the Nguyen-7 problem and a NMSE of 0.0 is reached by all al-
gorithms on the training partition. The Keijzer-6 problem evaluates the
extrapolation capabilities of the models and all three algorithms without
constants optimization show slight deviations on the test partitions. How-
ever, if constants optimization is enabled, regardless of how often and for
how many iterations, the problem is solved almost always.

The first more revealing results are obtained on the Vladislavleva-4 prob-
lem. Comparing the training performances highlights that algorithms with a
larger population size (GP Pop 1,000 and GP Pop 5,000) achieve significantly
better results. A similar picture is revealed when comparing the algorithm
variants with CO-NLS, where the more iterations are performed and the
higher the probability of CO-NLS the better results are achieved. The algo-
rithms without CO-NLS produce highly overfit solutions, which is indicated
by median NMSEs values larger than 1.0 and the wide interquartile range
(IQR). This holds also true for CO-NLS 25% and CO-NLS 50%, but the phe-
nomenon is not that excessive, which is indicated by much smaller median
NMSEs. However, the IRQ is still rather large, revealing that overfitting is
present as well. Only when CO-NLS is applied to all models the results on
the test partition get better.

Almost all algorithms on the Pagie-1 problem show signs of overfitting by
large IQRs on the test partition. The reason therefore is that a highly non-
linear fraction has to be identified. Again the training and test results get
better the more constants optimization is applied. The only configuration
that solves this problem reasonable well is CO-NLS 100% 10 Iterations.

An interesting problem for the investigation of the effects of constants
optimization is the Poly-10 problem, because it is hard to solve and it does
not contain any numerical values. The question is if it is beneficial to apply
CO-NLS although no numerical values have to be identified. Interestingly
the results obtained by genetic programming without constants optimiza-
tion are rather poor with test NMSEs of 0.1 or higher. While only slight
improvements are observed for CO-NLS 25%, this changes when more con-
stants optimization is applied. Especially, CO-NLS 50% and 100% for 10
iterations almost always solve the Poly-10 problem perfectly.

The last two problems, Friedman-2 and Tower, are the only problems that
cannot be solved exactly, because noise is included in the data. While the
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noise level is rather small for the Friedman-2 problem, it is unknown for the
Tower problem and both problems contain variables unrelated to the output.

When the results obtained on the Friedman-2 problem are analyzed, it
becomes obvious that the results improve significantly when CO-NLS is en-
abled. While the best median NMSE of the algorithms without CO-NLS (GP
Pop 5,000) is in the range of 0.16, the algorithm applying the least amount
of constants optimization (CO-NLS 25% 3 Iterations) has a similar perfor-
mance, although the population size is only a tenth. When the amount of
applied constants optimization is increased, the error of the identified models
on the training and test partition is reduced until the error reaches the noise
level.

The results on the Tower problem look at a first glance all very similar
without any larger difference across the algorithm configurations. However,
the Tower problem contains real-world data including noise and every percent
decrease in the NMSE relates to a decrease in the relative error by one
percent, which can be significant when a model is applied in a production
system. Furthermore, multivariate linear regression (method of least squares)
achieves a training NMSE of 0.117 and a test NMSE of 0.110. All results
with larger errors can be considered as low quality results, because a standard
linear model that can be easily trained, performs better and the advantage of
symbolic regression that it can include nonlinearities is not exploited. This
is the case for all configurations without CO-NLS and also for the ones with
little (CO-NLS 25% or 50%) probability and little iterations (three or five).
Only the configurations with a higher likelihood of CO-NLS to be applied
for more iterations are able to outperform multi-variate linear regression.
This shows that nonlinear parts of the model are beneficial and reduce the
prediction errors of the model, but are hard to identify correctly.

A last analysis that we performed is the success rate for problems that
do not incorporate any noise. We defined a success as when a model for a
benchmark problem is created, whose prediction error in terms of the NMSE
on the test partition is smaller than 0.001. This can be interpreted as the
model explains more than 99.9% of the variance of the target variable, be-
cause the NMSE is scaled by this variance. The success rate then defines in
percent how many times a success for the problem at hand can be achieved.

Figure 3.6 shows the success rate for each algorithm variant on the noise-
free benchmark problems. The algorithm variants are grouped according to
the probability of CO-NLS to be applied; red - no CO-NLS, yellow - CO-
NLS 25%, green - CO-NLS 50%, and blue CO-NLS 100%. For each group
the intensity represents the effort while solving the problem, the varying
population sizes if CO-NLS is not applied or the number of iterations during
the optimization of constants.
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Figure 3.6: Success rates of genetic programming for noise-free benchmark
problems with varying population size, CO-NLS probabilities and iterations.

Overall, it can be concluded that CO-NLS outperforms standard genetic
programming without constants optimization if such a strict success criteria
is used. As seen in the detailed results, the easiest problem to achieve a
success on is the Nguyen-7, which is almost always solved if CO-NLS is
applied and about 60% of the time otherwise.

The same can be observed for the Keijzer-6 problem, where the success
rates for standard genetic programming is on a lower level. A similar picture
is depicted for the Pagie-1 and Poly-10 problem, but with reduced success
rates for the CO-NLS configurations as well. Interestingly, regardless of the
usage of CO-NLS, the Vladislavleva-4 problem can only be solved once, which
can be interpreted as fluke. Therefore, it can be concluded that the algorithm
configuration that has been used is not able to solve this problem sufficiently.

In conclusion the following observations can be made for each problem of
the tested genetic programming variants:

− CO-NLS achieves higher success rates than algorithms without it

− The more iterations of CO-NLS are performed the better the results

− A higher the probability of CO-NLS yields a higher success rate
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3.4.4 Offspring Selection Results

In the last section, results for genetic programming with and without con-
stants optimization are presented. All tested algorithm variants have been
configured to evaluate exactly 100,000 different models, because 500 models
are in the population that is evolved for 200 generations. A drawback of stan-
dard genetic programming is that it stops exactly after those 200 generations
are calculated, not considering if an improvement would still be possible.

The problem of stopping the algorithm when a number of iterations has
been performed is mitigated when offspring selection [Affenzeller and Wagner,
2005] is added to genetic programming. Offspring selection (OS) has been
originally developed for genetic algorithms, but due to the close relationship
of genetic programming and genetic algorithms it can be easily transfered to
genetic programming.

Offspring selection (OS) adds an additional selection step after child cre-
ation to genetic programming. After the creation of a new child individual its
quality is evaluated and compared to that of its parents. Only if the quality
of the child surpasses the quality of the parents, weighted by a comparison
factor, it is included in the next population. Otherwise the newly created
child is discarded and a new one is generated that is again evaluated and
compared to the parents. This process is repeated until the new population
is filled. Optionally, a specified number of lucky losers that do not outper-
form their parents is allowed to participate in building the new population.
Strict offspring selection [Affenzeller et al., 2009] that is used for the exper-
iments in this section, is defined as offspring selection with no lucky losers,
hence all child individuals must outperform their parents, and that the child
quality is compared to the quality of the better parent.

Offspring selection (OS) has the benefits that the selection pressure can
be directly calculated. The selection pressure states the ratio between the
number of created child individuals (including discarded children) and the
population size. Therefore, it directly expresses the effort necessary to create
a new population. For example, a selection pressure of 8.4 expresses that
for each individual in the new generation on average 8.4 individuals have
been created, from which 7.4 have been previously discarded. The selec-
tion pressure is commonly used as termination criterion in offspring selection
genetic programming. The advantages are that instead of terminating the
algorithm after a fixed number of generations, the algorithm stops when no
more progress (no better individuals) can be made with reasonable effort.

We performed experiments using the defined benchmark problems with
offspring selection genetic programming. This should lead to better and more
accurate solutions, because the additional offspring selection step ensures
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that the existing genetic material in one generation is beneficially combined
in new individuals.

The experiment setup is similar to the one used in the last section. We
tested three algorithm variants without constants optimization with varying
population sizes (500, 1,000, 5,000) and varying probabilities for CO-NLS
(25%, 50%, 100%) with varying number of iterations (3, 5, 10). The param-
eter settings for offspring selection genetic programming are chosen similarly
to the ones used for standard genetic programing and are listed in Table 3.12.

The only differing settings are the termination criterion and the selection
operator. Instead of using the number of generations for algorithm termi-
nation, the algorithm is stopped when the selection pressure surpasses 100.
The other difference is that gender specific selection [Wagner and Affenzeller,
2005] instead of tournament selection is used. The rationale therefore is that
the additional selection step introduced by offspring selection reduces the
necessity of selecting high quality individuals for reproduction and so a less
selective operator can be used for parent selection.

Table 3.12: Offspring selection genetic programming settings.

Parameter Value

Maximum tree length 50 nodes
Maximum tree depth 10 levels
Function set binary functions(+,−,×, /)
Terminal set constant, weight ∗ variable
Tree initialization PTC2
Population size 500 individuals
Termination criterion Selection pressure >= 100
Elites 1 individual
Selection Gender specific selection
Offspring selection Strict offspring selection
Crossover probability 100%
Crossover operator Subtree crossover
Mutation probability 25%
Mutation operator Change symbol,

Single point mutation,
Remove branch,
Replace branch

Objective function Maximize R2

Linear scaling Enabled

CO-NLS probability 0% | 25% | 50% | 100%
CO-NLS iteration 3 | 5 | 10 Iterations
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Table 3.13: Offspring selection genetic programming results.

Problem OSGP Pop 500 OSGP Pop 1,000 OSGP Pop 5,000

Nguyen-7
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Keijzer-6
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
0.004 ± 0.015 0.004 ± 0.011 0.003 ± 0.032

Vladislavleva-4
0.169 ± 0.139 0.099 ± 0.144 0.009 ± 0.022
0.269 ± 0.323 0.257 ± 0.262 0.017 ± 0.050

Pagie-1
0.048 ± 0.049 0.027 ± 0.035 0.015 ± 0.015
0.081 ± 0.617 0.060 ± 0.303 0.027 ± 0.044

Poly-10
0.163 ± 0.083 0.096 ± 0.077 0.000 ± 0.075
0.222 ± 0.135 0.131 ± 0.119 0.000 ± 0.087

Friedman-2
0.163 ± 0.034 0.141 ± 0.038 0.087 ± 0.062
0.177 ± 0.071 0.142 ± 0.073 0.110 ± 0.084

Tower
0.123 ± 0.008 0.120 ± 0.009 0.109 ± 0.009
0.123 ± 0.009 0.121 ± 0.010 0.109 ± 0.011

Table 3.14: OS genetic programming results with 25% CO-NLS.

Problem
CO-NLS 25%
Iterations 3

CO-NLS 25%
Iterations 5

CO-NLS 25%
Iterations 10

Nguyen-7
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Keijzer-6
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
0.001 ± 0.001 0.000 ± 0.001 0.000 ± 0.000

Vladislavleva-4
0.019 ± 0.061 0.008 ± 0.045 0.000 ± 0.023
0.031 ± 0.116 0.013 ± 0.086 0.000 ± 0.037

Pagie-1
0.012 ± 0.015 0.001 ± 0.014 0.001 ± 0.008
0.041 ± 1.807 0.012 ± 7.183 0.020 ± 15.08

Poly-10
0.018 ± 0.076 0.000 ± 0.071 0.000 ± 0.020
0.026 ± 0.140 0.000 ± 0.116 0.000 ± 0.033

Friedman-2
0.042 ± 0.001 0.044 ± 0.063 0.041 ± 0.001
0.043 ± 0.011 0.045 ± 0.091 0.044 ± 0.128

Tower
0.101 ± 0.016 0.092 ± 0.010 0.081 ± 0.007
0.109 ± 0.022 0.096 ± 0.015 0.083 ± 0.010
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Table 3.15: OS genetic programming results with 50% CO-NLS.

Problem
CO-NLS 50%
Iterations 3

CO-NLS 50%
Iterations 5

CO-NLS 50%
Iterations 10

Nguyen-7
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Keijzer-6
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
0.001 ± 0.001 0.000 ± 0.001 0.000 ± 0.000

Vladislavleva-4
0.001 ± 0.030 0.000 ± 0.001 0.000 ± 0.000
0.002 ± 0.088 0.000 ± 0.001 0.000 ± 0.000

Pagie-1
0.006 ± 0.010 0.000 ± 0.004 0.000 ± 0.000
0.724 ± 24.49 0.008 ± 4.699 0.000 ± 0.014

Poly-10
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Friedman-2
0.033 ± 0.001 0.033 ± 0.001 0.033 ± 0.000
0.042 ± 0.004 0.042 ± 0.004 0.044 ± 0.028

Tower
0.090 ± 0.013 0.083 ± 0.011 0.074 ± 0.006
0.098 ± 0.012 0.088 ± 0.011 0.078 ± 0.009

Table 3.16: OS genetic programming results with 100% CO-NLS.

Problem
CO-NLS 100%

Iterations 3
CO-NLS 100%

Iterations 5
CO-NLS 100%
Iterations 10

Nguyen-7
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Keijzer-6
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
0.001 ± 0.001 0.000 ± 0.001 0.000 ± 0.000

Vladislavleva-4
0.006 ± 0.016 0.002 ± 0.015 0.000 ± 0.002
0.010 ± 0.036 0.003 ± 0.021 0.000 ± 0.002

Pagie-1
0.001 ± 0.007 0.000 ± 0.001 0.000 ± 0.000
0.010 ± 0.309 0.000 ± 0.044 0.000 ± 0.000

Poly-10
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Friedman-2
0.037 ± 0.001 0.036 ± 0.001 0.036 ± 0.000
0.051 ± 0.031 0.059 ± 0.017 0.065 ± 0.127

Tower
0.087 ± 0.012 0.079 ± 0.009 0.068 ± 0.006
0.091 ± 0.011 0.082 ± 0.012 0.071 ± 0.005
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The same analysis as in the previous section is performed for offspring selec-
tion genetic programming. The experiment settings haven been chosen in a
way that the created solutions achieve maximum accuracy. The median and
interquartile range of the normalized mean squared error of the best train-
ing solution for each benchmark problem grouped by constants optimization
probability are listed in tabular form; Table 3.13 includes the results without
constants optimization, Table 3.14 with 25% constants optimization proba-
bility, Table 3.15 with 50% constants optimization probability, and Table 3.16
with 100% constants optimization probability. The first row for each prob-
lem states the training performance (median ± IRQ) and the second row the
corresponding test performance.

In general, offspring selection genetic programming produces more ac-
curate results than standard genetic programming. The reasons therefore
are twofold. Firstly, due to the additional selection step introduced by off-
spring selection, the genetic material present in the population is better ex-
ploited when building new solutions, because unsuccessful recombinations by
crossover and mutation are discarded. Secondly, the algorithm does not stop
after a predefined number of generations, but rather when no progress can
be achieved anymore.

This is one reason that OS genetic programming without constants opti-
mization is capable of solving the Nguyen-7 and Keijzer-6 most of the times.
However, if constants optimization is enabled, the errors are further reduced
and almost always zero.

More differences between the algorithm variants can be observed when
comparing the achieved results on the Vladislavleva-4 problem, where OSGP
Pop 500 and OSGP Pop 1000 achieve a median test error of approximately
0.25 and OSGP Pop 5000 reduces the median test error to 0.017. The results
achieved with 25% probability of constants optimization to be applied are
in a similar range (regardless of the number of iterations). As early as the
probability is increased to 50% or higher, the problem is solved perfectly.

The results of OSGP on the Pagie-1 problem show little errors, but fail
to solve the problem and OSGP with smaller population sizes have a larger
spread of test errors. The median test error is further reduced by CO-NLS,
however if only 25% probability or fewer than 10 iterations are applied, more
overfit solutions with large test errors are produced, which is indicated by the
large interquartile range. This observations diminish if more and longer con-
stants optimizations is applied. A possible explanation for this phenomena
is that due to the high nonlinearity of the problem the gradient information
is only helpful when fully exploited.

The Poly-10 problem is solved perfectly by the two variants CO-NLS
100% and CO-NLS 50% although it does not contain any numerical constants
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that have to be fitted. The CO-NLS 25% achieves similar results as long
as more than 3 iterations of constants optimization are applied. The only
configuration with no constants optimization that can compete with that
results is OSGP Pop 5000 that utilizes a tenfold larger population size.

The configurations on the Friedman-2 problem without constants opti-
mization achieve a test error between 0.11 and 0.17. The CO-NLS variants
reduce this error to 0.04 - 0.06, which is in the range of the noise level of this
problem. Interestingly the configurations with 100% probability of CO-NLS
to be applied achieve slightly worse results than the others. This is a sign of
overfitting that occurs if constants optimization is performed while solving
noisy problems.

The results on the Tower real-world problem follow the trend that can
be observed on the other benchmark problems, with the exception of the
Friedman-2 problem, namely that better results are obtained the more con-
stants optimization in terms of the probability and iterations is applied dur-
ing the algorithm execution. As already discussed for the results obtained
by the genetic programming without offspring selection (Section 3.4.3), a re-
duction of the median test error on the Tower problem is mostly in the range
of percents, but is still significant.

For all noise-free problems we again calculated the success rate as the
probability of generating a solution with a test NMSE below 0.001. The
results are plotted in Figure 3.7 for all configurations colored according to
the probability of CO-NLS to be applied.

Except for the Nguyen-7 problem, the success rates increase significantly
when constants optimization is enabled. Even CO-NLS 25% 3 Iterations,
the configuration with the least amount of CO-NLS, achieves equal or higher
success rates than OSGP-5000, while using a population size of 500. Another
observation is that the success rates increase when the number of iterations is
increased in the algorithm groups for the same CO-NLS probability. Again
there is one exception, CO-NLS 25% 5 Iterations achieves slightly higher
success rates than CO-NLS 25% 10 Iterations, but other than that this ob-
servation holds.

When comparing the success rates for offspring selection (Figure 3.7) with
the success rates of standard genetic programming (Figure 3.6), a drastic in-
crease for all problems can be observed. Every problem is at least solved
once with offspring selection, whereas standard genetic programming failed
to solve the Vladislavleva-4 problem at all except once. This shows that
offspring selection boosts the performance of genetic programming and in
combination with CO-NLS is able to produce highly accurate symbolic re-
gression solutions.
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Figure 3.7: Success rates of offspring selection genetic programming for noise-
free benchmark problems with varying population size, CO-NLS probabilities
and iterations.

In summary it can be concluded that CO-NLS drastically increases the per-
formance of genetic programming when solving symbolic regression prob-
lems. This validates our assumption that genetic programming is able to
identify the correct model structure and features, but often overlooks such
high-quality models due to wrong numerical constants in the model. Even
genetic programming with a much larger population size of 5000, which di-
rectly translates into more evaluated models, are outperformed by genetic
programming with CO-NLS and a population size of 500.
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3.5 Concluding Remarks

In this chapter the role of constants in genetic programming solving symbolic
regression problems has been discussed and thoroughly evaluated. Constants
play a critical role in the generated models, because without appropriate
numerical values models cannot produce accurate estimates. In the beginning
of genetic programming based symbolic regression constants have only been
adapted by random mutation.

In the mean time several ways for the manipulation of constants have been
developed. One of the most impactful advancements is linear scaling that
removes the necessity of finding the correct range of the model’s output by
automatically transforming the outputs. More elaborate ways of adapting
the constants range from meta heuristics, such as evolution strategies or
differential evolution to gradient-based optimization techniques.

We presented a new local optimization approach for tuning the constants
of symbolic regression solutions that combines linear scaling, automatic dif-
ferentiation, and gradient-based minimization of least squares through the
Levenberg-Marquard (LM) algorithm. The performance of this new approach
has been demonstrated by using a range of benchmark problems and the re-
sults are significantly improved when Constants Optimization by Nonlinear
Least Squares (CO-NLS) is activated.

The main improvement is achieved by using a directed search instead of
random mutation for the adaption of numerical values. This results in a
paradigm shift for genetic programming based symbolic regression, because
genetic programming does not need to find complete models, but rather has
to identify promising model structures containing appropriate functions and
features and the model is afterwards fitted by CO-NLS to the data at hand.

A disadvantage of CO-NLS is that the LM algorithm converges towards
the nearest local optimum depending of the initial starting conditions. This
disadvantage is reduced by genetic programming, because it is likely that
the same model structure is sampled several times, thus providing different
starting conditions for constants optimization. Another helpful technique to
escape such local optima is random mutation that is still enabled. However,
its role and significance is reduced as the identification of appropriate nu-
merical values is performed by CO-NLS and mutation is only responsible to
introduce variations during the search for symbolic regression solutions.

A related issue is that in our implementation every leaf node in the sym-
bolic expression tree representing a model has an associated weighting factor,
being this either the constant itself or the weight of a variable. Therefore, the
dimensionality of the constants optimization problem is always the number
of leaf nodes plus two for the artificial linear scaling terms. For binary ex-
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pression trees this results in the number of constants that have to be adapted
is half of the total tree length.

Additionally, we do not currently perform any preprocessing of the trees
before CO-NLS and thus cannot exclude correlations between the adapted
constants or the unnecessary optimization of them. For example, symbolic
simplification or pruning can be used to shrink the trees and allow more
accurate and faster local optimization of constants.

Another drawback of CO-NLS is the increased computational effort dur-
ing the search for gradient calculation and optimization. This is especially
relevant when the amount of data in the symbolic regression problem in-
creases. An improvement that reduces the computational effort would be
to use different gradient-based optimization techniques such as stochastic
gradient descent instead of the LM-algorithm.

Nevertheless, the currently employed version of CO-NLS performs rea-
sonably well and improves the accuracy of the symbolic regression solutions
generated by genetic programming significantly. We will still evaluate fur-
ther advancements of this technique and adapt it to our needs to obtain high
quality symbolic models.

78



Chapter 4

Complexity of Symbolic
Regression Solutions

In the previous chapter the focus lies on improving the accuracy of symbolic
regression solutions. However, the outstanding characteristic of symbolic re-
gression is that accurate solutions are generated as interpretable mathemat-
ical formulas. The interpretability is severely hampered if enormous models
are created, because too large or complex models are not really interpretable
anymore. Therefore, this chapter focuses on the complexity of symbolic re-
gression solutions and how as simple as possible yet accurate models can be
created.
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Figure 4.1: Tree representation of a large symbolic regression model consist-
ing of 103 tree nodes.
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An example for large symbolic regression models is given in Figure 4.1. The
illustrated model predicts the target variable of the Tower problem (defined in
Section 3.4.2) and estimates the tower response very accurately. Its symbolic
tree representation contains 103 nodes and is the direct result of the genetic
programming algorithm. Upon closer inspection it can be observed that
several associative symbols, such as Additions or Subtractions are nested
below each other, which can further be simplified by a post processing step.

After post processing, which removes redundant information in the model,
the mathematical representation given in Equation (4.1) is retrieved. For a
better readability constant numerical values are replaced by c0 - c49. The
model contains 18 different variables xi and 50 constants ci and although
the mathematical representation is familiar to us the model is still far from
interpretable.

f(x) = (x1 · (x1 · (c0 · x23 + c1 · x24 + c2 · x8 + c3 · x14 + c4 · x20 + c5 · x22+

ec6·x10) + c7) · c8 + ec9·x10) · c10 + (c11 · x9 + c12 · x24 + c13 · x8+

c14 · x14 + c15 · x7 + c16 · x1 + c17) · ((c18 · x23 + c19 · x24 + c20 · x17+

c21 · x14 + c22 · x20 + c23 · x1 + ec24·x10 + c25) · (c26 · x5 + c27 · x23+

c28 · x14 + c29 · x8 + c30 · x12 + c31 · x6 + c32 · x22 + c33 · x19+

ec34·x4 · c35 + c36·x23

ec37·x7
) + c38) · c39 + x3 · (c40 · x24 + c41 · x14+

c42 · x1 + c43 · x7 + c44 · x8 + c45) · c46 + x23 · x2 · c47 + c48) + c49

(4.1)

One of the reasons for such large models is that genetic programming in-
creases the size of the individuals in the population during the evolutionary
search process. This is often accompanied by an increase in fitness, but also
happens without any improvements. The phenomenon of an increase in size
without according increase in fitness is termed bloat [Luke, 2000b; Silva and
Costa, 2009] and is connected to the presence of introns.

Introns are genome parts that are not expressed and in genetic program-
ming, parts of an individual that do not affect the program output. For
example, an intron in genetic programming based symbolic regression is a
subtree that is multiplied by zero or another subtree that is divided by a
large factor so that its evaluation results in almost zero. In both cases it
does not matter how the actual subtree is built and therefore manipula-
tions by crossover and mutation have no or very little effect. The presence
of introns is regarded to be beneficial for individuals, because quite often
manipulations yield a reduction in fitness. However, if such a manipula-
tion happens inside an intron, this manipulation has no direct consequences
with respect to the program output and thus does not affect the individual’s
fitness. Hence, the accumulation of introns shields an individual from harm-
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ful manipulations and the average individual size in a population increases
during the evolution.

Another likely reason for the increase in size during evolutionary search
is that large individuals in general have better fitness values. Therefore, they
are more likely to be selected for reproduction and produce large offspring
individuals. As a result fitness-based selection reinforces an increase in size.
In symbolic regression bloat and overly large individuals hamper the inter-
pretability of the models and thus diminish one of the major benefits of the
methodology.

Bloat is a long studied phenomenon by the genetic programming commu-
nity and two concerns regarding bloat affect genetic programming. First, the
size of individuals in the whole population increase that directly relates to
computational effort for the genetic programming system. Second, the result
or solution of the algorithm execution is increased and larger than necessary.
This is related to the first concern, because if no enlarged individuals are
present in the population, the result cannot be enlarged.

Over the years several direct countermeasures to bloat have been pro-
posed [Luke and Panait, 2006]. A first approach in that direction has been
undertaken by Koza [1992], who proposed the use of static size limits for the
tree depth and length. Without static size limits the genetic programming
individuals will grow infinitely and even with limits the individuals will grow
until the limit is reached. In general, size limits work by adapting every op-
erator that changes an individual in a way that it adheres to the size limits.
For example, in a recombination operation the crossover points are chosen
so that the resulting child individual is guaranteed to be within the limits.
The performed experiments, which demonstrate the effectiveness of CO-NLS
(Section 3.4), also uses static depth and length limits to avoid excessively
large models.

Static size limits define the space of possible solutions and directly affect
the search of genetic programming. There are much fewer models up to a
length of five, compared to all possible models, whose tree representation
contains utmost 100 tree nodes. As a result the genetic programming execu-
tion is faster the smaller those size limits are sets. These conditions would
indicate that size limits should be as strict as possible, but too strict limits
result in rather inaccurate models.

The immediate drawback of static limits is that the necessary tree length
and depth to produce accurate symbolic regression models cannot be known
a-priori and is highly problem dependent. Hence, a common approach is
to test several different limit configurations. A better approach would be
if the algorithm automatically generates accurate, yet parsimonious models
without the necessity of using static size limits.
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More advanced methods for controlling the size of the generated models
range from dynamic size limits [Silva and Almeida, 2003; Silva and Costa,
2009; Kronberger, 2011], where the size limits are adapted during the algo-
rithm execution depending on the fitness of individuals or the model perfor-
mance on an internal validation set, or parsimony pressure methods [Luke
and Panait, 2006; Poli, 2010] that include the individuals size in the raw fit-
ness values, to controlling the distribution of tree sizes by so-called Tarpeian
bloat control [Dignum and Poli, 2008].

All of these methods work reasonably well for controlling the size of indi-
viduals in genetic programming and are not specific to symbolic regression.
However, the complexity of a symbolic regression model is not solely based on
its size, but includes several characteristics, such as the number of occurring
features, the different mathematical functions in the model, and how those
functions are combined and composed.

In the following section complexity measures for symbolic regression are
reviewed and a new one is defined. These complexity measures are later used
to perform multi-objective symbolic regression that simultaneously maxi-
mizes the model accuracy while model complexity is minimized. As a result
the algorithm should automatically adopt the models’ complexity to the con-
crete problems and it becomes unnecessary to specify appropriate size limits.

4.1 Complexity Measures

In the past, several complexity measures for tree-based genetic programming
solutions generally and for symbolic regression models specifically have been
proposed. The simplest ones applicable to all symbolic expression trees,
regardless of what they actually encode, are based on the tree characteristics
and are therefore applicable to all kind of genetic programming solutions.

The Length defined in Equation (4.2) uses the tree length, the number of
all tree nodes, as a measure for complexity. The second complexity measure
is the Visitation Length and differs from the length by taking the tree shape
into account. The visitation length [Keijzer and Foster, 2007], termed expres-
sional complexity by Smits and Kotanchek [2005], is calculated by summation
over all possible subtrees of the symbolic expression tree (Equation (4.3)).
Therefore, shallow tree structures are favored compared to deeply nested
ones, because the resulting subtrees contain fewer nodes, which results in a
lower complexity value. Another common complexity measure is the number
of variables a symbolic regression model contains. The Variables complexity
measure defined in Equation (4.4) counts the number of features facilitated
in the model, but does not take the model size into account.
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Length(T ) =
∑
s∈sT

1 (4.2)

Visitation Length(T ) =
∑
s∈sT

Length(s) (4.3)

Variables(T ) =
∑
s∈sT

{
1 if sym(s) = variable

0 otherwise
(4.4)

s ∈s T defines the subtree relation and returns all subtrees s of tree T

sym(s) returns the symbol of the root node of tree s

All these complexity measures do not consider the actual semantics of the
model. The variables only includes information about the number of features,
but not information about the mathematical functions or the model size.
There largest advantage is that they can be efficiently evaluated and that
they are easily defined and implemented. Their calculation takes a single
tree iteration, if caching mechanisms for already calculated subtree lengths
are used. Therefore, if any of those complexity measures is integrated in an
optimization algorithm, the algorithm runtime is hardly affected.

The drawback of not including any semantic information in the complex-
ity measures is overcome by the order of nonlinearity [Vladislavleva et al.,
2009]. The order of nonlinearity is based on the mathematical functions
occurring in the model as well as the nonlinearity of the model output. It
is calculated by recursive iteration of the symbolic expression tree and ag-
gregating the complexity of the individual subtrees. Terminal nodes have
a complexity value of either zero or one, depending if the node contains a
constant or variable. Internal nodes representing mathematical functions are
specifically handled according to an extensive definition. For example, the
complexity value of an addition is the maximum of the complexity values of
its subtrees, or the complexity of a multiplication is the summation of com-
plexities of its subtrees. A distinguishing feature of the order of nonlinearity
is that the definition for calculating the complexity of subtrees includes the
minimal degree of a Chebyshev polynomial [Elliott, 1964] approximating the
subtrees output, which is an indication of the nonlinearity. As a result the
complexity value includes specifics about the functions used and the response
of the symbolic regression model. Therefore, it provides an intuitive repre-
sentation of complexity, but in turn is also more expensive to be evaluated,
because for internal tree nodes the approximation of Chebyshev polynomials
has to be performed.
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Another complexity measure, which takes model semantics into account, is
the functional complexity [Vanneschi et al., 2010]. The functional complexity
is based on the response curvature, which can be interpreted as the deviation
of the model response from a straight line. The response curvature for each
dimension termed partial complexity is approximated as the number of di-
rection changes of the derivative of the model estimates over the input data.
Therefore, the model response is sorted according to the dimension the par-
tial complexity should be calculated for and the numerical difference between
all neighboring values is stored. The partial complexity is the count of sign
changes in that specific difference values and the functional complexity is the
average of the partial complexities for all dimensions.

The advantage of the functional complexity is that it reflects the intuitive
definition of complexity by approximating the number of infliction points in
the model response. Its drawback is that it is highly dependent on the
available data points. For example, if a sine function is only evaluated on
multiples of π no infliction points are detected and the functional complexity
would be zero. Furthermore, it is assumed that all dimensions can be treated
independently and the individual results are afterwards aggregated. The
functional complexity is not suited and intended to be used within the genetic
programming algorithm as optimization objective, but provides an additional
useful analysis method for regression models.

4.1.1 Recursive Complexity

Based on the advantages and characteristics of the order of nonlinearity and
the functional complexity metrics, we defined a new complexity measure
[Kommenda et al., 2015, 2016]. It should be easily calculated, similar to
the tree complexity measures, but still include semantics about the symbolic
regression models, and should be independent of the actual data points used
for training the model. Furthermore, rough estimates of model complexity
are sufficient as long as these can be used during multi-objective optimiza-
tion and steer the optimization algorithm towards simple and parsimonious
models. These models should only include complex mathematical functions
such as trigonometric, logarithmic, or radical functions if the inclusion gives
a significant benefit in terms of prediction accuracy.
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Complexity(n) =



1 if sym(n) = constant

2 if sym(n) = variable∑
c∈cn Complexity(c) if sym(n) ∈ (+,−)∏
c∈cn Complexity(c) + 1 if sym(n) ∈ (∗, /)

Complexity(n1)2 if sym(n) = square

Complexity(n1)3 if sym(n) = squareroot

2Complexity(n1) if sym(n) ∈ (sin, cos, tan)

2Complexity(n1) if sym(n) ∈ (exp, log)

(4.5)

c ∈c n defines the child relation and returns all direct child nodes c of node n

indexing is used to refer to the i-th child of a node, i.e. n1 refers to the first child node of node n

sym(n) returns the symbol of node n

The definition of the recursive complexity is given in Equation (4.5). The
recursive complexity is calculated by recursive iteration over the symbolic
expression tree, where the complexity of each tree node is dependent on
the complexities of its child nodes, whose complexity values are aggregated
according to specific rules. The complexity of a leaf node is either one or two,
depending on whether a constant or variable is encountered. The aggregation
rules for complexity values are, if possible, inspired by the mathematical
semantics of the symbols.

A major reason for the recursive definition of the complexity metric is
that it is heavily dependent on the position of symbols in the expression
tree. While the recursive complexity of cos(x) = 22 = 4 is rather low, it in-
creases drastically if more complex symbols and functions are the arguments
of the cosine function instead of just one variable. As a result the total
complexity of a symbolic regression model depends on the level where more
complicated functions occur. This is a desired property when performing
multi-objective symbolic regression, because then these complex functions
are pushed towards the leaf nodes of the tree and thus the interpretability of
the symbolic regression model is strengthened.

An alternative definition for the recursive complexity would be to assign
the values zero and one to constants and variables respectively. However, a
drawback of this definition is that large models that contain many constants
would not be penalized and even further multiplications by a constant value
would yield a complexity of zero. Therefore, only little parsimony pressure
is applied to the models and when this complexity measure is used during
optimization, the algorithm would primarily build constant expressions of
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varying sizes. Consequently, the constant symbol would gain prevalence in
the population and the training of the models would be severely hampered.
The same argument explains the presence of the +1 term (Equation (4.5) line
4). One is the neutral element of multiplication and without the +1 term
multiplications and divisions containing many constants would yield very
small complexity values. This is avoided by defining the complexity of mul-
tiplications and division as the product of the by one increased complexities
of their child nodes.

The major difference of the recursive complexity to other tree complexity
metrics is highlighted by two exemplary symbolic regression models, f1(x) =
esin(

√
x) and f2(x) = 7x2+3x+5. The symbolic expression tree representation

of these two models is illustrated in Figure 4.2. When the tree length is used
as complexity measure, f1 is treated as less complex than f2, because it
contains only four tree nodes, whereas f2 consists of 9 nodes. The same
happens if we use the visitation length for complexity calculation; f1 has a
visitation length of ten and f2 a visitation length of 23, again indicating that
f1 is simpler than f2.

Figure 4.2 also illustrates the intermediate and final results of the recur-
sive complexity calculation above each node. When the recursive complexity
is used as complexity measure, f2 is treated as simpler than f1 with complex-
ity values of 17 and 1.15 E+77 respectively. This reflects our intuition that
the model f2 is simpler than the model f1, whereas according to the tree and
visitation length the contrary is true.

exp

sin

sqrt

x

8

256

2

1.15 E+77

+

* * 5.0

x 3.0sqr 7.0

x

2

4 1

10

2 1

1
6
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Figure 4.2: Symbolic expression tree representation of f1(x) = esin
√
x and

f2(x) = 7x2 +3x+5, where the calculation steps for the recursive complexity
are shown above each tree node.
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4.2 Multi-objective Symbolic Regression

Single-objective symbolic regression has already been discussed at length in
this thesis and the objective that is optimized is always an error or correlation
metric between the model estimates and the true target values. As the name
suggests, multi-objective symbolic regression changes the objective from a
single one to several ones. In general, one of the objective still measures
the errors of the model estimations and at least one additional objective is
used, mostly some kind of complexity measure. Therefore, the result of the
algorithm solving the multi-objective symbolic regression problem is not a
single solution anymore, but a Pareto front of solutions. All solutions of the
Pareto front are optimal with respect to the used objectives and the Pareto
front represents the tradeoff between different objectives.

An exemplary two-dimensional Pareto front of symbolic regression solu-
tions is illustrated in Figure 4.3 ([Kommenda et al., 2015]). In this figure the
models are ordered by the length of the symbolic expression tree encoding
the model and for each model the normalized mean squared error (NMSE) of
the training and test evaluation is shown. Some models overfit the training
data resulting in a test NMSE larger than 1.0 and hence no data point is
shown for the test evaluation. This is for example the case for all models
with a tree length larger than 40. The test evaluation is shown to indicate
that although all models in this figure are Pareto optimal with respect to
the tree length and training evaluation, they do not necessarily have good
generalization capabilities.
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Figure 4.3: Exemplary Pareto-front showing the tradeoff between accuracy
in terms of the NMSE and the model length.
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Pareto front analysis is a useful tool whenever multiple models have to
be analyzed and compared to each other. For example, it is also applica-
ble when single-objective symbolic regression problems are solved by genetic
programming by analyzing all models in the final population instead of just
considering the model with the smallest estimation errors on the training
partition.

However, an obstacle is that due to the single-objective nature of the
optimization algorithm only parts of the Pareto front are explored and only
models with a high accuracy and hence often more complex models are con-
sidered. This effect is highlighted in Figure 4.4, where the minimum, average,
and maximum symbolic expression tree length are displayed for each gener-
ation of standard genetic programming. While solving the single-objective
symbolic regression problem the average tree length increases steadily after
an initial decline until it settles slightly below 80. Therefore, if a Pareto front
analysis of the final population is performed, mostly accurate yet complex
models would be part of the Pareto front. The regions of the Pareto front
where very simple and small models with larger estimation errors are located
would be almost empty.
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Figure 4.4: Visualization of the minimum, average, and maximum symbolic
expression tree length for each generation of standard genetic programming.
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Another way of generating more parsimonious regression models while still
using single-objective optimization algorithms is to include an regularization
term in the objective function. Such a method is for example integrated in
FFX [McConaghy, 2011] (see Equation (2.2)), where the L1 and L2 norm are
used as regularization terms [Zou and Hastie, 2005]. However, a difficulty
of such a combined objective function, which includes estimation errors and
regularization, is always to balance the weighting factors of individual parts
of the objective function. These weighting factors steer the complexity of the
generated models and are highly problem dependent.

When performing multi-objective symbolic regression there is no need for
weighting factors, because there exist multiple objective functions instead of
a single, combined one. Furthermore, all objective functions are independent
of each other and treated as equally important. Another benefit is that the
whole Pareto front is equally explored during the optimization, which is a
key characteristic of multi-objective optimization algorithms.

One of the first designed algorithm for solving multi-objective symbolic
regression problems is ParetoGP [Smits and Kotanchek, 2005; Kotanchek
et al., 2007]. ParetoGP is independent of the concrete objective functions
used and maintains an archive of Pareto optimal solutions in addition to the
genetic programming population. The search focuses on improving the solu-
tions of the Pareto archive by breeding members of the archive with the most
accurate models of the population. After each generation the Pareto archive
is updated with the newly generated solution if these are Pareto optimal.
ParetoGP commonly uses the Pearson’s R2 correlation as accuracy metric
for the solutions and the visitation length of the symbolic expression trees as
complexity criterion. However, the order of nonlinearity [Vladislavleva et al.,
2010] developed later has also been used in ParetoGP as a objective function
measuring the complexity of models.

The goal of this chapter is not to develop a new algorithm for solv-
ing multi-objective symbolic regression problems. Therefore, an established
multi-objective optimization algorithm that has been designed to solve com-
binatorial optimization problems is adapted to the specific needs when per-
forming symbolic regression and the most appropriate objective functions for
complexity control are evaluated.

Multi-objective optimization for symbolic regression is performed by the
nondominated sorting genetic algorithm (NSGA) proposed by Srinivas and
Deb [1994]. A drawback of NSGA is that it does not include any kind of
elitism, hence a steady increase in the objective values of the solutions in the
Pareto front is not guaranteed. Furthermore, an additional parameter for
maintaining the diversity of solutions has to be specified and tuned and the
runtime complexity of nondominated sorting is rather high.
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These disadvantages lead to the development of an improved, more efficient
version of the algorithm, the NSGA-II [Deb et al., 2002]. The major improve-
ments of NSGA-II are the ranking of nondominated solutions and crowding
distance that guide the algorithms towards an uniformly spread Pareto front.
Additionally, elitism is implemented by selecting the individuals for the next
generating from the pool of previous solutions unified with the newly created
solutions, which is similar to plus selection in evolution strategies [Schwefel,
1981; Beyer and Schwefel, 2002].

Another, further improved version NSGA-III [Deb and Jain, 2014; Jain
and Deb, 2014] has been developed since then, which increases the algorithm’s
capabilities to handle many-objective optimization problems appropriately.
Many-objective optimization is characterized by containing more than three
objective functions. However, for solving multi-objective symbolic regression
problems two objectives, the solution’s accuracy and complexity, are suffi-
cient and hence NSGA-II is used for performing multi-objective symbolic
regression. Therefore, the published source code1 of the NSGA-II has been
translated into C# and integrated into HeuristicLab [Wagner, 2009; Wag-
ner et al., 2014], as well as the complexity metrics described in the previous
section.

4.2.1 NSGA-II Adaptations

We have evaluated the performance of NSGA-II for solving multi-objective
symbolic regression problems and the first results were devastating. NSGA-II
could not produce accurate solutions and the search for improved solutions
has been stuck within a few generations and no further progress has been
achieved. The algorithm configuration that has been used is pretty stan-
dard; a maximum tree size of 100, a population size of 1,000, termination
after 100 generations and the squared Pearson’s correlation coefficient R2 as
well as the tree size are used as objective functions. The search behavior is
depicted in Figure 4.5, where the minimum, average, and maximum length
of the symbolic expression trees representing the models is plotted for one
exemplary algorithm execution. Upon further inspection it becomes obvious
why no further search progress can be achieved. The average tree length of
the population approaches the minimal one rather quickly and after 20 gener-
ations the average and minimum tree length are almost equal. Furthermore,
the maximal tree length drops quickly and stabilizes at around 10, although
the algorithm is allowed to build models up to a size of 100.

1 http://www.iitk.ac.in/kangal/codes.shtml [Accessed 16-Feb-2018]
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Figure 4.5: Minimum, average, and maximum symbolic expression tree
length for each generation of NSGA-II.

This is an indication that the population collapses quickly to few different
solutions and as a result no new solutions can be created and the algorithm
is stuck. The reason therefore is that in the original version of NSGA-II
solutions with exactly equal objective values are treated as nondominated.
This is in accordance to the definition of dominance used in multi-objective
optimization, which states that a solution x1 dominates another solution x2 if
and only if the objective values of x1 for all M objective functions are smaller
or equal (assuming minimization) than the according objective values of x2

and at least one objective value is strictly smaller (Equation (4.6)).

x1 ≺ x2 ⇐⇒
{
∀i ∈ 1, ...,M fi(x1) ≤ fi(x2)
∃j ∈ 1, ...,M fj(x1) < fj(x2)

(4.6)

This definition of dominance posses a problem when multi-objective sym-
bolic regression problems are solved. The reason therefore is that NSGA-II
ranks the solutions of the population into several Pareto fronts. This is done
by building the first Pareto front, afterwards the solutions of the first Pareto
front are excluded and the remaining solutions are used to build the next
Pareto front and so forth until no solutions are left. The rank of the Pareto
front a solution is assigned to is called nondomination rank and is the highest
influence factor for parent selection in NSGA-II.
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The problem when performing multi-objective symbolic regression is now
that it is very easy for the algorithm to create a short, but not very accurate
solution that is not dominated by any other solution. This solution consists
exactly of one variable and nothing else, hence has a tree length of one.
If the most appropriate variable is detected, it is not possible to create a
smaller or equal sized model that has a better accuracy. However, the same
solution can be created multiple times and as these duplicate solutions do
not dominate each other. Hence, all of them are assigned to the first Pareto
front. Therefore, the first Pareto front is filled during the optimization with
very little, duplicate solutions and it is highly unlikely to build larger more
accurate solutions and the optimization algorithm is stuck. This behavior is
exactly what can be observed in Figure 4.5.

To overcome this issue and still make NSGA-II applicable for multi-
objective symbolic regression a relaxed domination criterion is used (Equa-
tion (4.7)). Now a solution x1 dominates another solution x2 as long as all
objective values from x1 are smaller or equal than those of x2.

x1 � x2 ⇐⇒
{
∀i ∈ 1, ...,M fi(x1) ≤ fi(x2) (4.7)

When using this relaxed domination criterion duplicate solutions dom-
inate each other, because they have exactly equal objective values. As a
consequence duplicate solutions are pushed into higher Pareto fronts during
the nondominated sorting. However, keeping a single solution of these du-
plicates is desirable and the first one detected is assigned a domination rank
of zero and included in the first Pareto front. Subsequently, all further du-
plicates are assigned to later Pareto fronts during the nondominated sorting,
depending on how many duplicates have been encountered before.

Another possibility to reduce the effect of duplication solutions would be
to avoid them at all and only allow unique solutions to be included in the
population. Therefore, every child has to be checked whether a copy of it
is already included in the population and a new one has to be created it
that is the case. However, this alternative creates two additional problems.
Firstly, the dynamics of the algorithm are drastically changed, because every
generation needs a different amount of individuals to be created until a new
population is formed and the available genetic material for recombination is
different. Secondly, duplicate detection of solutions with a variable length
encoding is not straightforward, because of the complex genotype phenotype
mapping. Solutions with the same phenotype need not have the same geno-
type, thus semantics as well as the representation of a solution have to be
compared. This is avoided if relaxed domination is used and the behavior of
NGSA-II is more similar to its original form.
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Figure 4.6: Minimum, average, and maximum symbolic expression tree
length for each generation of NSGA-II with the relaxed domination crite-
rion.

The effect of using the relaxed dominance criterion is shown in Figure 4.6.
There the same NSGA-II configuration as in Figure 4.5 is executed and again
the minimum, average, and maximum of the symbolic expression tree length
at each generation is plotted. Although, a decline in average tree length is
present within the first few generations, the population does not collapse
into only a handful of different solutions as it was the case with the standard
domination criterion and started to rise again towards the end of the algo-
rithm execution. Furthermore, the maximum tree length never drops as low
as it was previously the case.

The changes in the symbolic expression tree lengths provide a good in-
dication of what is happening during the algorithm execution. However, to
further strengthen the rationale for using a relaxed domination criterion the
final population of the two presented algorithm executions are analyzed. In
Table 4.1 all solutions of the last population that are members of the first
Pareto front and thus Pareto optimal are listed. The first column lists the
solutions or their name for larger solutions, where all variables x1 - x20 con-
tain an omitted weighting factor and c represents a constant. The next two
columns list the optimization objectives; first the symbolic expression tree
length that is minimized and second the correlation (rounded to four decimal
places) between the estimates of the solution with the target variable in terms
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Table 4.1: Pareto front analysis of NSGA-II with strict and relaxed domi-
nation criterion. The solutions, their objective values, and number of occur-
rences in the Pareto front are shown.

Solution
Objective 1

Length
Objective 2

R2
Strict

dominance
Relaxed

dominance

x6 1 0.4654 704 1

log(x6) 2 0.4673 217 1

x3 / x6 3 0.6193 73

x1 / x6 3 0.6271 1

ex3/x6 4 0.6286 5

x14 / (x3 / x6) 5 0.6916 1

x3 / x6 + x9 / x6 7 0.7049 1

x20 / (log(c) + x6/x1) 8 0.6577 1

ex3/x6 + x9 / x6 8 0.7062 1

Solution 10 10 0.7160 1

Solution 11 11 0.7176 1

Solution 12 13 0.7311 1

Solution 13 15 0.7324 1

Solution 14 16 0.7344 1

Solution 15 17 0.7360 1

Solution 16 18 0.7417 1

Solution 17 45 0.7494 1

Total 1000 14

of the Pearson’s R2 that is maximized. The third and fourth column show
the count of how many times a specific solution is present in the first Pareto
front after NSGA-II is finished when using the strict or relaxed domination
criterion respectively. A cell is left empty, if that particular solution is not
present in the Pareto front. Solutions with an expression tree length of ten
or larger are only stated by name because of space restrictions.

Although this analysis consists only of a single algorithm execution for
each domination criterion and no parameter tuning has been performed, the
overall search behavior is clearly highlighted. The same behavior can be
observed for each algorithm execution with slight variations and it underlines
the importance of adapting NSGA-II to use a different domination criterion
when multi-objective symbolic regression problems are solved.

When using the strict domination criterion the resulting Pareto front
contains only five different solutions, but many exact duplicates of those.
In total these accumulate to exactly 1000 solutions, which is limited by the
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population size of the algorithm and no other solutions are present in final
population. In contrast to this, when using the relaxed domination criterion
the Pareto front contains 14 different solution with a tree length of up to 45.
There are no duplicates in this case, because these are pushed towards later
Pareto fronts. When analyzing the whole population there are still duplicates
present, especially of small solutions, however there are still 274 different
solutions present, which is much more compared to the five different solutions
when using the strict dominance comparison. Therefore, from now on all
results and analysis are performed using the relaxed domination criterion.

A related aspect that also affects the number of solutions in the final
Pareto front is the accuracy of the objective values. Generally, when per-
forming multi-objective symbolic regression one objective describes the com-
plexity and the other objective the accuracy of the solutions. As in the
local optimization chapter the squared Pearson’s correlation coefficient R2

is used for evaluating the accuracy. The R2 lies in the interval [0, 1] and is
represented as floating-point number. Due to the floating-point representa-
tion of the objective value the Pareto front can get artificially enlarged when
solutions with similar quality (up to several decimal places) and varying com-
plexities are present, because these do not dominate each other. Therefore,
the relaxed domination criterion has no effect, because the objective values
are not equal. However, we are not interested in improvement in terms of
solution quality at the tenth decimal place.

An alternative to counteract this phenomenon is to use discretized objec-
tive functions that round the objective values to a fixed number of decimal
places. This applies a higher selection pressure towards simpler regression
solutions as more of them have the same prediction accuracy and are there-
fore dominated by other solutions because these are either less or equally
complex. In addition, the finally obtained Pareto fronts contain in general
fewer solutions, because only minor improvements are neglected.

The effects of using a discretized objective function are shown in Fig-
ure 4.7, where the number of solutions in the obtained Pareto fronts of 50
NSGA-II repetitions are compared. Standard uses the default objective func-
tions, whereas Discrete rounds the objective value to three decimal places
and size of the Pareto fronts are visualized as box plots. When using the
standard objective function that uses the exact objective value the obtained
Pareto front has an average size of 22.8 and a median size of 20. In contrast
to this, the number of solutions in the Pareto front is halved when using the
discretized objective function with an average size of 11.8 and a median size
of 10. This gives an advantage because smaller Pareto fronts are easier to
analyze, especially if the solutions contained in the front are more diverse.

95



CHAPTER 4. COMPLEXITY CONTROL

0

10

20

30

40

50

S
iz

e 
of

 P
ar

et
o 

F
ro

nt

DiscreteStandard

Figure 4.7: Comparison of Pareto fronts obtained by NSGA-II with standard
and discretized objective functions.

Furthermore, the two algorithm executions yielding the most accurate re-
gression models are analyzed in detail to illustrate the difference of using
exact or rounded objective values. The Pareto fronts of these two algorithm
executions are shown in Figure 4.8, where the normalized mean squared error
on the training partition and the according symbolic expression tree length
of the solutions are displayed. Solutions obtained from NSGA-II with stan-
dard objective function are represented by gray circles and solutions obtained
using the discretized objective function by black crosses.

The Pareto front obtained using discrete objective values contains only
nine solutions, while the other contains 29 solutions. Although the first five
solutions with a tree length of up to seven are exactly the same, afterwards
the identified Pareto fronts start to differ. While the largest model generated
using discrete objective values has a tree length of 37 and a NMSE of exactly
3.02 · 10−5, the second largest solution has a tree length of only 12 and a
NMSE of 0.0023. The difference in accuracy is caused by slightly different
numerical values in the shorter solution that, hence these two solutions can
be regarded as equivalent.

When using the exact objective values the largest solution consists of 83
tree nodes and yields a NMSE of 5.81·10−10. However, the improvement of an
error in the range of 10−5 and 10−10 can be neglected, because the goal is to
generate simple yet accurate regression models. If accuracy maximization at
all costs is the goal, it would be better to perform single-objective symbolic
regression. Additionally, the algorithm discovered a solution with a tree
length of 15 that already yields accurate predictions with a training NMSE
of 1.3 · 10−4, which is the 11th smallest solution.
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Figure 4.8: Exemplary Pareto fronts obtained by NSGA-II with standard
and discretized objective functions.

Upon further analysis it turns out that all solutions from the 11th to the last
are equivalent and the increase in the tree length is only used to approxi-
mate numerical constants more accurately. This numerical differences in both
Pareto fronts could be easily overcome by integrating the local optimization
method described in the previous chapter. Overall it can be concluded that
the discretized objective functions yield the advantage of generating Pareto
fronts with fewer, smaller and simpler solutions without affecting the accu-
racy of solutions.
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4.3 Experiments

After initial tests of NSGA-II for solving multi-objective symbolic regression
problems that revealed adaptations, which have to be implemented to change
the search behavior of the algorithm, the question remains whether multi-
objective symbolic regression is competitive to single-objective symbolic re-
gression in terms of the accuracy of the created solutions. Furthermore, one
goal of performing multi-objective symbolic regression is that the algorithm
is capable of automatically determining the appropriate length of solutions
for the problem at hand. A disadvantage of single-objective symbolic regres-
sion based on genetic programming is that the solutions always grow until
the specified length and depth limit for symbolic expression trees is reached,
which should be avoided when switching to multi-objective symbolic regres-
sion.

Another aspect that is of special interest is, how the behavior of NSGA-II
changes when different complexity measures are used as additional objec-
tive. Furthermore, not only short models in terms of tree length, but simple
models with respect to the semantics of the mathematical functions occur-
ring in the symbolic expression trees should be generated. Therefore, a new
complexity measure, the recursive complexity, has been defined and is bench-
marked against other complexity measures described in the literature. Multi-
objective symbolic regression algorithms should also be able to determine the
appropriate functions that occur in the models in addition to the appropriate
solution length. Therefore, the presence of more complex functions such as
trigonometric or power functions in the created solutions is analyzed in the
upcoming experiments.

4.3.1 Algorithm Setup

The research questions formulated in the introductory parts of this chap-
ter are answered by performing experiments of different single-objective and
multi-objective algorithm configurations that solve symbolic regression prob-
lems. We performed three configurations of single-objective symbolic regres-
sion with standard genetic programming, where the only different parameter
setting that is varied, is the maximum expression tree length. These algo-
rithm configurations are benchmarked against each other and four algorithm
configurations of multi-objective symbolic regression solved by the NSGA-II,
where the objective function, which measures the complexity of the solutions,
is varied.
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As both algorithms, standard genetic programming and NSGA-II, are related
to genetic algorithms, they have a lot of parameters in common, which have
been set to the exact same value. These common and as well as algorithm
specific parameter settings are listed in Table 4.2.

The most prominent difference of the algorithm configurations compared
to the experiments performed in Section 3.4 is that instead of using only
arithmetic functions, trigonometric, exponential and power functions are al-
lowed to be included in the solutions as well. The terminal set consist of
either numerical constants or variables that are weighted by a multiplicative
factor. The maximum tree depth is set to 50 for any of the algorithms, be-
cause unary functions yielding an increased symbolic expression tree depth
are enabled and the tree size is restricted by varying maximum lengths.

The initial population is again created by the probabilistic tree creator
(PTC2) [Luke, 2000a] and a population of 1,000 individuals is evolved for
500 generations. All algorithms use tournament selection with a group size
of five for parent selection before child creation. However, the NSGA-II uses
a crowded tournament selection, which does not act on the raw objective
value, but on the domination rank and crowding distance. A simple subtree
crossover is used for child creation that is applied with 100% probability
and afterwards newly created children are mutated with a probability of
25%, where either one of the four described mutation operators is applied
to manipulate the solutions. Linear scaling is enabled in all configurations
as it enhanced the solutions accuracy. However, further local and constants
optimizations are not performed to study the consequences of multi-objective
symbolic regression without any side effects.

Standard genetic programming is used for performing single-objective
symbolic regression. The three different configurations vary according to
the maximum tree length; either 20, 50, or 100 is used to restrict the growth
of the symbolic regression trees. The variants are later referred to as GP
Length 20, GP Length 50 or, GP Length 100. For completeness it is stated
that one elite solution is used in the algorithm and the single objective used,
is the maximization of the squared Pearson’s correlation coefficient R2. The
space of possible solutions is strongly influenced by the maximum tree length.
An optimal setting is the smallest length large enough so that a regression
solution generating accurate estimates can be built and hence three varying
settings are tested.

The adapted nondominated sorting genetic algorithm (NSGA-II) is used
for performing symbolic regression, where relaxed domination and discretized
objective functions are used. A slight difference to standard genetic program-
ming is that there are no elites in the algorithm, but rather a new generation
is built by unifying the existing population with the newly created solutions
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and selecting the best solutions out of this union. Hence, the solutions in the
Pareto front can be regarded as elites.

The major difference to the single-objective variants is that the max-
imum tree length is set to 100, whereas it has been varied before. The
rationale therefore is that we expect the multi-objective algorithms to auto-
matically identify the appropriate expression tree length and therefore the
maximum of the single-objective configuration is chosen as default. In total
four different configurations of NSGA-II have been evaluated that differ by
the additional objective that judges the complexity of solutions. All variant
use a discretized version of Pearson’s R2 as first objective, which measures
the solutions’ accuracy. The second, complexity related objective is either
the length of the symbolic expression tree (NSGA-II Tree length, 4.2), the
visitation or nested tree length (NSGA-II Visitation length, 4.3), the number
of variables present in the solution (NSGA-II Variables, 4.4), or the newly
defined recursive complexity (NSGA-II Recursive, 4.5).

Overall seven different algorithm, three single and four multi-objective
ones, are evaluated and the resulting consequences of the different variants
described. First, artificially defined, noise free benchmark problems and
afterwards established, more complicated, noisy problems are used for this
purpose.

4.3.2 Results on Benchmark Problems

We defined five artificial benchmark problems that are used to evaluate the
different algorithm variants and test the suitability of multi-objective sym-
bolic regression. These problems (Problem F1 - F5) are listed in Table 4.3,
contain no noise and the data is generated by either a five or four dimensional
mathematical function. For every problem 500 samples are generated by uni-
formly sampling each independent input variable from the interval U[-5,5].
Out of these 500 data samples, 100 are used for training and thus learning
the solutions and 400 are used as a separate test partition to evaluate the
generalization capabilities of solutions.

These benchmark problems have been specifically designed to test whether
the algorithms are capable of selecting the appropriate solution length and
mathematical functions to model the data. As described in the previous
section in addition to arithmetic functions, trigonometric, exponential, loga-
rithmic, as well as square and square root symbols can be integrated in the
symbolic expression trees. Each of the defined problems needs arithmetic
functions to be present in the created solutions. The problem F1 addition-
ally contains a squared term and an interacting term between two variables.
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Table 4.2: Algorithm settings for single-objective and multi-objective sym-
bolic regression algorithms.

Common parameters

Maximum tree depth 50 levels
Function set Binary functions (+,−,×, /)

Trigonometric functions (sin, cos, tan)
Exponential functions (exp, log)
Power functions (n2 and

√
n)

Terminal set constant, weight ∗ variable
Tree initialization PTC2
Population size 1000 individuals
Termination criterion 500 generations
Selection Tournament selection, group size 5
Crossover probability 100%
Crossover operator Subtree crossover
Mutation probability 25%
Mutation operator Change symbol, single point mutation,

Remove branch, replace branch
Linear scaling Enabled

Single-objective symbolic regression

Algorithm Standard genetic programming
Maximum tree length 20 | 50 | 100 nodes
Elites 1 individual
Objective function Maximize R2

Multi-objective symbolic regression

Algorithm Nondominated sorting genetic algorithm (NSGA-II)
Maximum tree length 100 nodes
Elites Pareto optimal solutions
Domination criterion Relaxed domination
Objective functions Maximize R2 (discretized) +

Minimize tree length
Minimize visitation length
Minimize variables count
Minimize recursive complexity
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Table 4.3: Definition of noise free benchmark problems

Name Function Training Test

F1 F1(x1, ..., x5) = x1 + x2 + (x3 − 2)2 + x4x5 100 samples 400 samples

F2 F2(x1, ..., x5) = 10 sin(x1) + x2 + x3x4 + x4x5 100 samples 400 samples

F3 F3(x1, ..., x5) = e0.7x1 + (0.5x2 + 2)2 + x3
2 + x4x5 100 samples 400 samples

F4 F4(x1, ..., x4) = log((x1 + x2)2) 100 samples 400 samples

F5 F5(x1, ..., x4) = (x1 + x2)2(x3 + x4) 100 samples 400 samples

Hence, it is either necessary to include to square symbol in the solutions or
to create a slightly longer solutions, where the squared term is expanded.
F2 is slightly more complicated, because it contains one trigonometric func-
tion and two interacting terms, which are in general harder to identify. F3 is
built out of an exponential, two squared, and one interacting term. Although
F4 has the shortest mathematical representation it’s difficulty should not be
underestimated, because it contains the logarithm of a squared term, which
complicates the correct identification of the formula. The reason therefore is
that as long as the squared term is not included, the logarithm of a single
variable results in an undefined value due to the negative values of the vari-
ables. Furthermore, F4 uses only two of the four possible variables. The last
problem F5 just consists of a product of terms and if identified correctly the
algorithms should not include any trigonometric, exponential, or logarithmic
functions at all in the solutions.

The aggregated results of 50 repetitions of each algorithm variant solv-
ing each benchmark problem are listed as median ± interquartile range in
Table 4.4. A fair comparison between single and multi-objective algorithms
is guaranteed, because the most accurate solution on the training partition
is picked as the final result and analyzed. The accuracy is evaluated as the
normalized mean squared error (NMSE), also termed fraction of variance
unexplained, on training and test. The stated length for each solution is
the expression tree length after automatic mathematic simplifications and
constant folding, which has been applied to get a more parsimonious form of
the model. The maximum tree length can be exceeded due to the introduced
linear scaling terms in the models that increase the tree length by four (com-
pare Problem F3 - GP length 20.) For each problem the minimal symbolic
expression tree length solving the problem exactly is stated for comparison
purposes in bold font. The minimal tree length is a little higher than one
would expect, because only binary expression trees can be built and this is
also respected when calculating the minimal length.
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First the results of single-objective symbolic regression solved by standard
genetic programming with the three different maximum tree lengths are dis-
cussed. Among these configurations GP Length 20 performs best in terms of
training and test accuracy. A reason therefore is that all benchmark problems
can be optimally solved with a maximum solution length of 20. Surprisingly,
GP Length 100 performed worst among all algorithm variants, because one
expects that this configuration would include all possible smaller solutions.
However, the difficulty for single-objective genetic programming with a fixed
evaluation budget is to identify the appropriate length and functions to build
accurate solutions, which results in a large variety of solutions indicated by
an increased interquartile range of the NMSE on the test partition. This
effect, to a lesser extend though, is also visible for GP Length 50 on problem
F4 or F5. Thus, it can be concluded that the reduction of the hypothesis
space by a smaller maximum tree length helps the algorithm to create more
accurate solutions. In summary, GP Length 20 would be preferred from the
single-objective algorithm for solving these benchmark problems, because it
creates the smallest solutions and most accurate solutions consistently.

When analyzing the results obtained by multi-objective symbolic regres-
sion, the algorithm configuration NSGA-II Variables stands out, because it
creates the least accurate yet largest solutions. The reason therefore is that
the variables complexity measure does not apply any parsimonious pressure
during the optimization. The two NSGA-II variants considering the tree or
visitation length as objective behave rather similarly, with slight advantages
for NSGA-II Visitation length, because it applies a higher parsimony pres-
sure. The best results on all problems have been obtained using the recursive
complexity measure; only on the problem F4 the interquartile range of the
test NMSE is a little higher compared to the other variants.

The length of the created solutions stays always below the maximum tree
length for the single-objective algorithm configurations. As these algorithms
have no incentive they create as large solutions as possible as long and the
gap between the maximum tree length and solution length results mainly
due to the simplifications applied to the final solutions. In contrast, the
multi-objective variants (except NGSA-II variables) are able to create much
smaller solutions than their maximum tree length of 100 would allow. The
most difficult problem to detect an appropriate solution length automatically
seems to be the problem F3, where the largest difference between the mini-
mal length of an optimal solution and the obtained median solution length
is present. Again the recursive complexity measure yields overall the best
results in terms of solution length.
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Table 4.4: Training and test accuracy of the best training solution for each
algorithm variant in terms of the normalized mean squared error and the
solution length. All quantities are expresses as median ± interquartile range.
The minimal solution length to solve a problem is stated in bold font.

Training Test Length

Problem F1 12.00
GP Length 20 0.001 ± 0.028 0.002 ± 0.032 16.0 ± 4
GP Length 50 0.003 ± 0.240 0.003 ± 0.340 34.5 ± 16
GP Length 100 0.023 ± 0.211 0.092 ± 0.535 68.5 ± 31
NSGA-II Recursive 0.000 ± 0.002 0.000 ± 0.004 24.5 ± 40
NSGA-II Tree length 0.035 ± 0.180 0.056 ± 0.392 32.0 ± 59
NSGA-II Visitation length 0.008 ± 0.140 0.013 ± 0.347 34.0 ± 74
NSGA-II Variables 0.089 ± 0.182 0.302 ± 0.505 69.0 ± 20

Problem F2 12.00
GP Length 20 0.000 ± 0.000 0.000 ± 0.000 19.0 ± 4
GP Length 50 0.000 ± 0.009 0.000 ± 0.007 41.0 ± 12
GP Length 100 0.039 ± 0.419 0.053 ± 0.964 86.0 ± 25
NSGA-II Recursive 0.000 ± 0.000 0.000 ± 0.000 19.0 ± 20
NSGA-II Tree length 0.000 ± 0.000 0.000 ± 0.000 29.0 ± 33
NSGA-II Visitation length 0.000 ± 0.000 0.000 ± 0.000 27.0 ± 18
NSGA-II Variables 0.000 ± 0.125 0.000 ± 0.494 56.0 ± 42

Problem F3 14.00
GP Length 20 0.005 ± 0.009 0.008 ± 0.017 23.0 ± 3
GP Length 50 0.002 ± 0.007 0.006 ± 0.016 43.0 ± 10
GP Length 100 0.003 ± 0.107 0.009 ± 0.548 81.0 ± 18
NSGA-II Recursive 0.001 ± 0.009 0.002 ± 0.022 54.5 ± 47
NSGA-II Tree length 0.002 ± 0.010 0.004 ± 0.023 74.0 ± 47
NSGA-II Visitation length 0.001 ± 0.012 0.003 ± 0.025 65.5 ± 49
NSGA-II Variables 0.037 ± 0.144 0.081 ± 0.627 69.0 ± 17

Problem F4 5.00
GP Length 20 0.000 ± 0.000 0.000 ± 0.056 18.0 ± 8
GP Length 50 0.000 ± 0.285 0.102 ± 0.570 41.5 ± 19
GP Length 100 0.125 ± 0.381 0.377 ± 0.944 73.5 ± 23
NSGA-II Recursive 0.000 ± 0.000 0.001 ± 0.082 9.0 ± 3
NSGA-II Tree length 0.000 ± 0.000 0.001 ± 0.002 9.0 ± 0
NSGA-II Visitation length 0.000 ± 0.000 0.001 ± 0.001 9.0 ± 0
NSGA-II Variables 0.000 ± 0.122 0.002 ± 0.445 13.0 ± 56

Problem F5 8.00
GP Length 20 0.025 ± 0.033 0.041 ± 0.045 18.0 ± 4
GP Length 50 0.029 ± 0.032 0.046 ± 0.283 39.0 ± 13
GP Length 100 0.055 ± 0.116 0.846 ± 8.676 81.0 ± 17
NSGA-II Recursive 0.000 ± 0.003 0.000 ± 0.004 24.0 ± 41
NSGA-II Tree length 0.009 ± 0.032 0.038 ± 0.046 27.0 ± 51
NSGA-II Visitation length 0.000 ± 0.032 0.000 ± 0.045 13.0 ± 20
NSGA-II Variables 0.050 ± 0.088 0.287 ± 0.915 67.0 ± 20
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Table 4.5: Symbol analysis of the best solution in terms of the affected subtree
length expressed as the median ± interquartile range. The minimal affected
subtree to solve a problem optimally is stated in bold font.

Trigonometric Exponential Power
Functions Functions Functions

Problem F1 0.0 0.0 4.0
GP Length 20 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 4.0
GP Length 50 12.0 ± 35.0 2.5 ± 32.0 5.0 ± 22.0
GP Length 100 38.5 ± 88.0 19.5 ± 68.0 25.0 ± 60.0
NSGA-II Recursive 0.0 ± 2.0 0.0 ± 0.0 4.0 ± 12.0
NSGA-II Tree length 5.5 ± 69.0 0.0 ± 22.0 4.0 ± 23.0
NSGA-II Visitation length 0.0 ± 50.0 3.5 ± 17.0 4.0 ± 16.0
NSGA-II Variables 139.5 ± 211.0 47.0 ± 79.0 62.5 ± 82.0

Problem F2 2.0 0.0 0.0
GP Length 20 4.0 ± 4.0 0.0 ± 0.0 0.0 ± 0.0
GP Length 50 23.5 ± 40.0 0.0 ± 14.0 0.0 ± 3.0
GP Length 100 126.5 ± 196.0 40.5 ± 110.0 32.5 ± 75.0
NSGA-II Recursive 4.0 ± 10.0 0.0 ± 0.0 0.0 ± 0.0
NSGA-II Tree length 6.0 ± 20.0 0.0 ± 0.0 0.0 ± 0.0
NSGA-II Visitation length 6.0 ± 12.0 0.0 ± 0.0 0.0 ± 0.0
NSGA-II Variables 82.5 ± 148.0 12.5 ± 84.0 8.0 ± 44.0

Problem F3 0.0 2.0 6.0
GP Length 20 0.0 ± 0.0 4.0 ± 4.0 2.0 ± 2.0
GP Length 50 9.0 ± 16.0 4.0 ± 10.0 8.0 ± 9.0
GP Length 100 59.0 ± 104.0 20.0 ± 34.0 28.0 ± 48.0
NSGA-II Recursive 0.0 ± 2.0 6.0 ± 6.0 9.0 ± 16.0
NSGA-II Tree length 0.0 ± 8.0 6.0 ± 10.0 19.0 ± 37.0
NSGA-II Visitation length 0.0 ± 4.0 4.0 ± 8.0 14.0 ± 18.0
NSGA-II Variables 64.0 ± 77.0 27.5 ± 57.0 42.0 ± 81.0

Problem F4 0.0 5.0 4.0
GP Length 20 0.0 ± 0.0 12.0 ± 8.0 4.0 ± 11.0
GP Length 50 16.0 ± 29.0 23.0 ± 33.0 6.5 ± 28.0
GP Length 100 85.5 ± 162.0 48.0 ± 95.0 25.5 ± 109.0
NSGA-II Recursive 0.0 ± 0.0 5.0 ± 0.0 4.0 ± 0.0
NSGA-II Tree length 0.0 ± 0.0 5.0 ± 0.0 4.0 ± 0.0
NSGA-II Visitation length 0.0 ± 0.0 5.0 ± 0.0 4.0 ± 0.0
NSGA-II Variables 0.0 ± 145.0 9.0 ± 59.0 9.5 ± 84.0

Problem F5 0.0 0.0 4.0
GP Length 20 0.0 ± 0.0 0.0 ± 4.0 4.5 ± 10.0
GP Length 50 11.5 ± 27.0 0.0 ± 17.0 8.0 ± 17.0
GP Length 100 69.0 ± 154.0 44.5 ± 65.0 30.5 ± 50.0
NSGA-II Recursive 0.0 ± 0.0 0.0 ± 0.0 4.0 ± 4.0
NSGA-II Tree length 0.0 ± 17.0 0.0 ± 5.0 4.0 ± 8.0
NSGA-II Visitation length 0.0 ± 2.0 0.0 ± 0.0 4.0 ± 1.0
NSGA-II Variables 97.0 ± 144.0 57.0 ± 140.0 44.5 ± 64.0
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As argued previously, the solution length correlates with complexity, but
the semantics have also be included to precisely evaluate the complexity of
the generated solutions. Therefore, we analyzed which symbols acting as
mathematical functions are present in the symbolic expression trees encod-
ing the solutions and how many nodes are affected by them. Three groups
of complex functions are analyzed. The group trigonometric functions in-
cludes sin, cos, and tan, exponential functions includes exp and log and power
functions includes n2 and

√
n.

The analysis is based on the size of affected subtrees by symbols contained
in the defined groups. For example, a possible solution x1 + sin(x2 + 5.0)
represented as expression tree, contains four nodes that are affected by a
trigonometric function. The sine itself, the addition and its two arguments
the variable x2 and the numerical constant 5.0. If multiple symbols contained
in one of the defined groups are present in a solution, the number of affected
nodes is summed up for all occurrences and thus this measure can exceed the
solution length. The results of this symbol analysis reveal whether an algo-
rithm could detect the appropriate symbols and thus mathematical functions
to include in the symbolic expression trees.

The results of the symbol analysis for the 50 performed repetitions are
shown in Table 4.5 as the median ± interquartile range of the affected nodes
by each group. The optimal values for the number of affected nodes are
written in bold font for each problem to have a reference value for compar-
ison. This reference value has been calculated by using the data generating
functions in Table 4.3. However, the number of affected nodes by power func-
tions can fall below the optimal value, because the square functions can be
represented by the multiplication of a term with itself, which gives a larger
solution without any power functions at all.

The algorithm configurations, which exhibit the least pressure to gener-
ate parsimonious solutions, GP Length 50, GP Length 100, and NSGA-II
Variables include lots of trigonometric, exponential, or power symbols with-
out the actual need for that. Out of the single-objective standard genetic
programming variants only GP Length 20 can compete with the remaining
multi-objective configurations. The reason therefore is that due to the tightly
restricted solution length, every additional unnecessary symbol would results
in a degradation of accuracy and is hence avoided.

With respect to the symbol analysis NSGA-II Recursive, NSGA-II Tree
length, and NSGA-II Visitation length perform similarly. The largest differ-
ence between these algorithm variants is present on Problem F1 and F3, where
an increased interquartile range can be observed when another complexity
measure as the recursive one is used.
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When comparing all obtained results regarding the accuracy, solution length,
and symbol analysis the best algorithm variants are GP Length 20 and
NGSA-II with recursive complexity or visitation length. GP Length 20 per-
forms that well, because all of theses benchmark problems can be solved
optimally within the limits enforced by the maximum tree length. However,
when applied to real-world problems the concrete tree length to create ac-
curate solution is not known a-priori and multiple configurations have to be
tested. Contrary to this, the two NSGA-II variants adapt the solution length
automatically and achieve as good results while being able to create larger
models if necessary.

Exemplary Regression Models

The effects of performing multi-objective symbolic regression are illustrated
by comparing the best models generated for problem F2. The most accu-
rate model of each algorithm is extracted from its 50 repetitions and its size
statistics in terms of expression tree depth and length are listed in Table 4.6.
In the Original column the results are stated for the solution as it is di-
rectly outputted by the algorithm. The results in the Simplified column are
obtained by applying mathematical transformations and constant folding of
the obtained solutions. These simplifications results in an decrease in solu-
tion length for all variants, but the most drastic improvement is obtained for
the solution of NSGA-II Variables. This can be explained by the fact that
this variant can build very large solutions as long as no additional variables
are contained in the solutions and then constant folding is able to reduce the
length of these solution significantly.

Table 4.6: Comparison of the most accurate solutions of each algorithm
created with and without simplification.

Problem F2
Original Simplified

Equation
Length Depth Length Depth

GP Length 20 18 7 10 4 Eq. 4.8
GP Length 50 39 11 20 6 Eq. 4.10
GP Length 100 64 21 54 15 Eq. 4.11
NSGA-II Recursive 16 8 9 4 Eq. 4.9
NSGA-II Tree length 16 7 10 4 Eq. 4.8
NSGA-II Visitation length 16 7 10 4 Eq. 4.8
NSGA-II Variables 77 22 10 4 Eq. 4.8
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After simplification and manual adaption of coefficients by CO-NLS, all solu-
tions describe the data accurately and equally well with a NMSE on training
and test in the range of 10−20. The simplified models of the NSGA-II config-
urations and GP Length 20 are all exactly the same. This is not the case for
the single-objective genetic programming algorithms with higher maximum
tree length limits. As these solution have also a very high accuracy this is
an indication for the presence of introns in the solutions, because otherwise
the solution accuracy would be reduced.

Next to the size statistics the reference for the equation that represents
the simplified solution as mathematical formula is given. There it can be seen
that GP Length 20 and the last three NSGA-II variants identified the data
generating function exactly (Equation (4.8)). NSGA-II Recursive created an
alternative formulation that is slightly shorter by singling out the variable x4

(Equation (4.9)).
GP Length 50 and GP Length 100 created bloated solutions, which con-

tain additional terms in the mathematical formulas stated in Equation (4.10)
and Equation (4.11) respectively. In Equation (4.10) the last term including
the division of x5 and x1 just expresses 1.0 as the factor before the division
is very small. The same principle applies to Equation (4.11), where the enor-
mous term of nested trigonometric function is scaled by 8.710−7 and thus
results in a very small number, which approximates zero. These bloated in-
dividuals containing deeply nested functions are avoided by either setting an
appropriate maximum tree length or when switching from single-objective to
multi-objective symbolic regression.

f1(x) = x2 + x3x4 + x4x5 + sin(x1) (4.8)

f2(x) = x2 + x4 (x3 + x5) + sin(x1) (4.9)

f3(x) = x2 + x3x4 + x4x5 + sin(x1)[5.11 10−10x5

x1
+ 1] (4.10)

f4(x) = x2 + x3x4 + x4x5 + sin(x1) + 8.7 10−7 cos(cos(sin(0.99x1) (4.11)

+ esin(x1))) + 8.85 10−7 cos(sin(0.79 sin(x1) + sin(ecos(1.61+esin(x1)))

· cos(cos(sin2(cos(cos(tan(sin(0.99x1)) + cos(sin(0.99x1)))))))))
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4.3.3 Results on Noisy Problems

After initial tests on the newly defined benchmark problems, we performed
additional tests with more difficult data sets. A description of those problems
is given in Table 4.7. The 10-dimensional Breiman problem [Breiman et al.,
1984] contains 5,000 training and test samples and the value of the input
variables are sampled from the set {−1, 0,−1}, with the exception of x1 that
is sampled from {−1, 1}. The noise term ε accounts for 10% of the variance
of the data generating function. The Friedman problem [Friedman, 1991] has
the same number of training and test samples and each variable is sampled
uniformly from U [0, 1]. The signal-to-noise ratio for this problem is 3.28,
thus the noise term ε accounts for 9% of the total variance [Friedman, 1991].
Both described problems further test the feature selection capabilities of the
algorithms, because not all input variables are actually used to calculate the
response value.

The remaining three benchmark problems are real-world problems, where
no mathematical functions has been used to generate the target values. The
Housing problem [Harrison Jr and Rubinfeld, 1978] contains 13 input fea-
tures that describe economical factors of the suburbs of Boston and the goal
is to predict the median price value of owner-occupied homes. The Chem-
ical problem [White et al., 2013] has been used previously in a symbolic
regression competition and contains 57 measurements of a chemical produc-
tion process. The Tower problem [Vladislavleva et al., 2009], also used for
evaluating constants optimization, is related to the chemical one, because it
origins from the same production process, but contains fewer input variables.
Based on these benchmark problems that are more difficult to solve than the
previously used ones, the performance of multi-objective symbolic regression
is evaluated.

Table 4.7: Definition of noisy benchmark problems.

Name Function Training Test

Breiman F6(x1, ..., x10) =

{
3 + 3x2 + 2x3 + x4 + ε if x1 = 1

−3 + 3x5 + 2x6 + x7 + ε otherwise
5000 points 5000 points

Friedman F7(x1, ..., x10) = 0.1e4x1 + 4/[1 + e−20x2+10] + 3x3 + 2x4 + x5 + ε 5000 points 5000 points

Housing F8(x1, ..., x13) = ? 337 points 169 points

Chemical F9(x1, ..., x57) = ? 711 points 355 points

Tower F10(x1, ..., x25) = ? 3136 points 1863 points
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The difference to the problems used in the previous section is that these
problem contain much more features to build regression models from. Fur-
thermore, none of the noisy problems can be solved exactly with the config-
ured algorithms, because all problems contain some noise and it not possible
to generate a solution with no or almost zero estimation errors. Hence, the
experiments with noisy problems simulate a more practical relevant setting.

The performance of the same algorithm variants described in Table 4.2
is evaluated on these noisy problems and again 50 repetitions of each con-
figuration have been performed to take stochastic effects into account. The
obtained results are presented in the same way as previously, by analyzing
the most accurate solution for each algorithm execution. The results with
respect to the accuracy of the solutions on training and test and the solution
length are listed as median ± interquartile range in Table 4.8.

The first observation and difference to the previous experiment is that the
worst performing algorithm across all noisy problems is GP Length 20, while
it has been among the best when solving the artificial benchmark problems.
The explanation therefore is that a maximum tree length of 20 does not suffice
to create accurate regression models for these more complicated problems.

A similar phenomenon can be observed when studying the results ob-
tained by NSGA-II Variables. In terms of the accuracy of the created so-
lutions it is always among the worst performing multi-objective algorithms,
except on the Friedman problem where no large differences can be detected.
Again, the variables complexity measure applies no real parsimony pressure
and although the variant performs competitively when compare to the single-
objective variants, this can be mostly attributed to the NSGA-II algorithm.

When comparing the results obtained on the Breiman problem one no-
tices the decrease in accuracy when increasing the maximum tree length from
50 to 100. The rationale is the same as before that due to the increased space
of hypotheses the appropriate symbols and variables could not be identified
anymore. However, here the impact of this effect is amplified. Among the
NSGA-II variants the recursive complexity measure yielded the best perfor-
mance on training and test and the smallest variance as well. Furthermore,
this algorithm configuration creates the shortest solutions that still can ex-
plain the data very well. Solutions with a similar length are only obtained
by GP Length 50, but their accuracy is much worse compared to the multi-
objective algorithms.

The solutions created to the Friedman problem perform all pretty sim-
ilarly, especially when evaluating their generalization abilities on the test
partition. NSGA-II Recursive yielded the worst results in terms of accuracy
on training and test, neglecting GP Length 20 as it performs much worse.
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This is especially remarkable, because for all other problems NSGA-II Re-
cursive generates the best solutions. An explanation might be that data
generating function can not be identified, because of its complex individual
terms and the recursive complexity measure has been specifically designed
to avoid those if possible.

On the Housing problem, all algorithms that can create solutions whose
expression tree representation can exceed 50 nodes have a similar training
performance. However, when comparing the test performance the solutions’
accuracy gets worse, which is an indication of overfitting. Especially, when
taken into account that GP Length 20 exhibits one of the best test perfor-
mances while creating pretty small solutions. The only algorithm capable to
outperform GP Length 20 is NSGA-II Recursive, which although it creates
much larger solutions, tries to reduce their complexity, which is a possible
explanation why overfitting happens to a lesser extend.

Solutions overfitting the training data are also created for the Chemical
problem. The differences in the median training and test performances are
between 0.06 and 0.16. The one outstanding algorithm on this problem is
again NSGA-II Recursive that creates the most accurate solutions that gen-
eralize well on the test partition. Additionally, the median solution length
is with 34.5 by far the smallest of the algorithms with a length limit of 100.
The second best performing algorithm is NSGA-II using the visitation length
as complexity measure, which falls only slightly behind NSGA-II with the re-
cursive complexity measures. An interesting effect is that although NSGA-II
Visitation length only minimizes the tree length and does not consider the
complexity and semantics of solutions in any form, the median solution length
is twice as high when compared to NSGA-II Recursive.

The solutions on the Tower problem do not vary much. The training
performance is slightly below 0.12 with similar interquartile ranges and also
the test performance stays around 0.125 for NSGA-II with recursive, tree
length or visitation length as complexity measure. The only noteworthy
observation on these results is that NSGA-II creates solutions with only half
the size of the solution of other algorithms, while still maintaining a pretty
high accuracy.

Further insights on these results are generated by performing the symbol
analysis, how man nodes are affected by trigonometric, exponential, or power
functions, on the created solutions. These results are again collected as the
median ± interquartile range of the affected nodes for each defined group in
Table 4.9.
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Table 4.8: Training and test accuracy of the best training solution for each
algorithm variant in terms of the normalized mean squared error and the
solution length. All quantities are expresses as median ± interquartile range.

Training Test Length

Breiman
GP Length 20 0.263 ± 0.155 0.262 ± 0.159 16.5 ± 6
GP Length 50 0.181 ± 0.226 0.185 ± 0.213 39.5 ± 11
GP Length 100 0.560 ± 0.431 0.548 ± 0.452 85.0 ± 19
NSGA-II Recursive 0.105 ± 0.011 0.106 ± 0.011 39.5 ± 16
NSGA-II Tree length 0.112 ± 0.017 0.113 ± 0.018 56.5 ± 42
NSGA-II Visitation length 0.114 ± 0.025 0.114 ± 0.024 51.0 ± 43
NSGA-II Variables 0.138 ± 0.049 0.138 ± 0.050 75.5 ± 17

Friedman
GP Length 20 0.193 ± 0.022 0.190 ± 0.022 17.0 ± 3
GP Length 50 0.140 ± 0.007 0.142 ± 0.005 47.0 ± 10
GP Length 100 0.141 ± 0.006 0.147 ± 0.007 85.0 ± 17
NSGA-II Recursive 0.147 ± 0.048 0.155 ± 0.045 45.0 ± 31
NSGA-II Tree length 0.135 ± 0.010 0.143 ± 0.012 57.5 ± 45
NSGA-II Visitation length 0.137 ± 0.010 0.146 ± 0.013 47.0 ± 43
NSGA-II Variables 0.132 ± 0.003 0.140 ± 0.003 78.0 ± 20

Housing
GP Length 20 0.192 ± 0.014 0.198 ± 0.017 20.0 ± 3
GP Length 50 0.153 ± 0.017 0.211 ± 0.056 48.5 ± 7
GP Length 100 0.132 ± 0.023 0.202 ± 0.092 92.0 ± 12
NSGA-II Recursive 0.136 ± 0.028 0.176 ± 0.040 81.0 ± 24
NSGA-II Tree length 0.128 ± 0.027 0.231 ± 0.197 93.5 ± 24
NSGA-II Visitation length 0.125 ± 0.031 0.204 ± 0.051 87.0 ± 23
NSGA-II Variables 0.131 ± 0.028 0.215 ± 0.051 76.0 ± 12

Chemical
GP Length 20 0.272 ± 0.021 0.432 ± 0.115 17.0 ± 4
GP Length 50 0.214 ± 0.026 0.329 ± 0.202 43.0 ± 11
GP Length 100 0.195 ± 0.026 0.343 ± 0.285 82.5 ± 18
NSGA-II Recursive 0.203 ± 0.017 0.263 ± 0.073 34.5 ± 36
NSGA-II Tree length 0.210 ± 0.032 0.302 ± 0.113 62.5 ± 30
NSGA-II Visitation length 0.205 ± 0.031 0.283 ± 0.127 67.0 ± 41
NSGA-II Variables 0.211 ± 0.040 0.337 ± 0.227 75.5 ± 15

Tower
GP Length 20 0.158 ± 0.030 0.159 ± 0.034 18.0 ± 4
GP Length 50 0.138 ± 0.028 0.141 ± 0.035 43.0 ± 6
GP Length 100 0.124 ± 0.022 0.131 ± 0.028 89.0 ± 19
NSGA-II Recursive 0.124 ± 0.022 0.124 ± 0.023 34.5 ± 27
NSGA-II Tree length 0.120 ± 0.024 0.121 ± 0.026 77.5 ± 43
NSGA-II Visitation length 0.124 ± 0.023 0.125 ± 0.022 77.0 ± 41
NSGA-II Variables 0.133 ± 0.040 0.136 ± 0.040 76.0 ± 15
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Table 4.9: Symbol analysis of the best solution in terms of the affected subtree
length expressed as the median ± interquartile range.

Trigonometric Exponential Power
Functions Functions Functions

Breiman
GP Length 20 0.0 ± 2.0 2.0 ± 6.0 0.0 ± 2.0
GP Length 50 18.5 ± 32.0 12.5 ± 21.0 9.0 ± 32.0
GP Length 100 110.0 ± 118.0 75.0 ± 58.0 31.5 ± 90.0
NSGA-II Recursive 0.0 ± 0.0 0.0 ± 2.0 0.0 ± 0.0
NSGA-II Tree length 0.0 ± 14.0 9.0 ± 23.0 0.0 ± 0.0
NSGA-II Visitation length 0.0 ± 5.0 7.0 ± 25.0 0.0 ± 0.0
NSGA-II Variables 165.0 ± 204.0 95.5 ± 124.0 43.0 ± 82.0

Friedman
GP Length 20 4.0 ± 5.0 0.0 ± 2.0 3.0 ± 7.0
GP Length 50 40.0 ± 39.0 8.5 ± 20.0 8.0 ± 27.0
GP Length 100 105.0 ± 96.0 36.5 ± 54.0 37.0 ± 62.0
NSGA-II Recursive 11.0 ± 27.0 0.0 ± 2.0 2.0 ± 10.0
NSGA-II Tree length 46.5 ± 131.0 0.0 ± 7.0 11.0 ± 30.0
NSGA-II Visitation length 27.5 ± 47.0 0.0 ± 5.0 7.0 ± 24.0
NSGA-II Variables 222.0 ± 163.0 48.0 ± 88.0 68.0 ± 83.0

Housing
GP Length 20 4.0 ± 7.0 4.0 ± 14.0 0.0 ± 6.0
GP Length 50 17.0 ± 19.0 26.0 ± 53.0 23.5 ± 34.0
GP Length 100 70.5 ± 86.0 98.0 ± 125.0 78.5 ± 136.0
NSGA-II Recursive 20.0 ± 30.0 13.5 ± 20.0 0.0 ± 4.0
NSGA-II Tree length 28.5 ± 53.0 66.5 ± 148.0 17.5 ± 74.0
NSGA-II Visitation length 14.0 ± 56.0 44.5 ± 109.0 9.0 ± 44.0
NSGA-II Variables 134.0 ± 201.0 117.5 ± 99.0 85.0 ± 75.0

Chemical
GP Length 20 0.0 ± 2.0 0.0 ± 0.0 0.0 ± 6.0
GP Length 50 10.5 ± 24.0 0.0 ± 9.0 8.0 ± 15.0
GP Length 100 50.0 ± 86.0 18.0 ± 52.0 48.0 ± 56.0
NSGA-II Recursive 0.0 ± 4.0 0.0 ± 0.0 0.0 ± 11.0
NSGA-II Tree length 4.0 ± 36.0 0.0 ± 6.0 40.0 ± 69.0
NSGA-II Visitation length 21.5 ± 53.0 0.0 ± 0.0 10.0 ± 36.0
NSGA-II Variables 148.5 ± 216.0 41.0 ± 71.0 113.5 ± 99.0

Tower
GP Length 20 0.0 ± 4.0 0.0 ± 0.0 0.0 ± 2.0
GP Length 50 14.0 ± 24.0 7.0 ± 19.0 7.5 ± 12.0
GP Length 100 56.0 ± 93.0 26.5 ± 84.0 37.0 ± 90.0
NSGA-II Recursive 0.0 ± 12.0 0.0 ± 2.0 0.0 ± 4.0
NSGA-II Tree length 37.0 ± 121.0 48.5 ± 113.0 3.0 ± 55.0
NSGA-II Visitation length 23.5 ± 57.0 20.0 ± 36.0 4.0 ± 22.0
NSGA-II Variables 270.0 ± 275.0 96.0 ± 95.0 72.5 ± 121.0
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For solving the Breiman problem no trigonometric, exponential, or power
functions are necessary. However, this is only detected by GP Length 20
and NSGA-II Recursive and to a lesser extend by the other multi-objective
variants using the tree or visitation length. The single-objective algorithms
with larger tree limits and NSGA-II with the variables complexity measure
use functions of these groups rather liberally, which explains there worse
accuracy on this problem.

The Friedman problem can be solved by using only arithmetic and expo-
nential functions. Curiously, all algorithms include trigonometric functions,
though these are unnecessary. Only GP Length 100 and NSGA-II include
the necessary exponential functions, whereas the other NSGA-II configura-
tions do not include these functions at all. However, this is not reflected
in the accuracy of the generated solutions. Therefore, it can be concluded
that none of the algorithms is able to identify the data generating function
without noise accurately.

While observing the quality results on the Housing problem we noticed
that the generated solutions overfit the training data. This is also visible in
the symbol analysis, because NSGA-II Recursive that performed significantly
better on test than the other algorithms, uses the least complex functions
indicated by low median values and even lower interquartile ranges. The
only algorithm that can compete with that is GP Length 20, which solutions
perform slightly worse on the test partition.

Overfitting also occurs when building solutions for the Chemical problem.
The least overfit solutions have been created by NSGA-II Recursive, which
also uses the fewest complex mathematical functions to create the solutions.
Therefore, it can be concluded that the recursive complexity measure gives
the algorithm an advantage to asses the real complexity of solutions by the
inclusion of symbol semantics, especially when compared to using just the
shape or length of the symbolic expression tree as complexity measure.

The solutions to the Tower problem have similar characteristics as solu-
tions to the Chemical problem. The most compact and accurate solutions
have been created by NSGA-II Recursive, which is also indicated by the
symbol analysis. Almost no trigonometric, exponential, or power symbols
are included in the obtained solutions when using the recursive complexity
measure. This is not the case for any other algorithm, except GP Length 20
that generates not as accurate solutions.

In summary it can be concluded that, when considering both benchmark
problem suites, multi-objective symbolic regression with the recursive com-
plexity measure performs best of all algorithm variants. This highlights the
suitability of the recursive complexity measure for performing multi-objective
symbolic regression.
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Exemplary solutions to the Tower problem

The effects of switching from single-objective to multi-objective symbolic
regression are revealed by studying the algorithm dynamics during the op-
timization. Therefore, we selected the most accurate solutions obtained by
single-objective and multi-objective symbolic regression. The best solution
created by a single-objective algorithm (GP Length 100 ) consists of 91 ex-
pression tree nodes and the mean absolute error (MAE) is 20.80 on the
training partition and 19.76 on the test partition (NMSE training 0.095,
NMSE test 0.097). The most accurate multi-objective solution was created
by NSGA-II Recursive and consists of 99 expression tree nodes. It is a little
more accurate with a MAE of 20.23 on training and 18.80 on test (NMSE
training 0.097, NMSE test 0.088).

These quantities are calculated directly on the algorithm output. When
performing constants folding, mathematical transformation and simplifica-
tions, and constants optimization by CO-NLS the results of the standard
genetic programming solution can only be slightly improved. The improved
solution consists of 85 tree nodes and has a training MAE of 20.08 and a
test NMSE of 19.76. In contrast to this, the multi-objective solutions gets
reduced to 46 tree nodes by the applied simplifications and CO-NLS reduces
the training MAE to 19.09 and the test MAE to 17.50.

More interesting than the qualities and size statistics is how these solu-
tions have been generated and what symbols are used during the optimiza-
tion. Therefore, the relative number of symbol occurrences over all solutions
in the population have been tracked during the algorithm execution for each
generation.

In Figure 4.9 the relative symbol frequencies of the GP Length 100 al-
gorithm that created the discussed solution are plotted. The symbols have
been group similarly as before to increase the clarity of the chart. At the
start all symbol occur with the same probability and after that more impor-
tant ones appear more often. Until the algorithm stops several exponential
or power symbol and trigonometric symbols are used, although these are not
necessary to create accurate solutions.

This picture changes completely when switching to multi-objective sym-
bolic regression. The relative variable frequencies for the NSGA-II Recursive
algorithm are shown in Figure 4.10. There, all exponential, power, and
trigonometric symbols are removed within the first few generations and only
arithmetic or terminal symbols remain in the solutions. This is the result of
the algorithm identifying appropriate symbols for modeling the data and the
inclusion of semantics in the recursive complexity measure.
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Figure 4.9: Symbol frequencies of GP Length 100 execution.
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Figure 4.10: Symbol frequencies of NSGA-II Recursive execution.
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4.4 Concluding Remarks

In this chapter the complexity of symbolic regression models and multi-
objective symbolic regression have been discussed. The complexity of re-
gression models is critical, because the less complex yet accurate a solution
is, the better is its interpretability, which is a key argument for performing
symbolic regression. Therefore, several complexity measures proposed in the
literature have been reviewed. Based on experience from performing sym-
bolic regression for real-world data modeling and desired characteristics a
new complexity measure has been defined.

The recursive complexity takes, in contrast to other complexity measures,
the semantics of the symbols included in the symbolic expression trees into
account. Additionally, it can be efficiently calculated within one tree traver-
sal and does not require any evaluation of the solution. A drawback of the
recursive complexity is that its value is not meaningful, because it has been
specifically designed for the use as an additional objective in symbolic re-
gression and hence its value is hard to interpret.

Afterwards, different multi-objective symbolic regression approaches have
been reviewed and the nondominated sorting genetic algorithm (NSGA-II) is
discussed. Initial test for evaluating its applicability to solve multi-objective
symbolic regression problems were disappointing and to increase its perfor-
mance the algorithm had to be adapted. These adaptations include a relaxed
domination criterion and discretized objective functions.

The goal of switching from single-objective to multi-objective symbolic
regression is that the maximum tree length and the appropriate function set
do not have to be specified a-priori, but are automatically detected by the
algorithm. To test if this claim holds, we created five artificial benchmark
problems and evaluated the performance of three different single-objective
genetic programming configurations with varying maximum tree size. Fur-
thermore, four different variants of the multi-objective NSGA-II algorithm,
with different complexity measures used as secondary objective next to the
solution accuracy, are evaluated.

The results obtained by NSGA-II with the recursive complexity measures
are among the best when solving the artificial benchmark problems, but the
differences among the individual variants are rather small. Therefore, we
evaluated all seven algorithm variants on problems that cannot be solved
exactly, due to noise contained in the data, and again NSGA-II with recursive
complexity yielded the most accurate and compact results.

Additionally, symbol analysis has been performed that reveals which sym-
bols are included in the solutions and whether an algorithm can identify the
appropriate symbols for solving a problem. Whereas all single-objective al-

117



CHAPTER 4. COMPLEXITY CONTROL

gorithm use more complex symbols such as trigonometric or exponential ones
rather liberally, multi-objective algorithms can detect the necessary functions
to model the data rather accurately.

Although the recursive complexity might not provide the most accurate
estimation of a solution’s complexity, it compromises evaluation speed and
accuracy. When used for solving multi-objective symbolic regression prob-
lems the algorithm performance can be improved across all tested problems.
Furthermore, it can at least compete or even outperform single-objective ge-
netic programming for solving symbolic regression problems. Therefore, it
can be concluded that multi-objective symbolic regression, especially when
the recursive complexity measure is used as objective, is able to generate
simple and accurate solutions for symbolic regression problems without the
need for specifying tree limits or the appropriate function set.
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Conclusion

The main topic of this thesis is symbolic regression and how algorithms
performing symbolic regression can be improved. The outstanding char-
acteristics of symbolic regression is that models are created in the form of
mathematical expressions without any assumptions about the model struc-
ture. However, this advantage complicates the generation of highly accurate
yet still interpretable regression models and the number of possible models
describing the data is basically endless. Therefore, genetic programming or
variants thereof are commonly used for solving symbolic regression problems.

The main contributions in this work to improve the state of the art are
methods for local optimization and complexity control for symbolic regres-
sion. Local optimization refers in this context to a new way for the iden-
tification of numerical model parameters. After a model is created its pa-
rameters are adapted by applying damped least squares optimization by the
Levenberg-Marquardt algorithm. The Levenberg-Marquardt algorithm is an
iterative optimization method that utilizes the gradient information that is
in this case provided by automatic differentiation of the symbolic regression
model according to its numeric parameters. Although, this local optimization
method termed constants optimization by nonlinear least squares (CO-NLS)
is computationally expensive, it improves the accuracy of the generated mod-
els significantly. Furthermore, it separates the problem in the identification of
an appropriate model structure and the identification of appropriate numeric
parameters, which is later performed by CO-NLS.

The benefits of symbolic regression, most importantly that the model are
created in the form of interpretable mathematical expression, can only be
utilized if the models are as simple and parsimonious as possible while still
describing the data accurately. Therefore, methods for complexity control
in symbolic regression have been investigated and a new complexity metric
has been implemented. This recursive complexity is efficiently generated and
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combines syntactical and semantical information about the models. This en-
ables the use of multi-objective genetic programming for symbolic regression,
where while the accuracy is maximized the model complexity is simultane-
ously minimized. The nondominated sorting genetic algorithm II (NSGA-II)
has been adapted to solve multi-objective symbolic regression problems and
its competitiveness with single-objective algorithm is demonstrated on sev-
eral benchmark problems. Switching from single-objective to multi-objective
symbolic regression alleviates the need to define restrictions on length of the
models and the functions that can occur in the models, because the algo-
rithm is capable of identifying appropriate values during the optimization.

In the following an overview of the main contributions and contents of this
thesis is given.

Symbolic Regression

− The problem of symbolic regression is introduced and its advantages
and disadvantages are highlighted. Afterwards, the main properties
of genetic programming are detailed, because it is the most common
method for solving symbolic regression problems. Genetic program-
ming is an evolutionary meta-heuristic algorithm that works with a
variable length representation, which is highly suitable for represent-
ing mathematical expression. The main concept of the algorithm is
iterative recombination of high-quality solutions, which leads to even
better solutions. After this general introduction it is shown how genetic
programming can be used for solving symbolic regression problems in
detail.

− Following this line of thought, frameworks and software for performing
genetic programming and symbolic regression are presented. A frame-
work significantly reduces the effort for implementing common tasks
and allows the user to focus on developing new methods. All of the
presented methods of this thesis are publicly available and implemented
in the open-source framework for heuristic optimization HeuristicLab.

− Heuristic methods allow the exploration of an enormous search space
in reasonable time. However, a drawback of heuristics is that due to
their stochastic nature every algorithm execution yields different re-
sults. Therefore, fast function extraction (FFX) and prioritized gram-
mar enumeration (PGE) are described as an alternative to genetic pro-
gramming for solving symbolic regression problems.
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FFX works by generating hundreds or even thousands basis functions
that are derived from the input features. These basis functions are
combined in a linear model that is created with elastic net regulariza-
tion. FFX is amazingly fast due to the restriction to create generalized
linear models from basis function. This restriction comes with a price,
namely that more complicated nonlinear models cannot be created by
FFX. Furthermore, it is quite common that a model generated by FFX
contains more than 50 basis functions, which hampers the interpretabil-
ity of the model.

PGE starts with a minimal set of basis functions and generates models
from these. A grammar further defines how models can be extended in
a structured way and every created model is stored in a Pareto priority
queue. The numerical parameters of a model are estimated similarly
to CO-NLS by the Levenberg-Marquardt algorithm. PGE generates
models deterministically from simple to more complex ones and it can
generate highly nonlinear models. A drawback however is that the
number of possible models increases exponentially with the number of
features.

Local Optimization

− Fitting the numerical parameters of models in symbolic regression is an
important topic. The best model structure will not produce accurate
predictions as long as its numerical parameters are not adapted to the
problem at hand. A first approach to improve the numerical parameters
is linear scaling, which removes the necessity of identifying the scale and
the offset of the models. As a result the maximal prediction error of
the scaled model is equal to the variance of the target values.

− Based on the success of the inclusion of linear scaling in symbolic re-
gression, several other local optimization techniques that adapt the
numerical coefficients of models have been created. The most intrigu-
ing methods include machine learning techniques for function fitting in
symbolic regression, but were still outperformed by linear scaling.

− We combined linear scaling and with nonlinear gradient-based opti-
mization techniques for the identification of numerical model parameter
in CO-NLS. Therefore, the gradient of a model is created by automated
differentiation that allows a fast and accurate calculation. CO-NLS is
able to improve the accuracy of symbolic regression models within a
few iterations of the algorithm.
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− CO-NLS is applicable in genetic programming for symbolic regression,
but the general methodology can be used for parameter tuning of any
mathematical model structure for which the gradient can be calculated.
Therefore, CO-NLS is additionally available as post-processing step to
further increase the accuracy of generated models.

− The performance of CO-NLS is first evaluated on five benchmark prob-
lems that have been used for demonstrating the effectiveness of linear
scaling and CO-NLS excels at solving these. However, only training
performances are given for these problems in the original publication
and when the generalization capabilities of the models are tested, none
of the generated models, regardless of whether linear scaling or CO-NLS
has been used during model creation, can explain the test data.

− As a result more balanced benchmark problems, with respect to train-
ing and test data, have been used for studying the effects of CO-NLS.
We have studied the effect of the probability to apply CO-NLS to a
solution and the number of iterations of CO-NLS that are performed.
This investigations reveals that the higher both of these parameters are
set, hence more local optimization is applied, the better the results are.
However, not all benchmark problems can be solved and the runtime of
the algorithm is increased due to the additional evaluations performed
by CO-NLS.

− This same overall picture holds when comparing the different algo-
rithm variants of offspring selection genetic programming. Again the
higher the probability and iterations of CO-NLS the better the results.
However, the baseline to compare against is higher, because of the
additional offspring selection step, which discards unfit solution auto-
matically. Offspring selection with CO-NLS yielded high success rates
and even the most difficult benchmark problems could be solved.

Based on these experiments we can conclude that CO-NLS improves
the performance of the algorithms solving symbolic regression problems
and enables them to create more accurate solutions.

Complexity Control

− Another important aspect of symbolic regression is the complexity of
the generated solutions, because this directly correlates with their in-
terpretability. Therefore, different complexity measures for symbolic
regression are reviewed and compared.
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− From this review of existing complexity measures, the recursive com-
plexity is derived. The recursive complexity is named after its recursive
definition, which aggregates the complexity of the child nodes until the
root node of the symbolic regression model is reached. The advantage
of this new complexity measure is that while it is efficiently calculated,
it still incorporates the semantics of the encountered functions during
the recursion. Therefore, it gives a better indication of the real com-
plexity as syntactical complexity measures, which ignore the semantics
completely, and is still faster to compute than complexity measures
that require the model to be evaluated.

− The different complexity measures allow to switch from single-objective
to multi-objective symbolic regression, where the accuracy and the
complexity are the objectives to be optimized. Therefore, standard
genetic programming is not applicable anymore and the NSGA-II is
used. The original definition has to be adapted to the specifics of per-
forming symbolic regression. The relaxed domination criterion ensures
that the generated Pareto front does not consist solely of overly sim-
plistic models containing only one input variable, thus hampering the
optimization progress. The discretization of the objective functions
further trims the Pareto front by assigning the same objective values
to more solutions, which are in turn dominated by each other.

− Next we compared the performance of multi-objective symbolic regres-
sion with various complexity measures to single-objective symbolic re-
gression performed by standard genetic programming. Whereas stan-
dard genetic programming has been performed with three different
maximum tree sizes, the NSGA-II executions were only limited by the
largest maximum tree size, because the expectation of multi-objective
symbolic regression is that the appropriate tree size is automatically
determined and it is not, or at least to a lesser extend than single-
objective genetic programming, affected by bloat. Furthermore, an
extended function set including trigonometric, exponential and power
functions has been utilized in these experiments.

− The best performing single-objective algorithm on the first set of bench-
mark problems is the configuration with the strictest size limits. The
reason therefore is that due to the tight restriction of the search space
only parsimonious solutions can be created. The configurations with
larger tree size perform worse when the generalization capabilities of
the solutions are evaluated on the test partition and sometimes even
the training performance is worse.
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− The performances of the different multi-objective algorithm configu-
rations have been similarly and all problems have been solved with
very high accuracy. Only minor differences in favor of the recursive
complexity and visitation length have been observed. The generated
models are only slightly larger than those generated by standard ge-
netic programming with the smallest tree size limits, although their
configuration allows to build models that are five times as large.

− Afterwards the performance on noisy and real-world benchmark prob-
lems has been investigated. There, the single-objective configuration
creating the smallest solutions does not perform well, because the so-
lutions are too simplistic to describe the data adequately. The best
performance over all noisy benchmark problems has been achieved by
NSGA-II using the recursive complexity measure. This configuration
created the simplest yet very accurate solutions.

− In addition, a symbol analysis of all the created models has been per-
formed to evaluate, which mathematical functions have been integrated
in the solutions and how they have been integrated. This is especially
interesting when the data generating function is known, as it is often the
case for benchmark problems. The fewest trigonometric, exponential,
and power functions have been incorporated in the models by the single-
objective algorithm with the smallest tree size and the multi-objective
algorithm using the recursive complexity. The reasoning therefore is the
same as before; the single-objective variant works that well because of
the enormous parsimony pressure applied to the solutions. The benefit
of the recursive complexity is that it integrates the semantics in the
complexity calculation and hence implicitly minimizes the use of more
complicated functions.

The use of the NSGA-II for multi-objective symbolic regression allevi-
ates the need to restrict the length of the models, reduces the occurrence
of bloat, and if a complexity measure, which includes the semantic of
the model is used, allows the algorithm to automatically identify appro-
priate mathematical functions. Furthermore, instead of single solution,
the algorithm produces a Pareto front of solutions, which represents the
tradeoff between accuracy and complexity when performing regression
analysis.
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This thesis claims by no means to have answered all the open questions to
improve symbolic regression and even in the thematic focus of local opti-
mization and complexity control there are several ways to further improve
the methodology.

Future Research

− CO-NLS works by applying the Levenberg-Marquardt algorithm in
combination with automatic differentiation for tuning numerical model
parameters. However, based on the starting points for the gradient
descent algorithm the nearest local optima for the numerical parame-
ters is reached. The question remains if multiple restarts from varying
starting points would further improve the achieved accuracy

− Another idea for future research is to evaluate different algorithms for
local optimization instead of the Levenberg-Marquardt algorithm. For
example, methods that are successfully applied in other machine learn-
ing techniques such as stochastic gradient descent and its extensions or
mini batch training might be an appropriate choice .

− Furthermore, CO-NLS is currently computational expensive and its
execution time scales directly with the number of training samples.
Although it pays off to spend time for local optimization instead of
evaluating different solutions, a more efficient version is desirable. Pos-
sible improvements regarding the computational efficiency range from
distributing the effort over multiple computation units, to applying CO-
NLS only to selected individuals, or reducing the number of parameters
that are tuned by CO-NLS before it is applied.

− With respect to complexity control, the current approach of using
NSGA-II with the accuracy and the recursive complexity as objectives
works reasonable well and improves the overall performance of symbolic
regression. However, the concrete definition of the recursive complex-
ity is based on estimating appropriate rules to aggregate the individual
complexity rules and desired properties of solutions. The question for
further research is, if the aggregation rules can be adapted to include
a-priori knowledge about the problem at hand and if that would further
increase the performance of the algorithm and lead to even better and
simpler solutions.

− The combination of CO-NLS and the complexity control method should
further improve the accuracy of the generated models as it is the case
for single-objective symbolic regression.
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− In recent years age-layered population structures (ALPS) and age-
fitness Pareto optimization gained popularity, as these techniques allow
endless optimization and symbolic regression modeling on data streams.
Especially, the Pareto optimization by NSGA-II can be easily extended
to optimize the three objectives, model accuracy, complexity and age,
thus enabling the algorithm to permanently create completely new so-
lutions.

− The focus of creating methods for complexity control was to generate
simpler regression models. The occurrence of overfitting is connected to
the complexity of the generated models. Although, overfitting preven-
tion has not been the motivation for creating the recursive complexity
measure, the performed experiments already indicate that overfitting
is reduced. However, to draw precise conclusions a detailed analysis
on overfitting and complexity control in symbolic regression has to be
performed.

− Symbolic regression is generally computationally expensive, because
of the free-form models with little restriction that are created. As
in most regression techniques the execution time scales at the very
least linearly (often squared or with higher powers) with the amount of
training samples. Therefore, sampling, clustering, or co-evolutionary
techniques to reduce the training times and their effect on the algorithm
have to be studied to enable the application of symbolic regression in
scenarios, where lots of data is available.

− Deterministic or more robust symbolic regression algorithms are essen-
tial to gain acceptance of practitioners and the spread the usage of
symbolic regression for data analysis tasks. CO-NLS and complexity
control with the recursive complexity measure could build the founda-
tions of new algorithms for symbolic regression. CO-NLS tackles the
problem of identifying numeric parameters of the models and the recur-
sive complexity structures the space of possible models, which allows a
more directed exploration of the hypothesis space.
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