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Zusammenfassung

Mit der wachsenden Datenmenge, die in unterschiedlichsten Anwendungsbereichen ge-
sammelt und aufgezeichnet wird, wächst auch das Bedürfnis, diese Daten sinnvoll zu
nutzen. In der Wissenschaft haben Daten schon seit jeher einen hohen Stellenwert. In
den jüngeren Jahren gewinnt aber auch das wirtschaftliche Potential von Daten zu-
nehmend an Bedeutung. In Kombination mit Verfahren zur Datenanalyse kann dieses
Potential ausgeschöpft werden, sei es im kommerziellen Bereich zur Optimierung von
Angeboten, oder im industriellen Bereich zur Optimierung von Ressourceneinsatz oder
Produktqualität basierend auf Prozessdaten.

In dieser Arbeit wird ein neuer Ansatz für die Analyse von Daten vorgestellt, der auf
symbolischer Regression mit genetischer Programmierung basiert und das Ziel verfolgt,
einen Gesamtüberblick über das Zusammenspiel von einzelnen Faktoren eines Systems
zu ermöglichen. Dabei sollen möglichst alle potentiell interessanten Zusammenhänge,
welche in einem Datensatz erkennbar sind, in Form von kompakten und verständlichen
Modellen identifiziert werden.

Im ersten Teil der vorliegenden Arbeit wird dieser Ansatz der umfassenden symbo-
lischen Regression im Detail beschrieben. Wesentliche Themen, die dabei eine Rolle
spielen, sind die Vermeidung von Bloat und Überanpassung, die Vereinfachung von Mo-
dellen und die Identifikation von relevanten Einflussgrößen. In diesem Zusammenhang
werden unterschiedliche Verfahren zur Vermeidung von Bloat vorgestellt und verglichen.
Insbesondere wird der Einfluss von Nachkommenselektion auf Bloat analysiert. Darüber
hinaus wird eine neue Möglichkeit zur Erkennung von Überanpassung vorgestellt. Im Zu-
ge dessen werden darauf basierende Erweiterungen zur Reduktion von Überanpassung
vorgestellt und verglichen. Eine wichtige Rolle spielt dabei das Pruning von Modellen,
einerseits um Überanpassung zu verhindern und andererseits um komplexe Modelle zu
vereinfachen.

Ein weiterer wesentlicher Aspekt ist die Analyse und Darstellung der umfangreichen
Menge von unterschiedlichen Modellen, die aus dem vorgestellten Ansatz resultiert. In
diesem Zusammenhang werden Möglichkeiten zur Quantifizierung von relevanten Ein-
flussgrößen vorgestellt, die in weiterer Folge verwendet werden können, um Interaktionen
von Variablen des analysierten Systems zu identifizieren. Durch die Visualisierung die-
ser Interaktionen entsteht ein Gesamtüberblick über das betrachtete System. Dies wäre
alleine durch die Analyse einzelner Modelle, die sich auf spezielle Aspekte konzentrie-
ren, nicht möglich. Zusätzlich wird im ersten Teil auch die Prognose von multivariaten
Zeitserien mit genetischer Programmierung beschrieben.

Im zweiten Teil dieser Arbeit wird gezeigt, wie der vorgestellte Ansatz für die Analyse
von realen Systemen eingesetzt werden kann und dadurch neue Einblicke ermöglicht
werden können. Die Daten stammen von einem Hochofen für die Produktion von Stahl
und von einem industriellen chemischen Prozess. Zusätzlich wird gezeigt wie derselbe
Ansatz zur Identifikation von makroökonomischen Zusammenhängen eingesetzt werden
kann.





Abstract

With the growing amount of data that are collected and recorded in various application
areas the need to utilize these data is also growing. In science, data have always played
an important role; in recent years, however, the economic potential of data has also
become increasingly important. In combination with methods for data analysis, data
can be utilized to their full potential, whether in the commercial sector to optimize offers,
or in the industrial sector to optimize resources and product quality based on process
data.

This work describes a new approach for the analysis of data which is based on sym-
bolic regression with genetic programming and aims to generate an overall view of the
interactions of various variables of a system. By this means, all potentially interesting
relationships, which can be detected in a dataset, should be identified and represented
as compact and understandable models.

In the first part of this work, this approach of comprehensive symbolic regression is
described in detail. Important issues that play a role in the process are the prevention
of bloat and over-fitting, the simplification of models, and the identification of relevant
input variables. In this context, different methods for bloat control and prevention are
presented and compared. In particular, the influence of offspring selection on bloat is
analyzed. In addition, a new way to detect over-fitting is presented. On the basis of
this, extensions for the reduction of over-fitting are presented and compared. Pruning
of models is featured prominently, on the one hand to prevent over-fitting and on the
other hand to simplify complex models.

An important aspect is the analysis of the vast amount of different models that results
from the proposed approach. In this context, different methods to quantify relevant
factors are proposed. These methods can be used to identify interactions of variables
of the analyzed system. Visualizing such interactions provides a general overview of
the system in question which would not be possible by analysis of individual models
which are concentrated on selected aspects of the problem. Additionally, the prognosis
of multivariate time series with genetic programming is described in the first part.

The second part of this work shows how the described approach can be applied to
the analysis of real-world systems, and how the result of this data analysis process can
result in the gain of new knowledge about the investigated system. The analyzed data
stem from a blast furnace for the production of steel and an industrial chemical process.
In addition the same approach is also applied on a data collection storing economic data
in order to identify macro-economic interactions.
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bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht
habe.

Linz, December 15, 2010 Dipl.-Ing. Gabriel Kronberger

vii





Contents

1. Introduction 7
1.1. Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2. Research Project Background . . . . . . . . . . . . . . . . . . . . . . . . . 11

2. Machine Learning and Data Mining 13
2.1. Supervised Learning and Unsupervised Learning . . . . . . . . . . . . . . 13
2.2. Classification, Regression and Clustering . . . . . . . . . . . . . . . . . . . 14
2.3. Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4. Time Series Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5. Generalization and Overfitting . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1. Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.2. Bad Generalization because of Incomplete Data . . . . . . . . . . . 18
2.5.3. Time Series Modeling Pitfalls . . . . . . . . . . . . . . . . . . . . . 18

3. Evolutionary Algorithms and Genetic Programming 21
3.1. Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2. Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1. Genetic Programming Variants . . . . . . . . . . . . . . . . . . . . 22
3.3. Bloat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1. Inviable Code and Unoptimized Code . . . . . . . . . . . . . . . . 25
3.3.2. Bloat Control in Practice . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.3. Bloat Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.4. Theoretically Motivated Bloat Control . . . . . . . . . . . . . . . . 27
3.3.5. Quantification of Bloat . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4. Data-based modeling with Genetic Programming . . . . . . . . . . . . . . 29
3.4.1. Symbolic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.2. Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5. Offspring Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6. Genetic Programming with HeuristicLab . . . . . . . . . . . . . . . . . . . 32

4. Interpretation and Simplification of Symbolic Regression Solutions 35
4.1. Bloat Control - Searching for Parsimonious Solutions . . . . . . . . . . . . 35

4.1.1. Static Depth and Length Limits . . . . . . . . . . . . . . . . . . . 36
4.1.2. Parsimony Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.3. Dynamic Depth Limits . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.4. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.5. Operator Equalization . . . . . . . . . . . . . . . . . . . . . . . . . 42

1



4.1.6. Pruning to Reduce Bloat . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.7. Does Offspring Selection Reduce Bloat? . . . . . . . . . . . . . . . 50

4.1.8. Multi-objective GP . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.9. Summary of Results of Bloat Experiments . . . . . . . . . . . . . . 54

4.1.10. Effects of Bloat Control on Genetic Diversity . . . . . . . . . . . . 54

4.2. Simplification of Symbolic Regression Solutions . . . . . . . . . . . . . . . 57

4.2.1. Restricted Function Sets . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2. Automatic Simplification of Symbolic Expressions . . . . . . . . . 58

4.2.3. Branch Impact Metrics . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.4. Visual Support for Manual Simplification . . . . . . . . . . . . . . 58

5. Generalization in Genetic Programming 61
5.1. How to Detect Overfitting in GP . . . . . . . . . . . . . . . . . . . . . . . 62

5.2. Countermeasures Against Overfitting . . . . . . . . . . . . . . . . . . . . . 64

5.2.1. Restarts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.2. Parsimony Pressure Against Overfitting . . . . . . . . . . . . . . . 65

5.2.3. Pruning Against Overfitting . . . . . . . . . . . . . . . . . . . . . . 65

5.3. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4.1. Results: Covariant Parsimony Pressure . . . . . . . . . . . . . . . 68

5.4.2. Results: SGP and OSGP . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.3. Results: Adaptive CPP and Overfitting-triggered Pruning . . . . . 71

6. Genetic Programming and Data Mining 77
6.1. Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1.1. Flexible Model Representation . . . . . . . . . . . . . . . . . . . . 77

6.1.2. Implicit Feature Selection . . . . . . . . . . . . . . . . . . . . . . . 77

6.1.3. Non-Determinism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1.4. Training Performance . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1.5. Predictive Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2. Analysis of Relevant Variables . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.1. Relation to Feature Selection . . . . . . . . . . . . . . . . . . . . . 80

6.2.2. Relative Variable Importance in Linear Models . . . . . . . . . . . 81

6.2.3. Variable Importance in GP . . . . . . . . . . . . . . . . . . . . . . 81

6.2.4. Variable Importance in Random Forests . . . . . . . . . . . . . . . 85

6.2.5. Generalized Variable Importance . . . . . . . . . . . . . . . . . . . 86

6.2.6. Improved Formulations of Variable Importance Metrics for GP . . 87

6.2.7. Validation of Variable Relevance Metrics . . . . . . . . . . . . . . . 89

6.3. Data Mining and Symbolic Regression . . . . . . . . . . . . . . . . . . . . 95

6.4. GP-Based Search for Implicit Equations . . . . . . . . . . . . . . . . . . . 95

6.5. Comprehensive Search for Symbolic Regression Models . . . . . . . . . . . 96

6.5.1. Case Study: Chemical-II Dataset . . . . . . . . . . . . . . . . . . . 96

6.6. Improving GP Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.6.1. Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

2



6.6.2. Improving Fitness Evaluation Performance . . . . . . . . . . . . . 103

7. Multi-Variate Symbolic Regression and Time Series Prognosis 105
7.1. Evaluation of Multi-Variate Symbolic Regression Models . . . . . . . . . . 106

7.1.1. Curse of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2. Multi-variate Time Series Modeling and Prognosis . . . . . . . . . . . . . 108

7.2.1. Evaluation of Multi-variate Time Series Prognosis Models . . . . . 110
7.2.2. Case Study: Financial Time Series Prognosis . . . . . . . . . . . . 111

8. Applications and Case Studies 119
8.1. Blast Furnace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.1.1. Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.1.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.1.3. Result Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.1.4. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.2. Econometric Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.2.1. Macro-Economic Dataset . . . . . . . . . . . . . . . . . . . . . . . 131
8.2.2. Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.2.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.2.4. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.3. Chemical Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.3.1. Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.3.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.3.3. Detailed Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9. Concluding Remarks 151

A. Additional Material 155
A.1. Model Accuracy Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.1.1. Regression Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.1.2. Time Series Models . . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.2. Numerical Approximation of Derivatives . . . . . . . . . . . . . . . . . . . 161
A.3. Datasets Used in Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.3.1. Artificial benchmark datasets . . . . . . . . . . . . . . . . . . . . . 162
A.3.2. Real World Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.4. Colophon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Bibliography 195

Curriculum Vitae 195

3





Overview

The main theme of this work is how genetic programming (GP) can be used for knowl-
edge discovery. In particular, adaptations of GP to search for accurate, interesting,
and understandable models are discussed. Additionally ways to filter and present the
information gathered through GP runs are presented that aim to improve knowledge
discovery process and lead to a better understanding of the examined system or pro-
cess. This work puts strong emphasis on producing comprehensible models with GP, the
accuracy of the output of the models is only secondary.

This work mainly concentrates on the practitioners view of GP and symbolic regres-
sion. Thus the majority of this work is about practical aspects, theoretic aspects are
only treated briefly. GP theory has seen a lot of progress in the recent years. These
contributions are very relevant for a better understanding of the internal dynamics of GP
and provide a solid basis on which to conduct empirical or practically oriented research.

The main advantage of GP compared to other data-analysis methods is that it pro-
duces white-box models that might lead to new knowledge about the examined system.
The price to pay for this is that GP also requires more computational resources than
other data-analysis methods. The internal dynamics of genetic programming often leads
to final solutions that are relatively complex and hard to understand. In the literature
a large number of possible remedies for this issue have been described and analyzed,
however, from a practitioners point of view the results are not satisfactory. In the first
part the following novel concepts are presented:

• Comprehensive GP-based identification of interesting models or interactions in a
given data-set.

• Data-based methods to quantify and visualize relevant interrelations of variables
of a system.

The following issues relate to the main objectives and are also discussed in the first part:

• Methods to create compact and comprehensible models with GP.

• Methods to detect and avoid overfitting with GP.

• Symbolic vector-regression for the identification of multi-variate models.

• GP-based time series modeling for prognosis.

In the second part the concepts described in the first part are applied to a number of
real world data mining problems.
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1. Introduction

Well organized and accurate data have become increasingly important as a potential
source of profits for businesses. As more and more data are generated and stored in
large repositories the desire to generate value from the available data grows. Business
intelligence as a discipline is intimately related to the collection, aggregation and analysis
of business-relevant data. Decision support systems play an important role in business
intelligence to analyze and summarize relevant data often in form of charts and condensed
reports. The main purpose of decision support systems is to support managers to make
correct profitable decisions. Decision support systems of various complexity are already
ubiquitously implemented in many areas (politics, finance, health, industries...) and
have an impact on our everyday life.

A large number of data-analysis methods for different applications have been described
ranging from very simple methods to mathematically complex and powerful algorithms.
The methods can be categorized in one or multiple of the following partially overlapping
disciplines: System theory, statistics, machine learning, and data mining. All these dis-
ciplines have in common that they cover the topic of data-based modeling [124, 72, 27].
Additional research areas related to these disciplines are artificial neural networks and
reinforcement learning [210]. “Artificial neural networks are a development of the Per-
ceptron [173] [. . . ] and the area has transformed into a community of its own [...]. This
is quite remarkable, since the topic is but a flexible way of parameterizing arbitrary hy-
persurfaces for regression and classification. The main reason for the interest is that
these structures have proved to be very effective for solving a large number of nonlinear
estimation problems.” [124]. Recently a number of novel contributions have been pub-
lished discussing learning for so-called deep networks with very many hidden layers for
which back-propagation learning algorithms do not work well [85, 60, 132].

Data mining includes a wide range of different techniques to analyze, filter, explore
and visualize data [79, 233]. Fayyad et al. define data mining in the following way: “Data
mining is the application of specific algorithms for extracting patterns from data” [61].
Another definition is given by Hand et al.: “Data mining is the analysis of (often large)
observational data sets to find unsuspected relationships and to summarize the data in
novel ways that are both understandable and useful to the data owner.” [79]. Based on
these definitions many data-based modeling approaches can also be called data mining
methods. Data mining also includes exploratory elements like drilling down into inter-
esting facts in an interactive cyclic process of model construction and interpretation.
Fayyad et al. define data mining as a step in the process of knowledge discovery from
databases. The whole process also includes data selection, preprocessing and trans-
formation as necessary preparatory steps for data mining and the interpretation and
evaluation of the results obtained from data mining as a necessary follow up step to
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achieve the stated goal of knowledge discovery. An essential requirement for effective
data mining is that results are presented in a clear and informative way in order to allow
a data miner to evaluate and interpret the results easily. Methods and principles for
the visual display of quantitative data [217, 218] are closely related to data mining and
knowledge discovery.

This work concentrates on the application of genetic programming for data mining of
data collections that fit entirely into main memory. In particular, this work does not
cover issues and solutions related to very large data collections that must be read sequen-
tially from external memory. Genetic programming is a nature inspired meta-heuristic
which is applicable to a wide range of problems in its general formulation. The idea of
GP is to imitate aspects of biological evolution such as selection, recombination, and
mutation for find computer programs that solve a given problem in small evolutionary
steps starting with an initial population of random programs. Genetic programming in
its most general formulation can be called an “invention machine” [104, 105]. In most
cases, however, problem-specific variants of GP are used to solve well defined problems.
One example for a specific and rather simple GP approach is symbolic regression; in
this application GP is used to search for models that can be represented as symbolic
expressions and approximate the response of a system based on observations of the input
and output behavior of the system. Symbolic regression relies on the power of GP to
find the correct structure for the model in combination with the model parameters. This
property makes GP especially suitable for data-analysis tasks where only little informa-
tion about the origin of the data and the examined system is available. Multiple authors
[94, 232, 3, 231, 191, 126, 174, 18] have demonstrated that problem-specific GP variants
for data-analysis can find very good solutions for specialized tasks like regression and
classification. A more general approach is introduced in [154] which uses GP to generate
classification algorithms which can later be executed to produce classifiers based on a
specific data-set.

The general formulation of GP has the drawback that it often takes more computa-
tional effort to achieve solutions of comparable accuracy than it would take with other
more specific methods. This disadvantage is often accepted as the time spent for model
training is usually not critical. The time spent for training is often only a small part
of the total time spent in the knowledge discovery process. A major part of the time
is spent on data preparation and model interpretation and analysis [70]. If genetic pro-
gramming is to be used to search for interesting patterns in large datasets it is beneficial
if the training time can be reduced as more potentially interesting patterns can be un-
covered in the same time frame. The chance to find previously unknown interrelations
in the data grows with the number of good models. In Section 6.6 we describe methods
to increase the training performance of GP that do not have a negative effect on the
model accuracy.

Data analysis methods can be classified based the representation of models produced
by the method. The spectrum ranges from comprehensible white-box models on the one
end to complex black-box models on the other end. Often the distinction is not clear
and various shades of gray-box models are located in between the two extremes. Models
produced by symbolic regression are located near the white-box end of the spectrum.
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Typically symbolic regression models are mathematical expressions which can be directly
interpreted in order to gain knowledge about the patterns which were found in the
dataset. Support vector machines are an example for an approach that produces black-
box models located on the other end of the spectrum. Artificial neural network models
are usually said to be gray-box models because the network structure can be interpreted
but it is hard to gain a full understanding of the interrelations in the network.

While the fact that GP produces white-box models is often stated as an advantage
this is often not apparent in practice. The models presented as final result is often
rather complex and difficult to understand. Even though the model is a mathematical
expression it is often impossible to gain an understanding of the model when it contains
deeply nested functions. This problem is also a major topic in [94] which discusses the
application of genetic programming for scientific discovery. One cause for this is that
genetic programming has the tendency to build ever larger and more complex programs
over time without a proportional improvement in program fitness. In the GP community
this phenomenon is called code bloat and a lot of effort has been put into designing
counter-measures that reduce or prevent this behavior. In Chapter 4 this phenomenon
and a few selected counter-measures will be described in more detail. Even though a
number of counter-measures has been described in the literature [188] there is not yet a
consensus which methods are effective in practical applications. If symbolic regression
is used for an unguided search for interesting patterns in a dataset then an effective
anti-bloat strategy is very important because only small and at the same time accurate
and generalizable models are interesting as a source for new insights into the nature of
the dataset.

Another reason why it is important to create compact, comprehensible models is that
the data miner is more likely to trust a model to be true when it is understandable
and and easy to validate. The issue of models which can be trusted should not be
underestimated [99] as it is the first and foremost criterion that a data miner trusts the
model before the model is examined in more detail. Demonstrating that a model can
be trusted is even more important than the accuracy of the model. Models that are too
accurate to be true might raise concerns that the model might be over trained and thus
cannot be trusted (for a more detailed discussion of overfitting see Chapter 5). One way
to increase the chance that a model is trusted is to reduce the complexity of the model,
making it easier to validate and analyze the model. Another way is to demonstrate
clearly that the model also is accurate on new data, for instance through validation on
a hold-out set or through cross-validation. Even though such validation methods are
common practice in the machine learning community these standards are not yet fully
implemented in the evolutionary computation community [59]. In a recent contribution
O’Neill et al. state that: “[...] this issue in GP has not received the attention it deserves
and only few papers dealing with the problem of generalization have appeared [...]” [148].

In the original formulation of symbolic regression with genetic programming a single
variable must be explicitly declared as the target variable [101]. However, often it is not
immediately clear which variable is the variable of interest or there are multiple variables
that could be declared as a target variable. So it is often necessary to explore the options
with multiple symbolic regressions runs with different configurations.

9



Another data mining task that is relevant in practice but has not yet been treated
extensively in the GP literature, is multi-variate symbolic regression. In this approach
GP has to find a symbolic multi-variate regression model that approximates all target
variables. If GP is to be used for unguided data mining without an explicit target variable
the solution representation and the search process of genetic programming have to be
extended. In Chapter 6 a simple approach of independent runs to create and collect
models for all variables of the dataset is described. In Chapter 7 several extensions
of the solution representation for the simultaneous modeling of multiple variables are
described.

1.1. Thesis Statement

To summarize the previous paragraphs genetic programming can be used for data min-
ing to find potentially interesting patterns or interactions in large datasets when the
traditional symbolic regression approach is extended and adapted appropriately.

• Solution representation: Instead of a single target variable the process should
identify the potentially interesting variables automatically. This work describes
several different ways to extend the solution representation for data mining tasks
and introduces ways to manage the potentially large set identified models.

• Model complexity and presentation: In order to facilitate knowledge discovery from
GP models, appropriate and effective methods for reduction of model complexity
have to be integrated into the search process. This work describes different methods
to reduce the model complexity and introduces new ways of visualizing results to
simplify detailed analysis of models.

• Trustable models: Results presented by the process must be clearly validated to
enable the data miner to estimate how trustable a model is. This work describes a
validation procedure for GP that is effective in practical applications and describes
how visualizations can be used to improve the trustability of models.

• Performance: In order to make unguided search for interesting patterns in large
data sets feasible it is necessary to reduce the training time of GP. In this work
briefly discusses possible ways to increase GP performance.

Chapter 2 gives a cursory introduction of machine learning and data mining including
commonly used terms. Chapter 3 discusses relevant previous work in the area of evo-
lutionary algorithms in general and genetic programming specifically. Chapter 4 is the
first core chapter of this thesis and discusses the problem of bloat and countermeasures
to reduce bloat and also describes ways to simplify solutions with pruning. Chapter 5
introduces an effective way to detect overfitting and countermeasures against overfitting
in GP. Chapter 6 describes unconstrained GP-based search for interesting models and
how the information collected in those experiments can be prepared and visualized to
improve the knowledge acquisition process. In Chapter 6 the topic of variable relevance

10



metrics is discussed as it is necessary for the representation of variable relation networks.
Chapter 7 describes an approach to create multi-variate symbolic regression models with
GP and how multi-variate auto-regressive time series models can be used for the progno-
sis of future values of a multi-variate time series. Finally, Chapter 8 demonstrates how
the methods discussed in the previous chapters can be applied to real world applications.

1.2. Research Project Background

This thesis mainly reflects research work done within the Josef Ressel-center for heuristic
optimization “Heureka!” at the Upper Austria University of Applied Sciences, Campus
Hagenberg. The center “Heureka!” is supported within the program “Josef Ressel-
Centers” by the Austrian Research Promotion Agency (FFG) on behalf of the Austrian
Federal Ministry of Economy, Family and Youth (BMWFJ).

11





2. Machine Learning and Data Mining

Essentially, all models are wrong, but
some are useful.

George Box

This chapter gives a brief overview of the disciplines of machine learning and data
mining. A number of terms frequently in the machine learning literature that are nec-
essary to understand the core of the work are explained in the following sections. The
reader who is already familiar with machine learning can skip this chapter and advance
to the chapter.

Learning is the process of knowledge acquisition from observations. Knowledge is de-
fined by the Oxford Dictionary of English as: “(i) facts, information, and skills acquired
through experience or education; the theoretical or practical understanding of a subject;
(ii) the sum of what is known; (iii) information held on a computer system.” [152]. One
of the goals of machine learning as a research discipline is to define algorithms which
when executed by a computer enable it to learn general facts from examples in such
a way that previously unseen examples can also be recognized and a correct action is
triggered.

As such the knowledge learned by the machine learning method should be specific to
recognize known examples and general to also recognize slightly different new examples.
In statistics the learning or training phase is called model estimation. Model estimation
is the process of selecting a specific model from a class of models that fits the available
data best.

Typically a discrimination is made between the two terms features and variables. In
machine learning the term variable usually indicates the original variable while a feature
can be a combination of multiple variables. Often kernel functions are used to transform
a combination of variables to features. In this work no distinction between the two terms
is made and the terms variable and feature are used interchangeably.

2.1. Supervised Learning and Unsupervised Learning

Learning methods can be categorized into two general classes: supervised and unsuper-
vised methods. The methods have different goals and are also different by the way how
examples are presented in the training or learning phase.

Supervised learning methods accept pairs of training examples with a correct label as
input. From these training examples the algorithm should learn how to correctly label
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new examples in a generalizable way and learn from these examples which label fits best
for future unseen examples.

Unsupervised learning methods accept training examples without labeling future input
examples are compared to the previously learned training examples and one or multiple
samples, that are most similar to the current example, are produced as output.

The semi-supervised learning hybrid approach is also possible. This is often useful
when a large number of examples are available but only a small part of them is labeled.
Semi-supervised learning methods determine labels for the unlabeled examples by find-
ing similar labeled representatives and then use the unlabeled examples for training.
Typical tasks solved by supervised learning methods are classification and regression;
unsupervised learning is often used for clustering.

2.2. Classification, Regression and Clustering

The input data for classification, regression and clustering are usually a collection of n
training examples. Each example in the training data is a row vector of k values. The
set of training examples can be represented as a matrix T(n,k).

For the classification task the training samples have class values from a finite usually
small domain. The most common case is binary classification, meaning that the class
labels can have only two values (e.g. 0 or 1, malign or benign). However classification
for three or more distinct class labels is also possible. It is not necessary that an ordering
relation can be defined on the class labels. The goal of classification algorithms is to
learn from the presented training samples in which class to categorize new and previ-
ously unseen data points. The quality of classification algorithms is measured by a loss
function. Usually the loss function compares the class predicted by the algorithm with
the actual class of the data point and then calculated from the number of correctly and
incorrectly classified data points. Examples for classification algorithms are: linear dis-
criminant analysis, C4.5 (decision tree learning) [169], support vector machines (SVM)
[222, 41], k-nearest-neighbor (kNN) [42, 65], classification and regression trees (CART)
[28].

For the regression task the training samples usually in Rn are labeled with values in R.
The algorithm should learn the value linked with each data point so that it can generate
a predicted value for new and previously unseen data points. Labels can be ordered so
the loss of a regression model is often measured as a distance of the predicted from the
actual target values. Examples for regression algorithms are: linear regression, CART
[28], SVM regression [221].

The task of binary classification can be reformulated into the regression task of finding
a discriminant function g : Rn → R. The classification is achieved by assuming a constant
separator value c so that class = 0 if g < c and class = 1 if g ≥ c. A perfect prediction
can be achieved when a value c exists that separates both classes perfectly.

Regressing and classification are supervised learning tasks. In contrast, clustering is
an unsupervised learning task [79, 83]. The goal of clustering is to group examples by
similarity into a number of representative clusters. Each cluster is a set of examples and
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a representative example. New examples are assigned to one of the learned clusters into
which the new examples fits best. Clustering can also be applied to unlabeled examples.

A typical example of clustering is market basket analysis based recommender systems.
The system uses a clustering method to find clusters of customers who purchased similar
products. Based on the clustering the recommender system can suggest related products
based on the products that other customers in the same cluster frequently purchased.
Examples for clustering algorithms are: k-Means [125], expectation-maximization (EM)
[49], and methods based on principal component analysis (PCA) [156, 89].

2.3. Reinforcement Learning

Reinforcement learning is a branch of machine learning that does not fit into the cate-
gories supervised vs. unsupervised learning. Reinforcement learning is concerned with
online processes in which an agent can take actions and receives rewards for actions
[210]. The acquisition of new observations which implicitly cause an unknown loss is
integrated directly in the learning process The objective is to find a policy for the agent
that minimizes the regret, which is the difference of the reward that the agent received
to the reward that the agent could have received, if it would have executed the optimal
actions at all times. The difference to supervised learning is that the correct actions are
never explicitly presented to the agent.

The best example to illustrate reinforcement learning methods is the multi-armed
bandit problem that describes the situation of a rigged casino, a bandit gambling machine
with multiple arms with a different rate of winning plays and possibly unequal rewards.
The goal for a player is to allocate plays to the machines in such a way, as to maximize the
expected total reward. The probability distribution of rewards for each arm is unknown,
so an effective strategy has to be found that balances exploration of new arms and
exploitation of the best arm so far. The K-armed bandit problem can be described as
K random variables with Xi(0 ≤ i < K), where Xi is the stochastic reward given by the
arm with index i. The rewards Xi are independent and the distributions are generally
not identical. The laws of the distributions and the expected value µi for the rewards Xi

are unknown. The goal is to find an allocation strategy that determines the next arm
to play, based on past plays and received rewards, that maximizes the expected total
reward for the player. Or put in other words: to find a way of playing that minimizes
the regret, which is defined as the expected loss occurred by not playing the optimal
arm each time.

Since a player does not know which of the arms is the best he can only make as-
sumptions based on previous plays and received rewards and concentrate his efforts on
the arm that gave the highest rewards so far. However it is necessary to strike a good
balance between exploiting the currently best arm and exploring the other arms to make
sure that an arm with a higher expected reward value can be discovered.
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2.4. Time Series Forecasting

The notable difference of time series forecasting in comparison to regression or classifi-
cation is that there is a time-dependent structure in the processed data points. Special
care has to be taken in the training phase and when using the trained model so that
the time-dependency or the ordering of the data points is not destroyed. In particular
it is not valid to shuffle the data points in the training phase as this would destroy the
internal structure.

The goal of time series forecasting is to predict future values of a variable based on
past values of the variable and optionally other related variables. If the method uses past
values of the target variable for the prediction of future values it is an auto-regressive
method.

Time series forecasting is a traditional application of statistics. Since the very first
formulations of time series models a large corpus of ever refined modeling approaches has
been described ranging from simple linear auto-regressive and moving average models
[74, 90] to intricate models including trends and seasonal changes and multivariate time
series [229]. For an extensive discussion of statistic approaches to time series modeling
see [23, 29, 30, 157, 57, 82].

Genetic programming has also been effectively used for time series prognosis tasks
[101]. The power of genetic programming to evolve the structure of solution candidates
in combination with the parameters enables the process to automatically adjust the
model structure appropriately for instance to account for seasonal changes, trends or
recurrent events if such elements are detected in the data.

Chapter 7 discusses multi-variate time series modeling with genetic programming.

2.5. Generalization and Overfitting

Any data-based model, regardless of which learning or estimation process is used, must
generalize well in order to be useful. Models which generalize well are models that also
work consistently for new observations. In contrast models that do no generalize well
produce inaccurate or even largely incorrect estimations for new observations and are
thus useless in practice. The generalization ability of a given model can be estimated
by using a hold out dataset which contains samples that are not used in the training
process. The fit on the hold-out is an indicator for the fit on new observations. If the
model performs equally well on the training set and on the hold-out set it can be assumed
that the model generalizes well. This assumption only holds in general when a number
of assumptions about the analyzed system and the selection the training set and the
hold-out set are fulfilled. The number of different states of the system must be limited
and the training set and the hold-out set must be a representative sample of the whole
population of observable states of the analyzed system. If these assumptions hold new
observations from the same system will be similar to observations in the training- and
hold-out set, and the fit on the hold-out set is an accurate estimator for the expected fit
for new observations.
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Figure 2.1.: Underfitting and overfitting

First we discuss possible causes for bad generalization behavior in an ideal setting
where all the assumptions hold. In practice the situation is more difficult as some of the
assumptions might not hold. This will be discussed later in more detail.

2.5.1. Overfitting

Bad generalization ability is often the result of overfitting. Overfitting occurs when the
model class from which a model is selected is too complex. From a complex model class
a model can be selected that fits any point in the training set very closely thus the model
class has a low bias. If one training point is left out or an additional point is added this
leads to a very different model. Even though the new model still fits all points of the
training set very closely it has a very different overall shape thus a model class with
large complexity has a large variance. In contrast under-fitting occurs when the model
class is too simple. A simple model class has a large bias because the model cannot fit
every point closely but low variance because if any point in the training set is changed
the resulting model is not very different. This is the well known bias-variance trade-
off of statistics. Minimizing the bias to get a better fitting model on the training set
inevitable leads to higher variance and worse generalization. Thus the model class has
to be selected in a way to find a good balance. Figure 2.5.1 shows how the training error
is reduced by increasing the model class complexity while the expected model error
increases. Under-fitting occurs on the left where the training error and the expected
model error are large. At a certain complexity the expected model error is minimal at
the optimal balance between bias and variance. On the right side overfitting occurs and
the expected model error grows with increasing model class complexity.

In summary, overfitting can be prevented by restricting the complexity of the model
class. Often this is done manually through model validation on a hold-out set or through
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cross-validation. Such methods can be used with any kind of data-based modeling algo-
rithm. Some algorithms include countermeasures for overfitting into the learning process.
Often this is done by adding a complexity term to the objective function so that the
model accuracy is optimized together in combination with the model complexity as for
instance used in SVMs. Another approach is to use an internal validation set to control
the complexity of models as for instance used in enhanced implementations of ANN.

2.5.2. Bad Generalization because of Incomplete Data

In real world scenarios bad generalization can often be the result of incomplete data.
The assumption that the training set is a set of independently sampled observations and
representative for the whole population of possible observations does often not hold.

If the training set does not contain examples for all system states that are likely to
be observed, it is not possible to create a model that will generalize well to all new
observations. The learning algorithm can only build a model based on the incomplete
information in the training set. If the state of the analyzed system or its inputs are
changed the system behavior will also change and the model does not fit anymore. A
model trained from an incomplete training set will not generalize well if the behavior
of the underlying system changes. It should be noted that this problem is independent
of overfitting. Even if the model showed good fit via cross-validation the generalization
error can be large as cross-validation assumes that the samples in the training set and
hold out were sampled independently. Even though the bad generalization is in this case
not caused by overfitting in the original definition but by incomplete data the remedies
to improve the generalization are similar. Reduction of complexity to increase the bias
and reduce the variance of the model class should lead to better generalization behavior
in both situations. In the remainder of this work we will thus refer to both causes for
bad generalization as overfitting.

2.5.3. Time Series Modeling Pitfalls

Time series have an implicit time-dependent structure which must be preserved for mod-
eling and estimation. In particular two observations of a time series are not independent.
It should be noted that many collections of observations are by definition a time series
as the observations are usually made over a certain timespan and not simultaneously.
Often the original time-dependency is dropped, however, when it can be argued that the
observations are independent. In order to drop the time-dependency it must be shown
that all pairs of observations x(i) and x(j)(i > j) are independent (nothing that effected
observation x(i) can have an effect on observation x(j)). In particular x(t+ 1) must be
independent from x(t). A simple but non-sufficient criteria to check is if x(t) and x(t+k)
are correlated. Alternatively visual examination is also a quick way to determine if the
data has a time-dependent structure.

In many situations the time-dependency must be preserved. Examples are series of
measurements of technical systems, financial or economic time series, series of diagnostic
values of patients over time.
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As a consequence shuffling of examples is not allowed for time series as it would break
up the time-dependency. Shuffling of examples is often done as preparatory step before
training or cross-validation, and is implemented in this way in many algorithm imple-
mentations (e.g. libSVM [32]). For time series the examples in the training- and hold-out
set must be a set of consecutive observations. Semantically it is more appropriate to use
samples x(0) to x(k) as training set and samples x(k + i)i ∈ [1..n − k] as hold-out set,
forecasting from previous observations.
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3. Evolutionary Algorithms and Genetic
Programming

3.1. Evolutionary Algorithms

Evolutionary algorithms imitate aspects of biological evolution such as selection, recom-
bination, and mutation to find a solution to a given problem starting with an initial
population of random solution candidates. From the initial population two solution
candidates are selected as parents and recombined to produce one or two offspring in-
dividuals which are then optionally mutated and subsequently added to the population.
Parent selection has a higher chance to select solution candidates with an above average
fitness and recombination has the effect to combine the traits of the parent individuals
in the offspring individuals. This is related to the principle of “survival of the fittest”
in biological evolution. The selective bias and the combination of positive traits in in-
dividuals have the effect, that the average fitness of the population increases over many
generations producing better and better solution candidates over time.

The pioneers of evolutionary algorithms are Fogel who first described evolutionary pro-
gramming [67], Rechenberg who first described evolution strategies [171], and Holland
who first described genetic algorithms [86] at around the same time. The three algo-
rithms all imitate aspects of biological evolution, however, each of the authors used a
slightly different approach. The first descriptions of genetic algorithms use a binary
solution encoding and emphasize the aspect of parental selection and sexual reproduc-
tion and recombination of positive traits. In contrast the first descriptions of evolution
strategies use a real-valued encoding and emphasize the aspect of mutation and selection
for survival of excess offspring. Self-adaptive aspects also play a large role in evolution
strategies and have been integrated to improve the algorithm already very early [185]. In
the first description of evolutionary programming graphical models in the form of finite
state machines for the prediction of a series of symbols are evolved through a combi-
nation of sexual reproduction with crossover and mutation. Evolutionary programming
also emphasizes the selection of offspring with above average fitness [66] and has thus
been compared mainly with evolution strategies.

The fundamentally different approaches of genetic algorithms, evolution strategies,
and evolutionary programming initially lead to a fragmentation of the research com-
munities in separate camps. However, this initial fragmentation became gradually less
distinct over the years, as the approaches have been further developed and aspects of
genetic algorithms have also been integrated into evolution strategies, and vice versa.
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3.2. Genetic Programming

Genetic programming [101] is an evolutionary algorithm to find computer programs that
solve a given problem when executed. In contrast to genetic algorithms and evolution
strategies which directly evolve solution candidates for the problem, the individuals in
GP are computer programs which can be interpreted or executed to produce a solution to
the original problem. The structure of GP solution candidates is not fixed, in particular,
the length of programs evolved in GP is not predetermined. This is a major difference
to other evolutionary algorithms which use fixed-length solution encodings for instance
real-valued vectors, bit-strings, or permutation arrays.

Solution candidates in GP are most often encoded as symbolic expression trees that
represent computer programs. The set of allowed symbols in a tree and the evaluation
of trees are problem specific, and can be adjusted through algorithm parameters. These
parameters are the function set, terminal set, and the fitness function. The function set
contains symbols that can be used as internal nodes of the tree and the terminal set
contains symbols which are allowed as terminal nodes.

Generally genetic programming can be used to evolve solutions for a given problem, if
it is possible to define a language describing possible solutions and a fitness function for
such solutions. Genetic programming has been used to find novel and human competitive
solutions to hard problems and to find re-discover previously patented solutions [103,
14, 19, 105, 6, 133, 102].

3.2.1. Genetic Programming Variants

Many different variants of genetic programming have been studied in the literature and
there is no precise definition of a genetic programming algorithm. Instead the term
genetic programming encompasses all the different algorithm variants. As stated by Poli
et al., “At the most abstract level GP is a systematic, domain-independent method for
getting computers to solve problems automatically starting from a high-level statement
of what needs to be done.”.

The different variants of GP can be differentiated into different classes by the way
how the programs are represented (solution encoding). Koza-style GP [101], often called
standard GP, uses a tree-based solution encoding. This representation of programs has
the advantage that recombination and manipulation operators are relatively easy to im-
plement. One problem of Koza-style GP is the requirement that the function set must
have the closure property, which means that the types of all terminals, function results,
and function arguments must be compatible. This property is necessary to guarantee
that all possible tree shapes can be evaluated. The only syntactic constraint available in
standard GP is the number of sub-trees allowed for each function symbol. This simple
assumptions of standard GP make it possible to define effective and easy to implement
recombination and mutation operators for the evolution of trees. More complex GP vari-
ants are often more powerful but also significantly more difficult to implement correctly,
especially because the evolutionary operators are often more complex.

In some applications it is necessary that the possible structure and characteristic of GP
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solutions can be defined more precisely. This issue has been addressed in two different
but related ways, leading to the definition of grammar-based GP and strongly typed GP.

Grammar-based GP

In grammar-based GP [228, 234] all possible GP solutions are defined through a grammar
for GP solutions. The grammar defines the syntax of the programming language used
by GP to express solutions, in the same way as the grammar of a programming language
defines the possible programs that can be written in this language. In grammar-based GP
it is easy to restrict the structure of GP solutions. This is for instance necessary if GP is
used to evolve programs for a given existing programming language. Grammar-based GP
has for instance been used successfully to evolve classification algorithms represented as
Java programs [154]. A successful variant using this approach is grammatical evolution
[147]. In grammar-based GP the grammar is used only to restrict the possible shapes
of solutions. In grammatical evolution the grammar is also used to construct trees and
from a linear representation. The solution is encoded as a variable-length list of integers.
Each element defines which branch in a syntax rule must be taken to construct a valid
tree. The translation process starts with the first element of the list and the main entry
point of the grammar.

Strongly-typed GP

In strongly typed GP [136] the types of terminals, functions, and function arguments are
declared. Each time the GP system produces a new tree for instance through crossover, it
must make sure that the type of the argument is compatible to the type of the parameter
of the function. As long as the number of possible types handled by the GP system is
rather small the type constraints can be handled also through syntactical constructs
using grammar-based GP, however, a strongly-typed GP system is more appropriate if
the GP system must be capable to handle many different types.

Strongly-typed GP and grammar-based GP define constraints for the construction of
trees, thus in the implementation of such GP systems the operators for initialization,
recombination, and mutation must be extended to check all constraints. Both variants
are generalizations of standard GP, which is essentially a strongly typed GP system
with only one type instance and a very simple grammar that specifies only the number
of arguments of functions.

Linear GP

In linear GP [21] the program code is evolved directly in a variable-length linear repre-
sentation instead of a tree-based representation. The solutions represented in linear form
are closer to the executing machine than the tree-based programs and thus evaluation of
solution candidates is usually more efficient in linear GP than in tree-based GP variants.
In the most extreme case linear GP directly evolves machine code [145]. Because linear
code lacks the structure available in tree-based representations memory operations to
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read and write stores or registers are necessary. In a recent contribution a linear GP
approach to evolve Java byte-code is described [150].

PushGP [198] is an especially interesting strongly-typed linear GP system which uses a
stack-oriented execution model. In the execution of Push expressions a separate evalua-
tion stack is used for each occurring type and it is allowed to push quoted code-fragments.
Thereby, it is possible to manipulate and transform the program code before execution.
It has been suggested that PushGP can be used as an “autoconstructive evolution sys-
tem” [198, 197], where the evolutionary operators used to recombine and manipulate
operators are evolved simultaneously with the solutions. This is a very powerful and
general approach which allows the GP system to self-adapt to the specific problem that
must be solved.

Graph-based GP

In graph-based GP solution candidates are represented in form of a graph which is
a more general data-structure than a tree. Graph-based programs can potentially be
executed in parallel fashion [159]. The drawback of the approach is that the implemen-
tation of crossover and mutation operators for the evolution of graphs is more complex.
Additionally, the interpretation of solutions is difficult.

Cartesian GP [81, 135] is a special form of graph-based GP. The execution model also
uses a graph-based program representation, but in Cartesian GP a level of indirection
is introduced as the graph is encoded in linear form. The evolutionary operators are
defined on the variable-length linear representation which is translated into a graph
data-structure for evaluation. The solutions are encoded as integer tuples each one
describing the properties of a cell in a two-dimensional grid. The elements in the tuples
define the symbol of the node, and the incoming edges from other cells. Cartesian GP
was initially introduced for the evolution of electronic circuits [134]. Recently extensions
to Cartesian GP have been described to allow to allow the definition and execution of
self modifying programs [81]

3.3. Bloat

The term bloat in genetic programming relates to the growth of program length over
a run without a proportional improvement in fitness [117]. The effect has also been
described as “survival of the fattest” [58]. Genetic programming uses a variable-length
solution encoding so average program length of the solution candidates in the popula-
tion can grow or shrink over a GP run. The randomly generated programs in the first
generation are limited to a certain range of possible sizes. Changes in average program
size are thus a result of the evolutionary operators acting on the population. It has
been observed already early that standard GP bloats without special countermeasures
to prevent unlimited growth of programs. Bloat is problematic because of the memory
consumption and the increased computational effort necessary to evaluate bloated solu-
tions. Additionally, bloated solutions produced by GP are difficult to understand and
validate. Thus the topic has been studied intensively in the literature and a number
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of different hypotheses for the cause of bloat and methods to control bloat have been
described.

3.3.1. Inviable Code and Unoptimized Code

Bloated programs contain a lot of code that has no or only minor effect on the output
of the program. The ineffective code fragments can be differentiated into two classes,
namely inviable code and unoptimized code [16, 188, 238]. Inviable code fragments
(introns [17]) are not executed at all and so have no effect on the program behavior.
Introns can occur when non-sequential execution flow for instance conditional evaluation
of code fragments is possible in the GP solutions. Is relatively easy to detect inviable
code through dynamic code analysis. All code fragments that are not visited when the
program is executed are inviable code and can be removed easily without altering the
program behavior.

Unoptimized code fragments, in comparison, are executed and have an effect on the
program output. However, the code fragment is either detrimental to the fitness of
the program, or its contribution to fitness is not proportional to its length. In general
unoptimized code is executed but can be replaced by more compact code or even re-
moved completely in the case of detrimental code fragments. It is rather difficult to
detect or replace unoptimized code. One approach that can be used to partially remove
unoptimized code fragments for tree-based GP is pruning [232]. Pruning determines
unoptimized branches by calculating for each branch of the original program the fitness
of a transformed program where that branch has been replaced by neutral code. If the
fitness of the transformed program is not significantly worse than the fitness of the orig-
inal program the branch is unoptimized code and can be removed. In Chapters 4 and 5
we discuss pruning in more detail.

It has been suggested that symbolic regression is not prone to the propagation of
inviable code, but very much affected by unoptimized code [186, 187]. This is however
still an open question [129].

3.3.2. Bloat Control in Practice

Out of the necessity to control bloat a number of effective methods have been proposed
for practical applications. A straight forward approach is to add static size and depth
limits for trees [101]. The crossover and mutation operators check if newly created trees
are within the size limits and invalid trees are discarded. Another approach are size-fair
evolutionary operators that produce a new tree that has the same size as the original
tree [112, 165] or mutation operators that actively reduce the program length [96, 15].
Alternatively, selection can be adjusted to control bloat. Parsimony pressure increases
the probability to select smaller individuals by including a weighted penalty term that
depends on program length into the fitness function [239]. Lexicographic tournament
selection is an extension of tournament selection where the smaller solution is selected
if two solutions have the same fitness value [128].
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3.3.3. Bloat Theory

Even though the bloating effect of GP has been observed already early, the cause for
bloat has long remained an open question. Over the time different theories for the cause
of bloat have been formulated often in combination with methods to control bloat. In
the following a number of frequently cited hypothesis for bloat are discussed, as the topic
is also very relevant for this thesis. A good survey of past and current bloat theories is
given in [188]. The topic will be revisited in Chapter 4.

Defense against crossover

An early theory for bloat was that bloated solutions are more robust against disruptive
changes by crossover [10]. The probability that crossover has a strong negative effect on
the fitness of an individual is smaller for solutions that bloated and contain many introns
relative to compact solutions. This means bloated individuals are preferred by selection
as they are not destructed by crossover so easily and over time the evolutionary process
leads to more bloated individuals in the population. The theory has been disputed [188]
and is currently not considered to be a valid theory for the cause of bloat in tree-based
GP.

Removal Bias

The removal bias theory of bloat [195] is closely related to the defense against crossover
theory and also relates the cause for bloat to the fact that a surplus of inviable code makes
it easier to add more code without negative effects on fitness. In particular, fitness is
not effected strongly when crossover affects an inviable branch. In such crossover events
there is an asymmetry, namely that the sub-branch which is removed from the inviable
branch has a limited size, but the branch that is inserted from the other parent can be
of any size and in particular larger than the removed branch. This asymmetry can lead
to code growth even when the crossover is protected, producing only offspring that are
strictly better than their parents. The removal bias theory has also been superseded by
the more recent crossover bias theory.

Fitness causes bloat

The fitness causes bloat theory relates the cause for bloat to the nature of the program
search space [111, 116]. In this theory introns are merely an effect of bloat but not a
cause, in contrast to removed bias theory or defense against crossover theory. Fitness
causes bloat theory proceeds from the assumption that bloat does not occur when no
selection pressure is applied to the population. It has been shown that bloat does not
occur when a constant or random fitness function is used [20, 116, 110]. If crossover is
applied repeatedly on a number of solutions with only random selection (or with flat
fitness) no code growth can be observed.

The theory states that bloat occurs if the program search space has the property that
any solution can be expressed in many alternative but semantically equivalent ways,
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and that there are more longer than shorter alternative representations. An additional
requirement for the occurrence of bloat is a static fitness function that assigns the same
fitness to all semantically equivalent programs regardless of their size. The length dis-
tribution of equivalent programs causes a drift to larger solutions.

The theory is general and is applicable to all iterative search algorithms with a discrete
variable-length solution encoding and a static fitness function. In particular, bloat is not
specific to population-based algorithms but can also occur in trajectory-based algorithms
and in algorithms that do not use a crossover operator.

Crossover bias

Crossover bias theory [164, 52] is related to fitness causes bloat theory and is the most
recent theory for the cause of bloat. It states that bloat occurs because of a bias of the
combination of sub-tree crossover and selection. As stated in the fitness causes bloat
theory bloat only occurs in the presence of selection pressure and a program search space
where for a given fitness many more larger solutions than small solutions exist.

Crossover bias theory is based on the observation that sub-tree swapping crossover
in tree-based genetic programming produces offspring with a particular size distribution
(Lagrange distribution of the second kind). The average size of offspring is not altered
by sub-tree swapping crossover, as the removed branch and the inserted branch have the
same size on average. However, crossover produces more smaller individuals then large
individuals. It has been shown that the size distribution of individuals produced by
crossover depends on the symbols in the function set and on the number of parameters
of the functions [55].

The combined effect of this crossover bias in combination with a fitness landscape
where smaller individuals are more likely to have lower fitness than larger individuals
causes a drift to larger individuals. Actually, any operator that produces a surplus of
smaller individuals leads to bloat. Thus, it has been suggested recently to rename the
theory to operator length bias theory [55].

3.3.4. Theoretically Motivated Bloat Control

A number of effective bloat control methods are based on crossover bias theory. As
bloat control is a major topic in this thesis theses methods are discussed briefly in the
following. In Chapters 4 and 5 bloat control methods are discussed in more detail.

Tarpeian Method

Tarpeian bloat control sets the fitness of individuals with above average length to a very
low value which effectively zeros the chance of selection of this individual. This method
of bloat control is very simple and can be controlled through only one parameter that
determines the chance that a given individual is assigned a zero fitness. The effect
of Tarpeian bloat control is that the dynamic holes in the fitness landscape reduce the
chance of selecting larger individuals and bloat is prevented or at least reduced. Recently,
the covariant Tarpeian method for bloat control has been introduced [161], where the

27



probability that a solutions fitness is zeroed, is automatically adapted based on the
covariance of program lengths and fitnesses in the population.

Covariant Parsimony Pressure

The covariant parsimony pressure method to control bloat [163] is based on the size
evolution equation [162]. The parsimony pressure method adjusts selection probability
to prefer smaller individuals relative to larger individuals with the same fitness. For this
an adjusted fitness value is calculated that includes not only the raw fitness but adds a
penalty term depending on the length of the solution. In covariant parsimony pressure
the penalty term is adjusted dynamically based on the covariance of fitness and length
over all individuals in the population. It has been shown that the average program length
can be controlled tightly using covariant parsimony pressure to completely remove bloat.

Operator Equalization

The operator equalization method to control bloat [54] is also based on crossover bias
theory and removes bloat by adjusting the distribution of individuals produced by the
evolutionary operators. This is accomplished by an equalization step which filters newly
created individuals, so that the length distribution of solutions in the next population
matches a specific target distribution. As soon as the frequency of individuals of a spe-
cific size matches the target frequency, newly created individuals of the same size are
discarded. The method continues creating new offspring using the evolutionary opera-
tors until the population can be fully filled and the size distribution in the population
matches the specified target distribution. A self-adaptive variant of operator equaliza-
tion has also been described, where the target size distribution is adjusted to follow the
fitness distribution while still preventing bloat [189, 190]. In comparison to Tarpeian
bloat control which hooks into fitness evaluation to control bloat, operator equalization
removes the other necessary ingredient for bloat, namely the operator length bias.

3.3.5. Quantification of Bloat

In a recent contribution a measure for bloat has been defined that can be used to compare
the relative amount of bloat in GP runs [220]. Bloat is the disproportional growth of
program length relative to fitness improvement, thus the function shown in Equation 3.1
measures the amount of bloat at generation g as the relative change of average program
length δ from the initial generation to generation g over the relative change of average
fitness f in the same interval.

bloat(g) =
(δ(g)− δ(0))/δ(0)

(f(0)− f(g))/f(0)
(3.1)

If no bloat has occurred the function bloat(g) has a value of one, indicating that the
average program size and the average fitness changed by the same amount. Notably,
the function can also become negative if the average program length decreases while the
average fitness increases.
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The original definition shown in Equation 3.1 only works for minimization problems,
for maximization problems the relative change in fitness can be calculated as (f(g) −
f(0))/f(0). A problem occurs when f(0) is close to zero which leads to unstable results.
This can happen for instance when the squared correlation coefficient is used as fitness
measure. To mitigate such problems the calculation of the relative change in fitness
should be adjusted accordingly as shown in Equation 3.2.

bloat(g)max =
(δ(g)− δ(0))/δ(0)

(f(g)− f(0))/(1 + f(0))
(3.2)

In Chapter 4 this function is used to compare the effect of different bloat control
methods.

3.4. Data-based modeling with Genetic Programming

3.4.1. Symbolic Regression

One possible problem that can be solved by genetic programming is symbolic regression.
Symbolic regression [101] is concerned about finding a model f̂(x) (functional expres-
sion), that is a good approximation of the values of the target variable y given a number
of input variables x. The values of the target variable are produced by an unknown
response function of the studied system f(x). The input for symbolic regression is a
dataset with n observed values of each variable of the studied system. The result is
a functional expression f̂(x) encoded as a symbolic expression tree. For symbolic re-
gression the GP function set usually includes at the arithmetic operators (+,-,*,/), and
the terminal set includes all allowed input variables and constant values. A possible
and frequently used fitness function is the mean of the squared errors (MSE) of the
approximated values calculated by the symbolic regression model f̂(x) and the actually
observed values y.

MSE(f̂x, y) =
1

n

n∑

i=1

(f̂(x)i − yi)
2 (3.3)

The observed values y of the target function f(x) include a certain amount of noise,
so the error term to be minimized in symbolic regression is the sum of the error of the
model εmodel and the error of the measurements εnoise. The aim is to approximate the
unknown function f(x), however, the implicit measurement error εnoise in y cannot be
completely removed and is the limiting factor for the accuracy of the approximations of
the model relative to the response function f(x) of the studied system.

f̂(x) = y + εmodel

y = f(x) + εnoise
(3.4)

Figure 3.1 shows an example for a symbolic regression model and the equivalent ex-
pression in mathematical notation.
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Add

-2.2045E-002 PTRATIO Mul -2.4973E+001

RM Add -1.7365E-006

-2.3469E+005 RM 4.6022E+004 4.9226E+003 AGE -3.3640E+006

MEDV = −2.2045× 10−2PTRATIO

− 1.7365× 10−6RM

× (−2.3469× 105RM+ 4.6022× 104 + 4.9226× 103AGE− 3.3640× 106)

− 24.973

Figure 3.1.: Example for a simple symbolic regression model and the equivalent expres-
sion in mathematical notation.

The task of symbolic regression is a very constrained and simple task for genetic
programming. Symbolic regression is thus often studied in the literature as a test-bed
for new operators and other extensions of GP. The scope of problems that can be solved
by genetic programming is however much broader. As an example genetic programming
was used to evolve classification algorithms [154]. It has to be noted, that in this approach
general classification algorithms were evolved instead of classification models for a specific
classification problem. In another case GP was used to automatically fix software bugs
[68, 227]. In this approach genetic programming was used to evolve a bug fix in the form
of a patch file for the originally incorrect source code based on a number of test cases
that specified the correct behavior of the software routine. These are two examples for
the power of genetic programming and are in a way more prototypical for GP than the
comparatively simple task of symbolic regression. This thesis is nevertheless concerned
mainly with symbolic regression and the application of symbolic regression for system
identification in real-world applications.

Symbolic regression is especially useful when no or only little information about the
studied system is available because GP simultaneously evolves the necessary structure
and parameters of the model. This is an advantage compared to other regression methods
where the model structure is often fixed and only the parameters of the model are
estimated.

3.4.2. Overfitting

Overfitting can also occur in symbolic regression [220], however, the issue of generaliza-
tion in GP has not yet been discussed as intensively as in the machine learning com-
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munity [59], [148]. Frequently only the training quality of models generated with GP
is reported, even though it has been shown repeatedly that this approach methodically
invalid and might lead to overfit models that do not generalize well to new observations
[83].

It can be argued that compact symbolic regression models that describe a functional
relation between the input variables and the target variable are unlikely to overfit on
the training. However, it has been shown that this is not true in the general case, very
compact solutions can also be less robust concerning the generalization behavior as has
been suggested by [56].

One approach that has been used to reduce overfitting in symbolic regression is to
use an internal validation set on which all solutions of the population are evaluated. A
solution that has a comparable accuracy on the training and validation set is returned as
the final result [73, 232, 231]. This approach can been extended to a solution archive in
which Pareto optimal (quality and size) solutions on the validation set are kept [193, 180].
The result of the GP run is the set of solutions in the archive. The advantage of this
approach is that an appropriate model can be selected a-posteriori.

It is generally assumed that bloat and overfitting are related. However, it has been
recently observed that overfitting can occur in absence of bloat, and vice versa. Thus, it
has been suggested that overfitting and bloat are two separate phenomenons in genetic
programming [220], [190].

3.5. Offspring Selection

A nice description of offspring selection comparing it to similar approaches has been
given by the author in [107]:

Offspring selection [2, 3] is a generic selection concept for evolutionary algo-
rithms that aims to reduce the effect of premature convergence often observed
with traditional selection operators by preservation of important alleles [4].
The main difference to the usual definition of evolutionary algorithms is
that after parent selection, recombination and optional mutation, offspring
selection filters the newly generated solutions. Only solutions that have a
better quality than their best parent are added to the next generation of the
population. In this aspect offspring selection is similar to non-destructive
crossover [194], soft brood selection [10], and hill-climbing crossover [149].
Non-destructive crossover compares the quality of one child to the quality
of the parent and adds the better one to the next generation, whereas off-
spring selection generates new children until a successful offspring is found.
Soft brood selection generates n offspring and uses tournament selection to
determine the individual that is added to the next generation, but in compar-
ison to offspring selection the children do not compete against the parents.
Hill-climbing crossover generates new offspring from the parents as long as
better solutions can be found. The best solution found by this hill-climbing
scheme is added to the next generation. The recently described hereditary
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selection concept [138, 137] also uses a similar offspring selection scheme in
combination with parent selection that is biased to select solutions with few
common ancestors.

Offspring selection can be controlled via two parameters, namely the comparison factor
and the success ratio. The comparison factor is used in the success criterion and defines
a threshold for the fitness of the offspring based on the two fitness values of the parents.
The comparison factor is ∈ R, where a value of zero sets the threshold to the minimal
fitness of all parents, and value of one sets the threshold to the maximal fitness of all
parents. The success ratio is the target ratio of successful offspring in the population and
is a value in the range [0 . . . 1]. With offspring selection new individuals are generated
through crossover and mutation until the population can be filled with the correct ratio
of successful and unsuccessful offspring as defined by the success ratio. A success ratio
of one means all offspring must be successful. Strict offspring selection denotes offspring
selection with a comparison factor of one and a success ratio of one, which means that
all new offspring must have strictly higher fitness than their parents.

Genetic programming with strict offspring selection has for instance been used to
produce highly accurate classifiers for medical datasets [231].

3.6. Genetic Programming with HeuristicLab

HeuristicLab is a software environment for heuristic optimization. It has been developed
by members of the research group “Heuristic and Evolutionary Algorithms Laboratory”
(HEAL) in Hagenberg. The chief architect of HeuristicLab is Dr. Stefan Wagner who
also designed and implemented the core framework [224]. HeuristicLab is open source
software and can be downloaded from http://dev.heuristiclab.com. The default
installation of HeuristicLab also includes a genetic programming framework which has
been implemented mainly by the author of this thesis and Michael Kommenda based on
an earlier implementation of Dr. Stephan Winkler [3]. All experiments in this work have
been prepared and executed with HeuristicLab. The GP implementation in HeuristicLab
deviates in a view aspects from other GP implementations. In the following sections the
specifics of the GP framework of HeuristicLab are described.

HeuristicLab is a generic environment for heuristic optimization in general and not
solely for genetic programming. Two important concepts in HeuristicLab are algorithms
and problems. A given problem can be configured and loaded into an algorithm, which
can then be used to find a solution for the problem. The framework is designed in
a way to make it possible to combine problems and algorithms freely. The default
installation provides a number of different algorithms for heuristic optimization including
genetic algorithm, evolution strategy, tabu search, simulated annealing, local search.
GP problems like symbolic regression are implemented as problems using a symbolic
expression tree encoding for Koza-style (tree-based) genetic programming. A symbolic
regression problem can be solved for instance with the predefined genetic algorithm.
HeuristicLab does not provide an algorithm specifically for genetic programming.
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The GP framework in HeuristicLab is not strongly typed. Functions of different types
must be defined explicitly in the function set, and the compatibility of functions of
different types must be represented through syntactic rules. The set of all syntactic
rules defines a context free grammar for symbolic expression trees. This grammar is not
used to transform a linear representation to a symbolic expression tree as in grammar-
based GP systems. Instead the grammar only defines the possible and valid tree shapes.
Operators acting on symbolic expression trees always produce grammatically correct
expressions.

The symbolic regression implementation in HeuristicLab does not support “ephemeral
random constants” [101] (ERC) as described by Koza. In the original formulation of
symbolic regression ERC are random constants that are added to the terminal set ad-
ditionally to variable symbols for each input variable. The ERC are initialized at the
beginning of the GP run and are not adapted over the GP run. GP can generate ar-
bitrarily complex expressions to combine ERCs, so almost all possible constant values
can be generated through combination of the available ERCs. In HeuristicLab constant
values are directly embedded in symbolic expressions trees and are adapted over the GP
run through manipulation operators similar to operators described in [183] .
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4. Interpretation and Simplification of
Symbolic Regression Solutions

Knowledge discovery is hindered by overly complicated models. The bloating effect
of genetic programming leads to unnecessarily complex solutions which are difficult to
understand and validate. Bloat is an important open topic in genetic programming [166]
and a number of different theories for the cause of bloat and various methods to control
bloat have been described in the literature [129, 188]. If genetic programming is used
for data mining and knowledge discovery effective methods to improve parsimony and
comprehensibility of GP solutions are necessary.

This topic should be addressed via multiple paths. Prevention, active reduction, and
support for interactive exploration.

4.1. Bloat Control - Searching for Parsimonious Solutions

This section describes and compares algorithmic changes to genetic programming which
lead to more compact and comprehensible final solutions. The different approaches are
tested on a set of symbolic regression problems and compared regarding the solution
quality on the test set and solution complexity. Initially two algorithms Koza-style
standard GP and GP with offspring selection [2, 3] both without limits on the solu-
tion size or depth are compared. Both algorithms are then extended by the following
approaches: static size and depth limits, dynamic depth limits, pruning, and dynamic
operator equalization.

In the experiments in this chapter we are mainly concerned about methods to limit
the size of solutions. It is possible that a deterioration in best solution quality is incurred
by such methods as the search space is restricted. In this section we also always compare
the best solution quality of each bloat control technique to the solution quality obtained
with the reference algorithm. Best solution quality is measured on the training data only.
The quality of solutions on a hold out set might differ significantly from the training
quality especially if overfitting occurs. Regardless of overfitting the training quality vs.
solution length ratio is an indicator for the complexity of solutions in the population
and as such also relates to the complexity of a solution which is finally selected by a
validation procedure. The validation procedure is necessary in any case regardless of the
constraints applied to the GP process to search for compact solutions. Chapter 5 treats
overfitting and countermeasures in more detail.
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4.1.1. Static Depth and Length Limits

The initial generation of the population is filled with randomly created solutions which
follow a certain size or depth distribution. The distribution depends on the operator
that is used for initialization. In the following generations the growth of solutions can be
limited by setting a static length or depth limit for the crossover and mutation operators.
In the crossover operator the newly created trees are checked if they exceed the size or
depth limit and if this is the case, a new offspring is created using the same parents. If
it is not possible to create a new child which is smaller than the limit, one of the parents
is used after a certain number of tries [101].

Static depth or length limits are a simple way to prevent unlimited growth of GP
individuals. Static depth limits have been used already in [101] to limit the growth of
GP trees. In the same work a rather large depth limit of 17 levels is used for most
problems suggesting that it is sufficient to solve most problems.

Static limits are problematic when the average size of the population converged near
the limit in later stages of the run. At that point it becomes increasingly hard for the
crossover operator to produce improved offspring because the number of valid crossover
points is highly restricted. A surprising result is that static size limits might even increase
bloat as stated by Dignum and Poli: “[...] size limits effectively increase the tendency
to bloat since they induce more sampling of short programs, and, so, in the presence
of non-flat fitness landscapes, GP populations rush towards the limit even more quickly
than in the absence of the size limit!” [53].

4.1.2. Parsimony Pressure

Parsimony Coefficient

One way to apply parsimony pressure to a population of individuals is to select parents
based on an adjusted fitness value that takes the individuals size into account [101, 239].
Formally the adjusted fitness is

fadj(i) = f(i) + c`(i) (4.1)

where f(i) is the raw fitness of the individual i and `(i) is the size of the individual. The
parsimony coefficient c is a constant value that determines the relative importance of
the size in comparison to the raw fitness. The correct value for c is problem-dependent
and it is rather difficult to find a good setting for parsimony coefficient. Intuitively it
might also be beneficial to adjust c dynamically so that at a later stage of a GP run
the value is different from the initial value. Thus a dynamic adjustment strategy for the
parsimony coefficient has been introduced through which full control over the program
length in a GP run can be exerted [163].

Covariant Parsimony Pressure

In covariant parsimony pressure [163] the parsimony coefficient is adapted based on
the covariance of the individual fitness with its length. covariant parsimony pressure is
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theoretically motivated and derived from the size evolution equation [162]

E[µ(t+ 1)] =
∑

l

S(Gl)p(Gl, t), (4.2)

which describes the dynamics of expected average program size in GP. It expected mean
size of programs µ at generation t + 1 is the sum over all possible program shapes l,
where S(Gl) is the size of programs in the set Gl of all programs of with l. p(Gl, t) is the
probability of selecting programs from set Gl from the population at generation t [163].

Rewriting equation 4.2 Poli and McPhee arrive at

E[∆µ] =
Cov(`, f)

f(t)
, (4.3)

which shows that equation 4.2 is related to Price’s theorem [168]

∆Q =
Cov(z, q)

z
, (4.4)

which describes the dynamics of inheritable traits in biological evolution. This is quite a
remarkable result as it connects GP schema theory to a theorem of biological evolution
proving at the same time Price’s theorem [163].

Based on this equation Poli and McPhee derive a number of different control strategies
for the parsimony coefficient to control the dynamics of the average program size over a
GP run. To hold the average size constant from one generation to the next the adjusted
fitness function 4.5 should be used.

fadj(x, t) = f(x)− c(t)`(x, t)

c(t) = Cov(`, f)/Var(`)
(4.5)

It has been shown that the average length of individuals in the population can be
tightly controlled through covariant parsimony pressure and that the target average
program length can be controlled to follow a given function over the GP run (e.g. sine).

Poli and McPhee have suggested to turn covariant parsimony pressure on and off at
specific generations of a GP run and to let the population grow freely in between phases
where parsimony pressure is applied [163]. This suggestion is taken up in this work in
Chapter 5 where we introduce a novel overfitting prevention mechanism which activates
covariant parsimony pressure only when overfitting is detected in a GP run. The idea is
that in an overfitting phase the average length of programs in the generation should not
grow. At such stages covariant parsimony pressure can be used, to keep the average code
length constant or gradually reduce the average program size. As long as no overfitting
occurs, parsimony pressure is deactivated and the population is allowed to grow freely.

With parsimony pressure there is a risk that selection probability becomes mainly
driven through the parsimony pressure and the fitness of the individual is less relevant.
If this happens it is expected that the final solution quality produced by such runs is worse
than the solution quality that would be achieved with hard limits. In [163] it has been
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shown for simple regression problems (single-variate polynomial of 6th degree and 9th
degree) that solution quality is not negatively effected by covariant parsimony pressure.
Such polynomial functions are often used as benchmark problems for symbolic regression
but they are only very simple test cases. It has not yet been analyzed how covariate
parsimony pressure works for real world problems. In this work we also apply covariant
parsimony pressure on real word problems; the experimental results are presented later
in this chapter.

The theory behind covariant parsimony pressure is based on fitness proportional se-
lection. In [163] it has been demonstrated that for benchmark problems the method
also works when tournament selection with group size of two is used. We observed that
with tournament selection the trajectory of average program sizes are not as stable as
with proportional selection. In particular, because the average program size can only be
controlled to assume a given value in expectations there are fluctuations in the actual
average program size. The fluctuations can have the effect that the whole population
is forced down to the minimal program size in only a few generations in extreme cases.
We observed such effects especially when combining covariant parsimony pressure with
tournament selection, however, we did not pursue this yet, further experiments are nec-
essary. In the experiments presented later in this section we used fitness proportional
selection only in combination with covariant parsimony pressure.

Lexicographic Parsimony Pressure

In [128] a variant of tournament selection has been described which select individuals not
only based on their fitness but also on their size. Lexicographic tournament selection
works in the same way as tournament selection, only that it prefers individuals with
smaller size if they have the same quality. It has been suggested in [129] that a large
number of different fitness values are possible in symbolic regression because changes
in the lowest parts of the trees cause minor changes in fitness. Two bucketing vari-
ants have been proposed for such situations [128]. Individuals are assigned to buckets
based on their fitness and individuals from the same bucket are treated in lexicographic
tournament selection as if they have the same fitness value.

In this work lexicographic tournament selection is not analyzed in greater detail. In
most experiments presented in the following sections, standard tournament selection is
used and bloat is controlled by other mechanisms.

4.1.3. Dynamic Depth Limits

Recent work describes how depth-limits can be varied dynamically based on fitness
[188]. Initially the dynamic depth limit (DDL) is set to small value. When a new best
solution is found which exceeds the dynamic depth limit it is set to the depth of the
new best solution. If the best solution is smaller than the dynamic depth limit it can be
decreased again. In this case some individuals in the current population might exceed
the depth limit. Through the application of crossover, however, the individuals of the
next generation are limited to the new reduced depth limit. If no reproduction is used
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the depth of all individuals of the next generation is within the depth limit, otherwise
a few generational steps are necessary until all individuals of the population are within
the bounds again.

The advantage of dynamic depth limits in comparison to static limits is that the limit
is adapted by the algorithm as necessary for the problem. In the case of static limits
solutions exceeding the limit are rejected in all cases even when they improve the best
known solution. With dynamic depth limits the limit is adapted accordingly when a new
best of run solution is found. Even though program growth is not prohibited because
the dynamic limit can potentially be extended, the approach still effectively prevents
program growth which is not matched with a proportional improvement in solution
quality.

Dynamic Depth Limits for Offspring Selection

Dynamic depth limits have been combined with offspring selection [238]. For each newly
created offspring first the offspring selection success criterion is checked. If the offspring
is successful, the dynamic depth limit is adapted based on the quality and the depth
of the offspring. The dynamic depth limit is decreased if the offspring has a smaller
depth and is better than the best solution (on the training) so far. All offspring not
exceeding the depth limit are accepted. If offspring exceeds the dynamic depth limit
then it is only accepted if it has better quality than the best solution so far. In this
case the dynamic depth limit is set to the depth of the new offspring and the offspring is
accepted. If the offspring exceeds the depth limit and it is worse than the best solution
so far then the offspring is rejected. In order to prevent fluctuations in the dynamic
depth limit any increase or decrease of the dynamic depth limit must be backed by a
significant improvement in solution quality. This can be controlled via parameters clower

and cRaise. Zavoianu suggests values of 3% and 1.5%, respectively [238].

Algorithm 1 describes how the dynamic depth limit is adapted based on the depth
and quality of a newly created offspring. This algorithm is derived from the original
formulation of DDL [186, 188].

In [238] OSGP with dynamic depth limits has been applied to two real world problems
and it has been shown that the dynamic depth limit leads to smaller final solutions with
comparable model quality. In this work we compare the final solutions produced by
SGP and OSGP, both extended with dynamic depth limits on benchmark problems and
additional real world problems.

In the original formulation of Silva and Costa [188] an offspring is replaced by one
of its parents, if it is rejected because of the dynamic depth limit. In the adaption
for offspring selection [238] this is not the case. Instead new parents are selected and
crossover is applied again. The strategy potentially amplifies the effect of crossover bias.
It has been suggested that it is better to accept the parents if crossover produces illegal
offspring [188].

39



Algorithm 1: Dynamic depth limits for offspring selection

if SuccessfulOffspring then
if Maximization then

relativeQuality ← (quality / bestQuality) - 1 ;
else

relativeQuality ← (bestQuality / quality) - 1;
end
if treedepth ≤ ddl then

// depth is smaller than dynamic limit => reduce limit if the

quality improvement is large enough

if relativeQuality ≥ cLower(ddl − treedepth) then
ddl ← Max(treedepth, InitialDepthLimit);

end

else
// depth is larger than dynamic limit => increase limit if

the quality improvement is large enough

if relativeQuality ≥ cRaise(treedepth − ddl) then
ddl ← treedepth;

else
// depth is larger but no improvement => reject

SuccessfulOffspring ← false;
end

end

end
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Parameter Value

Population size 500
Generations 50
Selection Offspring selection

50% Proportional
50% Random
Comparison factor = 1.0
Success ratio = 1.0

Replacement Generational
1-Elitism

Initial length 3 . . . 100
Initial depth limit 7
Max depth limit 25
Static size limit 1000
Crossover Sub-tree swapping
Mutation Single-point

Replace branch
Mutation rate 15%
Function set +, -, x

y ,×
Fitness function R2

Table 4.1.: Parameter settings for the OSGP-DDL experiments.

4.1.4. Experiments

We applied OSGP with DDL (OSGP-DDL) on three different datasets. Friedman-I (see
A.3.1) and Breiman-I (see A.3.1) are artificial datasets. The Breiman-I function includes
a conditional and is harder to approximate with symbolic regression than the Friedman-I
function. The Chemical-I dataset (see A.3.2) is a dataset from a real world industrial
chemical process. Table 4.1 shows the GP parameter setting for the experiments. The
results are compared to the results of OSGP with static limits on the same datasets (see
4.1.7).

Results

In Figure 4.1 the change in best solution quality and the amount of bloat shown for
three datasets Friedman-I, Breiman-I, and Chemical-I. The amount of bloat relates the
average quality f(g) at generation g with the average tree length l(g) at generation g
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and is calculated using equation 4.6 [220] (also see Chapter 3).

bloat(g) =
∆l(g)

∆f(g)

∆f(g) =
f(g)− f(0)

1 + f(0)

∆l(g) =
l(g)− l(0)

l(0)

(4.6)

In all experiments in this chapter we are mainly interested in the fitness on the training
set. All qualities that are reported in the results are the squared correlation coefficient
(R2) on the training set. In Chapter 5 more experiment results are presented that focus
on the generalization ability of different GP configurations.

Figure 4.1 shows that because of dynamic depth limits the amount of bloat is greatly
reduced in comparison to OSGP with static limits. The best solution quality is not
negatively effected by the application of dynamic depth limits.

The best solution quality and amount of bloat for the last generation are also given
in Tables 4.4, 4.5, and 4.6 later in this chapter.

4.1.5. Operator Equalization

Operator equalization is an bloat control measure motivated by the crossover bias the-
ory of bloat [54]. To counteract the bias of crossover to produce more smaller offspring
an equalization step is introduced after crossover. Offspring created from crossover are
filtered before they are accepted into the next generation of the population. Algorithm
2 shows the general method of filtering offspring based on an acceptance criterion. Off-
spring selection, dynamic depth limits, and operator equalization all plug into the GP
process in the same way repeatedly creating new offspring until the population is full.

Algorithm 2: Filtering of offspring in the formulation of dynamic depth limits
and operator equalization

while Population is not full do
Select parents;
Create offspring;
if Accept(offspring) then

Add offspring to next generation of population;
end

end

The difference lies in the way how the acceptance criterion is defined. In the case of
operator equalization the filter effectively controls the length distribution of individuals
in the population by limiting the number of individuals of a given size in the population.
The basis of operator equalization is a target length distribution histogram. Individuals
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Figure 4.1.: Best solution quality and bloat comparison of OSGP with static limits and
OSGP with dynamic depth limits (average values over thirty independent
runs, x-axis is generation index).
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are grouped by length into several bins using equation 4.7. The number of individuals
that can be accepted into each bin is limited by a static bin capacity. The target size
distribution of solutions in the population can be configured freely through manipulation
of the bin capacities.

b ← btreelength − 1

binSize
c+ 1 (4.7)

It has been shown empirically that genetic programming with operator equalization is
bloat free [54]. This is strong empirical evidence for the crossover bias theory of bloat. It
should be noted that individuals are evaluated only after they have been accepted into
the population by the equalization filter, otherwise a lot of effort is wasted evaluating
individuals which are discarded by the equalization filter after fitness evaluation.

Dynamic Operator Equalization

Operator equalization is a method to control the length distribution of individuals in
the population exactly by filtering offspring based on their length. The weakness of
operator equalization is that the target distribution and the maximal size limit which
is appropriate for a given problem is not known a-priori. Thus the method has been
improved to adapt the target distribution and the maximal size limit dynamically based
on the fitness and length of individuals in the population [188, 189, 190, 191].

Dynamic operator equalization combines dynamic depth limits and operator equal-
ization. Instead of the static target distribution the initial target distribution is created
with bin capacities to hold all solutions of the initial generation. In the following gener-
ations the bin capacity is adapted based on the average fitness of solutions in each bin in
relation to the average fitness over the whole population using equation 4.8. The capac-
ity of bins, that hold individuals that are fitter on average than the whole population,
is increased while the capacity of bins, that hold individuals that are on average worse
than the population, is accordingly decreased.

binCapacityi = round(PopSize f i/
∑

j

f j) (4.8)

The algorithm for acceptance of an offspring is shown in Algorithm 3. For each new
offspring the target bin is determined based on its length. The offspring is accepted
into the population only when the bin is not yet full. The only exception is if the new
offspring has a better fitness than the best solution in that bin so far. In this case the
offspring is accepted even though the bin is already full and the capacity of the bin is
increased.

The acceptance criterion shown in Algorithm 3 combined with the adaption of bin
capacities leads to dynamic adaption of the target distribution based on solution fitness.
Similarly to dynamic depth limits dynamic operator equalization an extension of the size
distribution is possible when a new best of run solution is found for which a bin does
not yet exist. In this case a new bin of capacity one is created and the solution is added
to the bin. If necessary bins in between the newly created bin and the last existing bin
are created with a capacity of one.

44



Algorithm 3: Acceptance criterion of dynamic operator equalization

input : b: bin index, tree: current offspring

accept ← false;
if Exists(b) then

// increase bin count of bin b when tree is accepted

if IsNotFull(b) or NewBestOfBin(tree) then
AddToBin(b, tree);
accept ← true;

end

else
// add new bins when a larger best-of-run tree is found

if NewBestOfRun(tree) then
CreateBin(b);
AddToBin(b, tree);
accept ← true;

end

end

It has been observed that for some problems a large number of surplus evaluations
are necessary before the population can be filled [189]. In contrast to the static operator
equalization in the original formulation of dynamic operator equalization all individuals
are also evaluated in order to accept best-of-bin individuals. This has the effect that
many solution candidates are evaluated first before they are rejected. To reduce the
number of fitness evaluations of individuals that are rejected anyway Silva and Dignum
suggest to change the process to discard individuals for which a bin exists but is already
full in all cases. Individuals for which a bin does not yet exist are evaluated and a new
bin is created if a new best of run solution is found. This has the drawback that some
solutions are rejected without evaluation and this could lead to rejection of best-of-run
individuals. The benefit, however, is a large performance gain.

Recently a different approach to improve performance in dynamic operator equal-
ization has been proposed [190]. Here the number of evaluation is reduced through
dynamically mutating individuals until they fit an empty bin. The results suggest that
the mutation approach is better when overfitting occurs [190]. In this work we do not
treat mutation operator equalization in depth.

Dynamic Operator Equalization and Offspring Selection

The formulation of dynamic operator equalization resembles offspring selection in that
newly created offspring are filtered. The difference is that the filter which is defined over
the parents of the offspring in the case of offspring selection is instead defined over the
target distribution and its current fill level in the case of dynamic operator equalization.
It is tempting to try to combine offspring selection and dynamic operator equalization.
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Algorithm 4 describes the combined method of offspring selection and dynamic operator
equalization. The difference to the original formulation of dynamic operator equalization
is that individuals are accepted only if they meet the offspring selection success criterion.
For each offspring first the bin of the offspring is checked. If a bin already exists and
it is not full then the individual is evaluated and accepted if it meets the OS success
criterion. If the bin is already full the offspring is discarded without evaluation. If the
bin does not yet exist the individual is evaluated and accepted if it is the new best of
run individual. The target distribution is extended if necessary.

Algorithm 4: Acceptance criterion of dynamic operator equalization with off-
spring selection

input : b: bin index, tree: current offspring
accept ← false;
if Exists(b) then

if IsNotFull(b) and MeetsSuccessCriterion(tree) then
AddToBin(b, tree);
accept ← true;

end

else
if NewBestOfRun(tree) and SignificantImprovement(tree) then

CreateBin(b);
AddToBin(b, tree);
accept ← true;

end

end

Experiments

We applied SGP with dynamic operator equalization (SGP-DynOpEq) on three datasets
to analyze the ability of the method to control bloat. The algorithm has been applied
to the same three datasets as in the previous experiments (Breiman-I, Friedman-I, and
Chemical-I). Additionally we also executed GP runs with covariant parsimony pressure
(SGP-CPP) on the same datasets for comparison. The results of both algorithms are
compared to SGP with static limits (SGP-static) and SGP with dynamic depth limits
(SGP-DDL). Table 4.2 lists the parameter settings for SGP-DynOpEq, SGP-DDL, and
SGP-CPP. The parameter settings for SGP-static are given in Table 4.3 the static length
limit is 250 nodes and the static depth limit is 17 levels.

Results

Figure 4.2 shows a comparison of the best solution quality and bloat behavior for SGP
with static size constraints (SGP-static), SGP with dynamic operator equalization (SGP-
DynOpEq), SGP with dynamic depth limits (SGP-DDL), and SGP with covariant par-
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Parameter SGP-DynOpEq SGP-DDL SGP-CPP

Population size 2000 2000 2000
Generations 50 50 50
Selection Tournament Tournament Tournament
Group Size 7 7 6
Replacement Generational Generational Generational

1-Elitism 1-Elitism 1-Elitism
Initial length 3 . . . 100 3 . . . 100 3 . . . 150
Initial depth 1. . .7 1. . .7 1. . .8
Max depth limit 25 25 25
Static size limit 1000 1000 1000
Crossover Sub-tree swapping Sub-tree swapping Sub-tree swapping
Mutation Single-point Single-point Single-point

Replace branch Replace branch Replace branch
Mutation rate 15% 15% 15%
Function set +, -, x

y ,× +, -, x
y ,× +, -, x

y ,×
Fitness function R2 R2 R2

Table 4.2.: Parameter settings for SGP-DynOpEq, SGP-DDL, and SGP-CPP
experiments.

simony pressure (SGP-CPP) for three problems. The results shown are average values
over thirty independent GP runs for each configuration.

The bloat limiting effect of dynamic operator equalization can be clearly seen in the
charts. Both SGP-DynOpEq and SGP-DDL result in a significant reduction in bloat
compared to SGP-static. Notably in the first generations the amount of bloat is higher
with DynOpEq, because the average program size is quickly increased to a certain level,
while the average quality does not improve so quickly. With SGP-DDL there is a con-
tinuous but slow increase bloat even at the later stages of the GP run. In comparison
the amount of bloat does no increase in the later stages of the GP runs with DynOpEq.

The effect that the average solution size decreases in the early stages of the run
while the average quality improves, that can be often observed for symbolic regression
problems, is completely removed by operator equalization. In terms of solution quality
the application of dynamic operator equalization causes a slight deterioration in solution
quality compared to SGP-static. The same deterioration can also be observed for SGP-
DDL. Covariant parsimony pressure does not bloat at all but also produces significantly
worse solutions. This is likely caused by the combination of tournament selection with
covariant parsimony pressure, this effect should be analyzed in further experiments.

The results are also summarized in Tables 4.4, 4.5, and 4.6.
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Figure 4.2.: Best solution quality and bloat comparison of SGP-static, SGP-DynOpEq,
SGP-DDL, and SGP-CPP (average values over thirty runs, x-axis shows
generation index).
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4.1.6. Pruning to Reduce Bloat

Pruning in tree-based genetic programming means to remove branches from GP solu-
tions that have no or only minimal effect on the quality of the solution. Pruning is also
frequently used in other learning methods with tree-based model representation for in-
stance CART [28] and MARS [71], where it is often used to reduce overfitting. Pruning
can be used to reduce bloat by removing inviable code from individuals over the whole
population [8, 3, 97]. To make pruning viable it must be possible to determine the effect
of removing a branch efficiently. For some GP problems it is possible to determine the
effect of branch-removal statically without fully evaluating the individual. For instance
for the artificial ant problem turning left and in the next operation turning right is unop-
timized code which can be removed because through semantic analysis this is obviously
useless. Similar patterns can be defined for symbolic regression (e.g. x * 0). However,
the impact of static pruning is limited since the number of such patterns is very large
and it is practically impossible to define all patterns which might lead to inviable or
unoptimized code. In the case of symbolic regression the relevance of branches can be
determined by comparing the output of the original tree with a pruned tree. If the
output of the pruned tree is almost the same then the pruned tree still contains the
important code.

When pruning is included into the GP process a number of aspects must be considered.
Since pruning is applied frequently it should be rather efficient so that the process does
not become too slow. Also pruning should not remove too much genetic diversity. We
observed that a certain amount of unoptimized code in the population is necessary for
the evolutionary process. If pruning is applied too vigorously there is a risk of premature
convergence because of the sudden reduction of genetic diversity.

In practical applications we found a greedy pruning strategy based on branch impact
metrics (see Section 6.2.6) shown in Algorithm 5 to work sufficiently well. The greedy
method evaluates all branch impacts and then removes the branch with smallest impact
preferring larger branches. This is done iteratively until a maximal quality deterioration
is reached or the size of the tree has been reduced by a certain factor. A similar approach
for numerical simplification based on a number of additional metrics for the relevance of
tree-branches is proposed in [97, 88].

The disadvantage of the greedy pruning strategy is that certain types of unoptimized
code cannot be detected or removed. Since the method removes one branch at a time
it is not possible to detect cases of interaction between two separate branches, where
removing one of them causes a big change in solution quality, even though removing
both simultaneously would not change the quality at all. Such cases are however rather
difficult to detect and can practically only be removed through exhaustive methods which
cannot be included in the GP process because of performance considerations.

The calculation of the branch impact is rather expensive as the branch has to be eval-
uated to calculate a replacement value and then the manipulated tree must be evaluated
to determine the effect on the quality. To make the method more efficient, only a limited
number of branches is considered for removal in every iteration (tournament size) and
the branch as well as the manipulated tree are not evaluated on the full training set,
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Algorithm 5: Greedy iterated tournament pruning

Data: t: original tree, iterations, groupSize
Result: prunedTree
prunedTree ← tree;
while c ≤ iterations do

B ← SelectRandomBranches(prunedTree, groupSize);
prunedBranch ← argminb∈B Impact(b) / RelativeSize(t,b);
Inc(c);

end

RelativeSize(t, b) = Size(t)/(Size(t)− Size(b))

but instead only on a limited number of random samples from the training set. This is
especially important if the training set contains a large number of samples.

4.1.7. Does Offspring Selection Reduce Bloat?

Offspring selection with strict parameter settings enforces that newly created offspring
must improve upon its parents quality. Because of this, offspring selection should in-
tuitively have a limiting effect on bloat because it has a negative bias against introns
(inviable code). In the light of crossover bias theory [164, 52], however, there is no
indication that offspring selection should reduce bloat. Instead the effect of crossover
bias could be amplified, because parent selection and crossover are executed repeatedly
until the population can be filled with successful offspring. Sub-tree crossover produces
more smaller offspring then larger offspring. Smaller offspring tendentially have lower
fitness. This leads to a bias to accept more larger offspring into the population. If
sub-tree crossover is repeatedly applied until a successful individual is found the effect of
crossover bias is amplified. In this work the hypothesis that OS reduces bloat is tested
for the first time and the effect of offspring selection on bloat is analyzed.

In symbolic regression inviable code is unlikely to occur if function sets with only
arithmetic operators are used [186, 187]. The bloating effect is caused mainly by the
growth of unoptimized code. If conditional and boolean functions are included in the
function set, inviable code can be produced by the process much more easily. In light of
these observations, we also compare the amount of bloat of both SGP and OSGP with a
small function set including only arithmetic operators and with an extended function set
also including conditionals and boolean operators. If the hypothesis holds that offspring
selection reduces bloat because of its bias against inviable code, then the difference in
bloat between OSGP and SGP should be even larger with the extended function set.
The amount of bloat observed with the extended function set should be smaller than
the amount of bloat observed with the arithmetic function set.

50



Parameter SGP OSGP

Population size 2000 500
Generations 50 50
Selection Tournament Selection Offspring selection

Group size = 7 50% Proportional
50% Random
Comparison factor = 1.0
Success ratio = 1.0

Replacement Generational Generational
1-Elitism 1-Elitism

Initial length 3 . . . 100 3 . . . 100
Max. initial depth 12 12
Crossover Sub-tree swapping Sub-tree swapping
Mutation rate 15% 15%
Mutation Single-point Single-point

Replace branch Replace branch
Fitness function R2 R2

Table 4.3.: Genetic programming parameter settings for the analysis of bloat in SGP
and OSGP.

Experiment Setup

Two types of experiments are executed. First standard GP (SGP) and GP with offspring
selection (OSGP) are applied to a number of test problems without constraints on the
program size. Then the same experiments are repeated with static size limits for both
algorithms.

In the experiments without size constraints four different configurations are tested:
SGP with arithmetic functions only (SGP), SGP with an extended function set in-
cluding conditionals and boolean operators (SGP-full), OSGP with arithmetic functions
(OSGP), and OSGP with the extended function set (OSGP-full).

Additionally the four same experiments are also executed using static depth and length
limits (SGP-static, SGP-static-full, OSGP-static, and OSGP-static-full). The parameter
settings of both algorithms are given in Table 4.3. For the experiments without size
constraints the depth and length limits are set to very large values (100, 100000) to
make sure that the limit is not reached over the whole run. For the experiments with
static constraints the depth limit was set to 17 levels and the length limit was set to 250
nodes.

For the experiments we use three different datasets. Friedman-I (see A.3.1) and
Breiman-I (see A.3.1) are artificial datasets. The Breiman-I function includes a con-
ditional and is harder to approximate with symbolic regression than the Friedman-I
function. The Chemical-I dataset (see A.3.2) is a dataset from a real world industrial
chemical process.
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Results

The results presented below show the trajectories of the best solution quality and the
amount of bloat (see 3) over the whole run averaged over thirty independent runs.

Results Without Size Limits

Figure 4.3 shows the best quality and amount of bloat for the Friedman-I, Breiman-I,
and Chemical-I datasets without limits on the program length or depth.

OSGP produces better solutions than SGP for all problems especially with the ex-
tended function set (OSGP-full). Surprisingly OSGP-full also bloats fastest with the
Friedman-I and Chemical-I datasets. With the Breiman-I dataset OSGP using only
arithmetic functions bloats fastest. In general OSGP bloats fastest with all datasets.
Even though it produces better solutions, the larger growth in solution length is not
matched by a proportional growth in solution quality.

Another interesting observation is that OSGP bloats faster with the full function set
than with the arithmetic function set. With the full function set inviable code is much
more likely than with the arithmetic function set. Even though strict OSGP as it is used
in this experiment has a bias against inviable code the bloating effect is stronger. This
contradicts the hypothesis that OSGP reduces bloat because of a bias against inviable
code.

The Breiman-I function includes a conditional and is more difficult to approximate
with GP. This can also be observed in the results of the experiments.

The results for the final generation are also given in Tables 4.4, 4.5, and 4.6 that show
a comparison of all experiment results in this chapter for all datasets.

Results With Static Size Limits

Figure 4.4 shows the best quality and amount of bloat for the Friedman-I, Breiman-I
and Chemical-I problems with static limits on the program length and depth. The static
limits for length and depth are 250 nodes and 17 levels, respectively.

The results are similar to the results of the experiments without size limits. OSGP
produces solutions with a higher fitness than SGP especially when using the full func-
tion set. OSGP-full also bloats faster than the other configurations with all datasets.
Compared to the results without size constraints the amount of bloat is less for all con-
figurations because of the size constraints but the relative differences between algorithms
are similar.

For the Breiman-I problem the configurations with the full function set bloat faster
than the configurations with only arithmetic functions. Notably, SGP-full bloats pro-
duces more bloat than OSGP with the small function set for this dataset.

The results for the final generation are also given in Tables 4.4, 4.5, and 4.6.
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Figure 4.3.: Best quality and bloat of SGP and OSGP without size limits (average values
over thirty independent GP runs, x-axis shows number of generations).
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Conclusion

Interpreting the results of the experiments shown in Figures 4.3 and 4.4 the intuitive
assumption that offspring selection reduces bloat does not hold. Instead we observed
that average program length grows faster when offspring selection is used, both with
and without size constraints. The average quality of solutions is higher when offspring
selection applied but this is combined with a disproportional increase in solution size.
This has also been suggested already in [238]. The results of these experiments provide
additional evidence for the crossover bias theory of bloat.

4.1.8. Multi-objective GP

Multi-objective optimization approaches have also been used for bloat control [22, 45,
44, 153]. Instead of including the solution complexity as an penalization term into the
fitness value the multi-objective approach uses a multi-dimensional fitness value which
includes a component for accuracy and a component for complexity. The aim of the
algorithm is to produce a Pareto-optimal front of solutions for both fitness components.

One of the most well known multi objective optimization algorithm is the non-dom-
inated sorting genetic algorithm (NSGA-II) [47, 48]. NSGA-II has for instance been
used for to search for parsimonious symbolic regression models in [94].

In this work we do not treat the topic of multi-objective optimization in full detail
and a single-objective GP algorithm is used for all experiments.

4.1.9. Summary of Results of Bloat Experiments

Tables 4.4, 4.5, and 4.6 summarize the results of all experiments with different bloat
control methods in this chapter. The results for SGP and OSGP without any constraints
on program size are also given for comparison. Size is the average program length in the
last generation. Best solution quality is the squared correlation coefficient (R2) in the
last generation on the training set. The bloat value is the value of the last generation
calculated using equation 4.6. All values are averages over 30 independent GP runs the
confidence interval is given for α = 0.05 and assumes normally distributed values.

4.1.10. Effects of Bloat Control on Genetic Diversity

Bloat control methods can have a strong effect on the dynamic of the GP process and
might interfere with genetic diversity. If the bloat control method causes a sudden
reduction of genetic diversity from one population to the next it is possible that this
ultimately leads to premature convergence. Issues regarding bloat control and genetic
diversity have been discussed in [239, 45, 44] and more recently also in [9]. If bloat
control measures are used it is recommended to also observe the genetic diversity in the
population and if necessary counteract loss (e.g. by increasing the mutation rate).
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Figure 4.4.: Best quality and bloat of SGP and OSGP with static size limits (average val-
ues over thirty independent GP runs, x-axis shows number of generations).
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Algorithm Size R2 (train) Bloat

SGP 888.5 ± 131.7 0.78 ± 0.01 47.93 ± 7.17
SGP-full 572.7 ± 112.2 0.77 ± 0.01 36.52 ± 7.35
OSGP 1,145.0 ± 163.2 0.80 ± 0.00 55.31 ± 8.09
OSGP-full 997.2 ± 231.2 0.81 ± 0.00 59.21 ± 14.15
SGP-static 196.6 ± 10.5 0.79 ± 0.01 10.26 ± 0.64
SGP-static-full 183.1 ± 14.1 0.78 ± 0.01 11.49 ± 0.97
OSGP-static 222.0 ± 7.5 0.81 ± 0.00 9.45 ± 0.34
OSGP-static-full 226.7 ± 10.3 0.82 ± 0.00 12.23 ± 0.63
OSGP-DDL 160.0 ± 20.1 0.82 ± 0.00 6.49 ± 1.00
SGP-DynOpEq 79.8 ± 5.7 0.78 ± 0.01 4.18 ± 0.51
SGP-CPP 32.5 ± 1.6 0.59 ± 0.01 −1.95 ± 0.05
SGP-DDL 96.2 ± 10.4 0.78 ± 0.01 4.32 ± 0.59

Table 4.4.: Summary of results of bloat experiments for the Breiman-I problem (averages
over 30 runs, confidence intervals for α = 0.05).

Algorithm Size R2 (train) Bloat

SGP 940.1 ± 120.8 0.80 ± 0.00 48.17 ± 6.08
SGP-full 581.1 ± 157.5 0.81 ± 0.00 35.09 ± 9.37
OSGP 1,115.1 ± 149.1 0.81 ± 0.00 54.72 ± 7.68
OSGP-full 1,139.7 ± 168.4 0.84 ± 0.00 64.58 ± 9.60
SGP-static 192.6 ± 10.4 0.80 ± 0.00 9.77 ± 0.65
SGP-static-full 180.9 ± 11.5 0.82 ± 0.01 10.36 ± 0.73
OSGP-static 219.6 ± 8.7 0.82 ± 0.00 9.56 ± 0.43
OSGP-static-full 216.6 ± 9.3 0.85 ± 0.00 11.11 ± 0.53
OSGP-DDL 79.0 ± 9.5 0.82 ± 0.00 2.56 ± 0.48
SGP-DynOpEq 50.6 ± 1.5 0.79 ± 0.00 1.64 ± 0.13
SGP-CPP 70.4 ± 3.0 0.76 ± 0.00 −0.60 ± 0.09
SGP-DDL 60.6 ± 8.9 0.79 ± 0.00 1.97 ± 0.52

Table 4.5.: Summary of results of bloat experiments for the Friedman-I problem (aver-
ages over 30 runs, confidence intervals for α = 0.05).
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Algorithm Size R2 (train) Bloat

SGP 655.1 ± 108.6 0.86 ± 0.00 31.13 ± 5.15
SGP-full 481.4 ± 83.1 0.84 ± 0.01 29.38 ± 4.96
OSGP 786.7 ± 108.4 0.86 ± 0.00 34.55 ± 4.75
OSGP-full 786.4 ± 125.0 0.86 ± 0.00 42.22 ± 6.61
SGP-static 166.2 ± 14.2 0.85 ± 0.00 8.05 ± 0.83
SGP-static-full 146.4 ± 12.4 0.84 ± 0.00 8.71 ± 0.83
OSGP-static 203.1 ± 11.3 0.87 ± 0.00 7.95 ± 0.52
OSGP-static-full 195.2 ± 13.9 0.87 ± 0.00 9.53 ± 0.76
OSGP-DDL 84.2 ± 10.5 0.87 ± 0.00 2.51 ± 0.45
SGP-DynOpEq 62.5 ± 3.6 0.84 ± 0.00 2.40 ± 0.26
SGP-CPP 92.2 ± 4.7 0.74 ± 0.02 0.03 ± 0.16
SGP-DDL 54.4 ± 7.4 0.84 ± 0.00 1.73 ± 0.44

Table 4.6.: Summary of results of bloat experiments for the Chemical-I problem (aver-
ages over 30 runs, confidence intervals for α = 0.05).

4.2. Simplification of Symbolic Regression Solutions

Guiding genetic programming to search for compact solutions is one way to improve
the comprehensibility of final solutions. In spite of such bloat control methods the final
solution produced by the algorithm is still likely to contain inviable or unoptimized code.
Thus methods to analyze and simplify solutions a-posteriori are needed. Visual support
for the analysis of GP solutions can improve the interpretation of solutions in practical
applications.

4.2.1. Restricted Function Sets

The function set of genetic programming can be adapted to accommodate all kinds
of different function symbols. The set of symbols that is necessary to solve a given
problem is problem specific, so the function set should be adapted accordingly for each
problem. A straight forward way to improve the comprehensibility of GP solutions is
to use restricted function sets containing only simple functions. If a new problem is
approached, different configurations with small and with large function sets should be
tried in order to find out which function set is sufficient to find accurate models.

Generally it is not recommended to use very large function sets just because they are
available in a given genetic programming implementation. Using a restricted function
has the benefit that the final solutions are easier to interpret than with comprehensive
function sets also including trigonometric functions, conditionals and boolean functions.
Even though a simple function set containing only arithmetic operations (+, -, *, /)
cannot express transcendental functions (e.g. exp(x)) exactly it is possible for GP to
find a good enough approximation [165]. Another benefit of arithmetic function sets is
that models containing only arithmetic operators can be easily simplified symbolically
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[146].

4.2.2. Automatic Simplification of Symbolic Expressions

The amount of unoptimized code in symbolic regression models is usually rather high, a
large gain can often be achieved by arithmetic simplification of the mathematical expres-
sion. Automatic simplification should at least support folding of constants, aggregating
sums and products, simplifying stacked fractions. These transformations are rather easy
to implement and lead to often drastic reductions in solutions sizes. A set of algebraic
simplification rules for symbolic regression are for instance given in [97, 88].

If more advanced function sets are used the simplification routine should be adapted
accordingly. Function sets including conditionals and boolean expressions often lead to
solutions with a lot of inviable code. Through simple transformations of conditionals and
constant folding, all of the inviable code and a large part of the unoptimized code can
be removed easily simply by removing branches that are not executed. This operation
is a simple extension of arithmetic simplification [146].

4.2.3. Branch Impact Metrics

In Chapter 6 methods to calculate the impact of variables in final symbolic regression
solutions are described. In the same way as the impact of variables was calculated, the
impact of specific branches of symbolic regression models can be calculated.

The quality of the original model is used as a reference value. The impact of a branch
can be calculated as the ratio of the quality of a manipulated model, where the branch
is replaced by a constant value over the quality of the original model. Iterating over all
branches of a symbolic expression tree the impact of all branches can be calculated in
this fashion.

Multiple alternatives are possible to determine the constant value with which a branch
should be replaced. We found that the median of the output values of this branch is a
good choice for the constant value, as it is more robust to outliers than the arithmetic
mean.

4.2.4. Visual Support for Manual Simplification

Branch impacts can be used effectively to guide domain experts in the analysis and
simplification of symbolic regression models. A simple but effective way is to present
the model in tree form and visually indicate the relevance of all branches. Branches that
are more relevant have a strong coloring, while branches that have only weak impact are
kept in the same color as the background. In the process of model simplification only
information that is relevant for pruning should be presented to prevent visual clutter.
Through the different coloring it is easy to determine quickly which parts of the model
are relevant and which parts can be cut away easily. If a manual pruning tool is combined
with online feedback of the model quality (for instance by an automatically updating
scatter-plot or X-Y plot) this method can be very effective. Interactive manipulation of
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Figure 4.5.: Model simplification as implemented in HeuristicLab
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Figure 4.6.: Original symbolic regression solution as produced by GP for the Housing
problem

the model can also leading to better understanding of the model and higher trust in the
correctness of the model.

Figure 4.6 shows the original model produced by a GP run for the Housing dataset
(see A.3.2). The model has a depth of twelve levels and a length of 76 nodes.

Figure 4.7 shows a semantically equal model which is the result of mathematical
transformation of the original model shown in 4.6. In particular the outputs of the two
models are equivalent. The depth is reduced to four levels and the length is reduced
to 38 nodes. The models is already a lot more comprehensive. However the model still
contains branches that have only a minor impact on the output. Such branches can be
detected by calculating the branch impacts for each node. Using the branch impacts the
model can be simplified further either manually or automatically.

Figure 4.8 shows the model after manual pruning of branches with low impact. The
quality of this model is slightly worse but it is also a lot more compact and more com-
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Figure 4.7.: Automatically simplified solution
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Figure 4.8.: Manually pruned solution and mathematical representation with all con-
stants removed.

prehensible. Additionally the mathematical notation is given in equation 4.9. Constants
have been removed for clarity. The simplified model clearly shows that there is a non-
linear relationship involving the variable RM .

In any case manual post-processing of solutions introduces the risk that the solution
is tuned to the test set through manual overfitting, observing the quality on the test set
while iteratively adjusting the solution. Because of this the constant replacement value
for branches should be calculated on the training set only and the user should have
only the solution quality on the training data as feedback and indicator for the quality
deterioration of certain manipulations. In most cases this is not a big issue, because
removing branches should usually lead to worse fit on the whole dataset.
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5. Generalization in Genetic Programming

Overfitting means to train, estimate or select models which do not generalize well to
new observations. The effect can be observed when a model is applied to a dataset,
which was not used in the training process and the fit on the new dataset is considerably
worse, even though the model has a good fit on the training data. Overfitting occurs
when a model is fit too tightly to the observations in the dataset in order to reduce
the approximation error by increasing the complexity of the model. Observations in the
training dataset are usually afflicted with a certain amount of noise. Thus, at a certain
point the increased complexity is solely used to approximate random fluctuations in the
dataset. This is counter-productive because at this point only the approximation error
on the observations in the dataset can be reduced, and the expected error of the model for
new observations increases. The model becomes useless for practical application. This
leads to the problem of the well-known bias-variance trade-off in data-based modeling
[83]

It is generally assumed that bloat and overfitting are related. However, it has been
recently observed that overfitting can occur in absence of bloat, and vice versa. Thus, it
has been suggested that overfitting and bloat are two separate phenomenons in genetic
programming [220], [190]. This suggests that overfitting and bloat should be controlled
also by separate mechanisms.

One way to reduce overfitting is to use an internal validation set on which all solutions
of the population are evaluated. A solution that has a comparable accuracy on the
training and validation set is returned as the final result [73, 232, 231]. This approach
can been extended to a solution archive in which Pareto optimal (quality and size)
solutions on the validation set are kept [193, 180]. The result of the GP run is the set of
solutions in the archive. The advantage of this approach is that an appropriate model
can be selected a-posteriori because all good solutions on the validation set, discovered
over the whole run, are available at the end. The problem of this approach is that
without parsimony pressure the set of good solutions on the validation set is more likely
to be extended at the end where the larger solutions are located. The chance that small
solutions, which improve solutions which are already in the archive, are found in later
stages of a GP run diminishes through the bloat-effect.

Other approaches to control overfitting and improve generalization that are often
used in statistical learning methods are based either on the estimation of the expected
generalization error or on penalization of overly complex models [83]. The first approach
is to tune the algorithm parameters in iterative steps to find parameter settings which
result in a model that generalizes well using an estimator for the expected generalization
error of the model. The expected generalization error can be estimated using a hold-out
set or through cross-validation. The second approach is to add a penalty term that
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depends on the model complexity and optionally on the number of training samples
to the objective function that is minimized. This approach integrates directly into the
training algorithm and produces a model with a good balance of training error and
complexity.

In practice the approach of using a validation set has turned out to be a working
method to reduce the chance of choosing an overfit model [231]. The approach is simple
and practical but not very efficient. If overfitting occurs in the early stages of the GP
run a lot of effort is wasted evaluating solutions which are too complex, and often the
solution found in the initial stages is not improved over the rest of the GP run because
search concentrates on uninteresting areas of the search space.

A simple improvement is to introduce an early stopping criterion. If the best solution
on the validation set is not updated for a predetermined number of generations, that
GP run should be stopped. The basic idea is that starting a new GP run is more likely
to produce a better solution on the validation sets than continuing the current GP run
which is already in an overfitting stage. The value for the number of generations with
no improvement after which the run should be stopped must be hand-tuned, based on
the results observed in a few long running test runs. Setting this parameter can often be
difficult, because if new genetic diversity is brought into the population through mutation
or migration, the overfitting effect is reduced and a new validation-best solution can be
found.

If overfitting can be detected reliably in the process, this information could be used
effectively to adjust the complexity of the search space. First it is necessary to define a
reliable measure for overfitting that can be calculated in a GP run. Then an effective
scheme which acts as a complexity reducer, can be used which gradually moves the pop-
ulation into a non-overfitting solution space again. Gradual slow changes are preferred
because a sudden change in complexity reduction for instance through exhaustive prun-
ing of the whole population is likely to cause a significant loss in genetic diversity and
might lead to premature convergence of the process.

The general setup should lead the process to search for solutions which perform equally
well on the training and validation set. Contrary to the ambitions followed in 4 in this
setup the maximal complexity of solutions is not constrained and there is generally no
bias to search for compact solutions. Instead, as long as no overfitting occurs, the algo-
rithm is allowed to generate more and more complex solutions. Most countermeasures
against bloat discussed in the previous chapter can be combined with countermeasures
against overfitting. Both phenomenons should be treated by specific countermeasures.
Bloat can be controlled through size limits or parsimony pressure, and overfitting can
be reduced through validation and complexity reduction.

5.1. How to Detect Overfitting in GP

If an internal validation set is available then the validation set can be used to efficiently
detect overfitting on the training set. Each solution candidate in a population is also
evaluated on the validation set. So for each solution candidate two fitness values are
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calculated, namely ftraining and fvalidation. Only the fitness on the training set is used for
selection, so the fitness on the validation set can be used to detect when overfitting occurs.
An indicator for overfitting is when the average or best validation fitness decreases, while
the average or best training fitness is increased. A simple boolean function for overfitting
at generation g based on this principle is 5.1. This metric returns true if the moving
average of the average validation fitness MAk(fval, g) over the previous k generations at
generation g decreases by more than a given ratio p over k generations.

MAk(fval, g) =
1

k

k∑

i=1

fval(g − i)

Thresholdk(fval, g, p) = (1− p)fval(g − k)

Overfitting(g)p,k =

{
true if MAk(fval, g) < Thresholdk(fval, g, p)

false otherwise

(5.1)

The problem with this overfitting detection function is that there is a rather large
delay between the time when the algorithm actually starts to overfit and the time when
the decrease in average fitness quality is detected. When overfitting is detected, it
already caused a significant decrease in validation fitness, which means that the solution
candidates in the whole population are already rather overfit. It is however not so easy
to recognize overfitting earlier with this detection function as a minimal k is necessary
to make the function robust against minor variations in average validation fitness.

Another issue with this function is that when it is used in combination with a complex-
ity reduction method, the point at which overfitting does not occur anymore is difficult
to detect, because the average validation quality also is decreased together with the
average training quality when the complexity reduction mechanism is applied.

An alternative way to detect overfitting that is presented for the first time in this
work is based on the correlation of training fitness and validation fitness of solution
candidates in the population at generation g 5.2. Intuitively, if no overfitting occurs,
the validation fitness of solution candidates should be strongly correlated to the training
fitness. Solution candidates with larger training fitness are more likely to be selected
for recombination, so ideally such solution candidates should also have a high validation
fitness. Solution candidates that have low training fitness should also have low validation
fitness. If the correlation of training and validation fitness is high, the selection pressure
implicitly leads to solutions that have better training and validation fitness. In contrast,
if the correlation of training and validation fitness is low, the selection pressure will lead
to solution candidates that are better only in respect to training fitness, and the chance
to create solutions with lower validation fitness increases.

In our experiments we used Spearman’s rank correlation ρ [196] and an alpha value
in the range 0.5 – 0.8.

Overfitting(g)α =

{
true if ρ(ftraining(g), fvalidation(g)) < α

false otherwise
(5.2)
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The correlation-based overfitting detection function indicates very early when the
process starts to overfit. If the correlation value is low in the current generation the
selection pressure causes a decrease in validation quality in the next generation. Because
of this, any countermeasure for overfitting can be applied in early stages when the
population does not yet contain a large number of overfit solution candidates.

A drawback of the correlation-based overfitting detection function is, that the fitness
correlation is also low when under-fitting occurs, because in this situation the training
fitness values are rather similar and a high training fitness is not necessarily related to
a high validation fitness.

The fitness correlation is also low, if the population is converged to a small set of
solution candidates with similar fitness values. In this situation the correlation is low
because the spread of fitness values is small, thus small deviations in validation quality
start to have a larger effect on the correlation value. Additionally, if the population is
converged to a small set of solution candidates, the number of different fitness values is
too small for the correlation coefficient to be significant.

The effect of any overfitting countermeasure can be measured with the same overfitting
detection function. An effective countermeasure should lead to an increase in the fitness
correlation value. Any overfitting countermeasure should not introduce strong biases or
sudden changes in the search process, otherwise there is a risk of premature convergence
or directing the process into under-fitting. If the interference is too strong the process
could jump from an overfitting stage to under-fitting within just one generation and it
would be impossible to detect that there was a state change with the correlation based
overfitting detection function.

5.2. Countermeasures Against Overfitting

5.2.1. Restarts

If overfitting occurs in a run a pragmatic approach is to stop the current run and start
another run. This assumes that a good solution has already been found and that it is
unlikely to improve the current best solution by continuing the run which is already in an
overfitting stage. Finally after a maximum number of restarts one of the final solutions
is selected as the overall result. Selection of the final result should be based on overall
fitness on training and validation set and ideally combine with a complexity metric to
prefer more compact models.

Instead of starting a new completely independent run with the same algorithm config-
uration an adaptive approach could be more effective. Decreasing the maximally allowed
program size or the maximal size of trees in the initial generation with each run should
delay the overfitting stage. Alternatively gradually reducing the selection pressure with
each restart for instance through reduction of the tournament group size should also
delay the overfitting stage as the evolutionary process improves the training fitness more
slowly.
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5.2.2. Parsimony Pressure Against Overfitting

Overfitting can be reduced by reducing the complexity of solution candidates in the pop-
ulation. Intuitively, the complexity of solution candidates can be removed by reducing
the average program length in the population. Parsimony pressure increases the prob-
ability of selection of smaller individuals by adjusting the fitness value of solutions to
integrate the solution complexity. Covariant parsimony pressure [163] (also see previous
Chapter 4) is an elegant way to dynamically adapt the parsimony pressure coefficient in
order to tightly control the average program length over the GP run.

It has already been suggested by Poli and McPhee in [163] to dynamically turn co-
variant parsimony pressure on and off at specific stages of the GP run. This suggestion
is taken up in this work to introduce a novel approach to reduce overfitting. If a ro-
bust overfitting detection function like the on explained in Section 5.1 is available, it
is possible to use covariant parsimony pressure to gradually decrease the average pro-
gram length to a point where no overfitting occurs. When the algorithm is back in a
non-overfitting stage parsimony pressure can be turned off again. In this way the evo-
lutionary process can freely increase the solution complexity to a level that is necessary
to solve the problem and limit the complexity from above as soon as the process starts
to overfit.

Again, the parsimony pressure should be configured in such a way to reduce the average
program length only slowly. If parsimony pressure is applied too strongly there is the
risk that the program length becomes the attribute that determines selection probability.
This can happen for instance by forcing the average program size to a certain level which
is a lot smaller than the current average program size. In such cases the adjusted fitness
values are strongly correlated to the program length instead of program raw fitness and
the evolutionary process will be mainly driven by the program length.

In the results section the results of the experiments with covariant parsimony pressure
to counter overfitting are shown in Figure 5.3.

5.2.3. Pruning Against Overfitting

Pruning of GP solutions has been discussed already in the previous section. Pruning can
also be used against overfitting. The idea is based on the hypothesis that the overfitting
behavior is caused by small code fragments which have only a small positive impact
on the training fitness but a large negative impact on the validation set and that these
code fragments are spatially grouped. Such branches can be removed selectively be
pruning operations. Pruning cannot be effective if the overfitting effect is caused by
code fragments which are scattered over the whole program.

The effect of pruning is that code fragments which have no impact or only small impact
on the program output are removed. The original intention of pruning is to create more
compact final solutions or when used in the GP process to remove bloated code from
the population in order to make room for effective code fragments. If overfitting is
caused by small spatially grouped code fragments which only have a small impact on
the program output pruning should remove exactly those code fragments and reduce
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overfitting. Pruning operations which cause a slight deterioration in fitness should be
possible and removal of smaller branches should be preferred.

If softening the distinction between the training and validation dataset partitions is
allowed, the pruning operation can be changed to calculate the fitness deterioration on
the validation fitness instead of the training fitness. This is meaningful for the application
of pruning against overfitting because the branches responsible for bad validation fitness
can be easily and robustly identified if the validation fitness is used to evaluate the effect
of branch removal. Pruning operations can be applied very selectively only removing
branches which actually decrease validation fitness. The drawback of this is that the
validation dataset is used not only as an indicator for overfitting. Instead, the validation
fitness has a direct impact on solution candidates in the population and so also has an
equally strong effect on the evolutionary process as the training fitness. This leads to the
risk that the process produces solutions which are overfit on the combination of training
and validation fitness. This cannot be detected through observation of the trajectory of
the fitness on the validation set.

Similarly to parsimony pressure, pruning can be integrated into the GP process as a
step after evaluation of the current generation. If the overfitting detection function indi-
cates that the process is in an overfitting stage all individuals of the current generation
are pruned and evaluated. Only after this optional pruning step the next generation of
the population is generated as usual.

Pruning reduces the genetic diversity in the population and should be applied only
very carefully. Many different ways of pruning are possible [232], but in this work we only
use a simple greedy pruning variant for symbolic expression tree encoding (see Algorithm
5). An effective pruning method should guarantee that the necessary building blocks of
good solutions are kept unchanged and that code fragments are removed in such a way
to make it possible to create new solution candidates of similar or better fitness.

In the previous section it has been shown that pruning can be used to control bloat.
In this situation it often makes sense to prune only a part of the population, excluding
the very best individuals. This is, however, not recommended if pruning is used against
overfitting, because the best individuals of the population are more likely to be over-
fit. The best individuals also should be pruned. Simply pruning all individuals of the
population without exceptions worked well in our experiments.

5.3. Experiments

To analyze and compare the effects of different anti-overfitting methods we used two
datasets, on which SGP and OSGP produced overfit solutions. The first dataset is the
Boston Housing dataset (see Section A.3.2). The second dataset is the Chemical-I dataset
(see Section A.3.2). To show the overfitting behavior we evaluated all individuals of the
population also on a test set in each generation. In this set of experiments the datasets
have been partitioned into training-, validation- and hold-out set. Only the training set
is used to calculate the fitness. The validation set is used to calculate the correlation
of training- and validation fitness. The validation fitness is used by the algorithm only
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Parameter Value
Population size 2000
Max. generations 100
Parent selection Proportional
Replacement generational

no elitism
Initialization PTC2 [127]
Max. initial tree size 100
Crossover Sub-tree swapping
Mutation 7% One-point, 7% sub-tree replacement
Model selection Best on validation
Fitness function R2 (maximization)
Function set +, -, *, /, average
Terminal set constants, variables

Table 5.1.: Genetic programming parameters for the experiments.

to determine if overfitting occurs and thus if an overfitting countermeasure should be
applied. The hold-out set is used to calculate the test fitness for reporting purposes only
and is not used by the algorithm.

In all experiments the training-validation fitness correlation function is used to detect
overfitting. The algorithm variants and shorthand symbols are standard GP without
size constraints (SGP), SGP with static constrains (SGP-static), OSGP without size
constraints (OSGP), OSGP with static constraints (OSGP-static), SGP with covariant
parsimony pressure continuously over the whole run (SGP-CPP), SGP with conditional
covariant parsimony pressure only in overfitting phases (SGP+adaptiveCPP), OSGP
with conditional pruning only in overfitting phases (OSGP-pruning). The parameter
settings common for all algorithm variants are shown in Table 5.1

The algorithm for overfitting detection that is used in algorithms SGP-pruning, OSGP-
pruning, SGP-adaptiveCPP, and OSGP-adaptiveCPP is shown in Algorithm 6. A
boolean variable is-overfitting is introduced which is initially set to false. After each it-
eration the training- and validation fitness correlation is calculated and the is-overfitting
flag is updated accordingly. To prevent unstable behavior two threshold values threshlow
and threshhigh are used to toggle the value of the is-overfitting variable. In the experi-
ments we used threshlow = 0.35, threshhigh = 0.65.

Algorithm 6: Algorithm for overfitting detection.

r ← ρ(ftraining(g), fvalidation(g));
if is-overfitting = false) ∧ r < threshlow then

is-overfitting ← true;
else if is-overfitting = false ∧ r < threshhigh then

is-overfitting ← false;
end
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In SGP-adaptiveCPP the covariant parsimony pressure is adapted based on the is-
overfitting flag as shown in Equation 5.3. When the algorithm is in an overfitting state
the covariant parsimony pressure is adapted to reduce the average program length by
five percent each iteration. In contrast, in a non-overfitting state “negative” parsimony
pressure is applied to increase the average program length by five percent in each itera-
tion.

fadjusted(x) =f(x)− c(t)`(x)

c(t) =
Cov(`, f)− δµf

Var(`)− δµ`

δµ =

{
−0.05 ` if is-overfitting = true

+0.05 ` if is-overfitting = false

(5.3)

5.4. Results

In the following Figures 5.2, 5.3, 5.4, and 5.5 the results of experiments with different
genetic programming configurations are shown. The result plots show trajectories of
the best fitness on the test set and of the training-validation fitness correlation over the
whole run. Fitness function is the squared correlation coefficient (R2) which is applied
on the estimated and target values. The values shown in the charts are median values
over thirty independent runs for each configuration.

5.4.1. Results: Covariant Parsimony Pressure

Figure 5.1 shows the dynamics of a typical SGP run with the housing dataset. The
line chart in the top left shows the trajectories of the best and average fitness on the
training partition and on the test partition over 100 generations. The chart shows that
the fitness on the training partition steadily increases, while the fitness on the test set
decreases at the later stages of the GP run. This demonstrates clearly that overfitting
occurs. The top right line chart shows the trajectory of the correlation of training- and
validation fitness for this run. The correlation decreases at a very early point in this run
and it can be observed that the turning point is at the generation where the average test
fitness also starts to decrease. So the correlation is a good indicator for overfitting.

The four panels in the bottom of Figure 5.1 show scatter plots of the training and
validation fitness of all models in the population at specific generations in the exemplary
run. In the first generation the correlation is rather low, the maximum correlation is
reached in generation eight. After generation eight the correlation decreases and it can
be observed in the scatter plots that the number of individuals with high training fitness
but low validation fitness increases.
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Figure 5.1.: Trajectories of training and test fitness and ρ(ftraining(g), fvalidation(g)) over
100 generations in an exemplary run of SGP for the housing dataset. The
scatter plots in the lower half show the training vs. validation fitness of all
models in the population at four different generations.
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Figure 5.2.: Overfitting behavior of SGP and OSGP without size limits and without
overfitting control.

5.4.2. Results: SGP and OSGP

Figure 5.2 shows the best test quality and the correlation between training and validation
quality for standard GP and GP with offspring selection for two different problems. In
this first set of experiments no limits have been set for either program length or depth.
For the Chemical-I dataset SGP does not overfit but with offspring selection overfitting
occurs in the late stage of the run. For the Housing dataset both algorithms overfit.
The correlation between training and validation quality is low for both problems and for
both algorithms. OSGP has a lower correlation value in both cases.

Figure 5.3 shows the results of SGP and OSGP with static limits and SGP with co-
variant parsimony pressure. For SGP-static and OSGP-static the static limit program
length is 250 nodes and the depth limit is 17 levels. SGP-CPP is configured to keep
the average program length at 100 nodes over the whole run through covariant parsi-
mony pressure. OSGP-static overfits for both problems. SGP-static overfits only on
the Housing problem. SGP-CPP works best but still overfits on the Housing problem.
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Figure 5.3.: Overfitting behavior of SGP-static, OSGP-static, and SGP-CPP without
overfitting control.

The correlation of training and validation fitness is again very low for OSGP-static but
relatively high for SGP-static and SGP-CPP.

5.4.3. Results: Adaptive CPP and Overfitting-triggered Pruning

Figure 5.4 shows the best test quality and training-validation correlation for SGP with
overfitting detection and adaptive covariant parsimony pressure and SGP with over-
fitting-triggered pruning. For comparison the values for SGP without size constraints
are also shown in the same plots. For the Chemical-I problem the target range for
the correlation value was 0.45 – 0.65. For the Housing problem a range of 0.45 – 0.75
was used. The plots of the training-validation correlation show that both methods,
pruning and adaptive parsimony pressure successfully steered the algorithm to keep
the correlation in the target range. For the Chemical-I problem no overfitting can be
observed and both variants lead to better solution quality on the test set. For the
Housing problem minor overfitting can be observed but both variants are better than
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Figure 5.4.: Overfitting behavior of SGP, SGP adaptive covariant parsimony pressure,
and SGP with overfitting-triggered pruning.

SGP.

Figure 5.5 shows the best test quality and training-validation fitness correlation for
OSGP with static size limits and OSGP with pruning as overfitting countermeasure.
Pruning was applied only when the training-validation fitness correlation indicated that
overfitting occurred. The target range for ρ was set to 0.45 – 0.75 for the Housing
problem and 0.45 – 0.65 for the Chemical-I problem. For both problems pruning was
applied to the whole population (two iterations with a maximum pruning ratio of 50%,
tournament group size 100). The results show that in the case of the Chemical-I problem
pruning effectively removes overfitting and that the training-validation fitness correlation
is in the target range over the whole run. In the housing problem OSGP with pruning
does not overfit so strongly as OSGP with only size limits, but overfitting still occurs as
can be seen by the low training-validation fitness correlation value. Even with pruning
the correlation value drops below the target range.
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Figure 5.5.: Overfitting behavior of OSGP-static, OSGP with overfitting-triggered prun-
ing, and OSGP with overfitting-triggered pruning based on the validation
set.
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Algorithm Size R2 (train) R2 (test)

OSGP 1,805.5 ± 268.5 0.45 ± 0.09 0.39 ± 0.07
OSGP-static 247.5 ± 4.1 0.44 ± 0.08 0.40 ± 0.08
OSGP-adaptivePruning 31.9 ± 4.7 0.55 ± 0.05 0.47 ± 0.04
OSGP-adaptiveValPruning 25.5 ± 2.8 0.41 ± 0.04 0.34 ± 0.04
SGP 1,542.8 ± 334.8 0.54 ± 0.06 0.43 ± 0.05
SGP-static 205.1 ± 9.8 0.56 ± 0.06 0.44 ± 0.06
SGP-staticCPP 31.0 ± 5.0 0.45 ± 0.04 0.36 ± 0.04
SGP-adaptiveCPP 96.9 ± 32.4 0.53 ± 0.05 0.45 ± 0.04
SGP-adaptivePruning 105.2 ± 19.0 0.60 ± 0.03 0.51 ± 0.04
SGP-adaptiveValPruning 107.0 ± 26.4 0.29 ± 0.09 0.23 ± 0.08

Table 5.2.: Summary of best training solution results of overfitting experiments for the
Chemical-I problem (confidence intervals for α = 0.05).

Summary of Overfitting Results

In Tables 5.2 and 5.3 the results of all overfitting experiments are summarized. The
tables show average values over thirty independent GP runs for each configuration.
Additionally the confidence interval for α = 0.05 is given assuming normally distributed
values. In the size column the length of the final solution is given. The columns R2

(train) and R2 (test) give the fitness of the final solution on the training and test set.
The final solution is the solution with the best fitness on the training set over the whole
run.

Table 5.2 shows that SGP with overfitting-triggered pruning (SGP-adaptivePruning)
produced the best solutions on the test set (and on the training set). The worst results
on the test set have been produced by OSGP with overfitting-triggered pruning based
on validation fitness (OSGP-adaptiveValPruning). The runs with OSGP and pruning
produced very small solutions with low fitness values. Static limits have only been for
SGP-static OSGP-static, but the program size is also small for the configurations with
overfitting control methods. This means that pruning and adaptive-CPP also prevented
bloat.

Table 5.3 shows that the best results on the test set for the Housing dataset have been
produced by OSGP with static covariant parsimony pressure. The solutions produced
by this configuration are also all relatively small. The worst results on the test set have
been produced by SGP with static size constraints.
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Algorithm Size R2 (train) R2 (test)

OSGP 2,604.4 ± 431.4 0.56 ± 0.09 0.30 ± 0.06
OSGP-static 250.4 ± 1.1 0.62 ± 0.08 0.29 ± 0.06
OSGP-staticCPP 34.4 ± 6.1 0.77 ± 0.04 0.42 ± 0.05
OSGP-adaptivePruning 25.9 ± 2.4 0.76 ± 0.02 0.38 ± 0.05
OSGP-adaptiveValPruning 28.5 ± 3.0 0.78 ± 0.02 0.39 ± 0.06
SGP 2,207.0 ± 364.9 0.45 ± 0.11 0.30 ± 0.07
SGP-static 226.6 ± 10.2 0.61 ± 0.09 0.28 ± 0.05
SGP-adaptiveCPP 83.3 ± 27.3 0.76 ± 0.02 0.35 ± 0.04
SGP-adaptivePruning 64.0 ± 21.0 0.72 ± 0.02 0.32 ± 0.05
SGP-adaptiveValPruning 68.0 ± 20.6 0.74 ± 0.03 0.33 ± 0.05

Table 5.3.: Summary of best training solution results of overfitting experiments for the
Housing problem (confidence intervals for α = 0.05).
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6. Genetic Programming and Data Mining

6.1. Genetic Programming

Genetic programming as a general problem solving meta-heuristic is especially suitable
for data mining tasks. The foremost goal of data mining is to find interesting patterns in
large datasets which lead to the discovery of knowledge. The most important property
of GP in the data mining aspect is that it produces interpretable white box models. This
is an important factor to make knowledge discovery from GP models feasible. Another
essential property of GP in the data mining aspect is that it simultaneously evolves
the structure of the model and the parameters of the model. When mining data, the
necessary complexity and structure of models is usually not known a priory. To the
contrary the structure and complexity of the model should be a result of data mining,
leading to knowledge about the inherent complexity in the data.

6.1.1. Flexible Model Representation

Genetic programming can be adapted easily to search for different kinds of patterns.
This work concentrates mainly on regression and time series forecasting. In these data
mining tasks, patterns are usually symbolic functional expressions which relate the input
variables to the target variable. For binary classification tasks the pattern is often a
discriminant function, which is again just a symbolic functional expression. Class labels
are generated by wrapping the discriminant function into a function which determines the
class label based on the output of the discriminant function and a class separator value.
For classification tasks another commonly used pattern structure is a set of conditional
if-then rules. This structure is often preferred because it is more interpretable [70].
Enforcing that the structure of the GP solutions is a set of if-then rules is different
than simply adding conditionals to the function set. Conditional functions can also be
useful in regression models, but usually the models are not restricted to a set of if-then
rules. Genetic programming can be adapted to evolve all kinds of different patterns by
configuration of the symbol set. In grammar-based GP systems the pattern structure
can be specified more rigidly by defining a grammar for pattern expressions. In strongly-
typed GP systems the pattern structure can be restricted by specifying type-constraints
on symbols.

6.1.2. Implicit Feature Selection

A frequent task in data mining is the identification of relevant variables or feature se-
lection. Usually, a large set of variables is available to describe a given fact, however, it

77



is assumed that only a subset of these variables is actually relevant. Determining this
subset of relevant variables has several advantages. First of all information about the
relevant variables is valuable in itself. Although there are no details about the relation
of the input variables to the target variable (e.g. positive or negative effect), the set of
important variables is easy to understand and can already increase knowledge consid-
erably. Additionally, in subsequent modeling steps one can concentrate on explaining
effects of the relevant variables on the target variable in detail, and the resulting models
are easier to understand and less prone to overfitting.

Determining the subset of relevant variables is usually non-trivial, especially when
there are non-linear or conditional relations. Implicit dependencies in the variables also
make this task more difficult, as this ultimately leads to multiple sets of different variables
which are equally plausible.

Feature selection is absolutely necessary for high-dimensional datasets where the num-
ber of variables exceeds the number of observations (p >> N). Such problems have be-
come increasingly important lately and frequently occur in bio-informatics. For instance
in the analysis of micro-array datasets the number of observations is often small (around
50), however, one observation includes measurements of many thousands of variables.
In such situations it is often possible to find correlated variables by pure chance, even
though the variables are actually independent. Thus, overfitting and feature selection
are important topics in such applications. The models are often strongly regularized in
order to avoid overfitting. Additionally, it is necessary to rigorously assert the validity of
models and training algorithms through methods like cross-validation and hold-out sets,
and by calculating confidence intervals and statistical significance for results. The intri-
cacies of high-dimensional problems have spurred the development of various specialized
data-analysis algorithms (cf. [83]). In this work this topic is not further discussed,
instead we concentrate on data-analysis problems where the number of observations ex-
ceeds the number of variables (N >> p). Such problems frequently occur in the analysis
of technical systems.

In genetic programming feature selection is implicit because fitness-based selection has
the effect, that models, which contain relevant variables, are more likely to be included in
the next generation. Over many generations this causes a genetic drift so that references
to relevant variables are more frequent than references to irrelevant variables. It has been
shown that GP is even applicable for feature selection problems with many variables but
only few observations [114]. The implicit feature selection of genetic programming also
removes variables which are pairwise strongly correlated but irrelevant for the target
variable. However, if correlated variables also affect the target variable value, GP does
not recognize that one of the variables can be removed, and it keeps both correlated
variables.

6.1.3. Non-Determinism

While GP has some advantages that make it an ideal method for data mining there are
also some obvious disadvantages that need to be addressed appropriately. One disad-
vantage of GP is that it is a non-deterministic method. Solving the same problem with

78



the same parameter settings multiple times with GP produces multiple different models.
Even though GP is a global search method there is no guarantee that a single GP run
will produce a result that is at a global optimum. The final solutions of different runs
have a different output response but, which is even more crucial, also often have a dif-
ferent structure. The virtually infinite solution space of genetic programming combined
with the non-deterministic search are the main reasons for this effect. Such effects are
magnified, if the dataset contains variables which are interrelated. If this is the case
GP will produce diverse solutions, using different sets of variables to model the same
response of the underlying system. All this leads to the problem that, if the solutions
of multiple GP runs are analyzed they are not only different in accuracy but also in
structure, which input variables are used and which input variables have a strong effect
on the model output. This reduces the trust in the models and the method, and the
knowledge that can be gained from such a set of solutions is rather limited.

The power to find diverse solutions of good quality, if multiple equivalent solutions
are possible, can also be seen as a virtue of genetic programming in comparison to
deterministic methods which produce the same model each time even if alternative for-
mulations are possible. The problem is rather to extract the interesting information out
of a large solution set produced by GP. A method is needed which analyzes the solution
set and extracts which parts are common to many solutions and which parts can be used
interchangeably because alternative formulations are possible.

6.1.4. Training Performance

Another disadvantage of GP is that it is rather slow compared to other non-linear data
mining methods. However, this is often not an issue, as the time spent for data mining
is only a small part of the time spent in the whole process of knowledge discovery from
databases. The data mining task can easily take a few days; however, the analysis of
results produced in this step often takes much longer. Genetic programming and all other
methods from the family of evolutionary algorithms additionally have the advantage,
that they are embarrassingly easy to parallelize, as the population-based concept allows
independent and potentially concurrent evaluation of solutions.

In any case, the factor that as many interesting patterns as possible should be un-
covered is more important than the time spent to find the patterns. The fact that GP
produces white box models and interpretable results reduces the effort that is necessary
in the result analysis step.

6.1.5. Predictive Accuracy

An advantage of symbolic regression is that the resulting models are simple mathematical
expressions. Thus, it is possible to analyze the structure of the model and the variable
interrelations expressed in the model in detail. This is often helpful for model validation
or to gain knowledge about previously unknown variable interrelations. The drawback
is that simple models usually produce less accurate approximations than more complex
models, as for instance produced by support vector regression. A good trade-off that
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balances the predictive accuracy and the comprehensibility of the model is necessary.
In practical applications it is recommended to explore the full space of possible models,

including highly accurate but complex models and only slightly accurate but very simple
models. We observed that SVM models often have a very high predictive accuracy and
linear regression can be used to establish a base line for the accuracy. Symbolic regression
models produced with genetic programming often lie in the middle between SVM and
LR models. A successful approach should combine the information gathered through
different modeling algorithms. Usually, the symbolic regression model only includes a
small subset of all available variables. Thus, the accuracy of a symbolic regression model
should also be compared to the accuracy of SVM and LR models using the same subset
of input variables. Such comparisons should also include residual analysis, because it
quickly shows if a LR model is not sufficient and non-linear models are necessary. Ideally,
a symbolic regression model should have an accuracy comparable to the accuracy of a
SVM model using the same set of input variables. If the LR model also has a comparable
accuracy and the residual analysis indicates no problem then the LR model should be
preferred over both the SVM and symbolic regression model.

In this thesis the accuracy of a comparable SVM model for a symbolic regression
model is only explicitly stated for one example (see Section 6.5.1). In this example the
accuracy of the SVM model is significantly better than the accuracy achieved by the
best symbolic regression model. However, in this thesis we explicitly do not strive to
find the best possible regression models, instead the major concern is comprehensibility.

6.2. Analysis of Relevant Variables

Knowledge about the minimal set of input variables, that are necessary to describe a
given system response, is often very valuable for domain experts. This information can
improve the overall understanding of the examined system as it is easy to understand
and verify.

6.2.1. Relation to Feature Selection

Feature selection methods are a way to determine the subset of relevant variables for
a model. Especially when a large number of features are available compared to the
number of samples it is necessary to reduce the set of features used in the model, in
order make models interpretable and to prevent problems with overfitting. A survey of
feature selection methods is given in [78]. Feature selection is often used as a wrapper
around the model building step, where the subset of features is iteratively adapted until
a model with acceptable balance between accuracy and complexity is found. Two general
variants of this kind are forward and backward selection. Forward selection increases
the size of the feature set starting from an empty set. Backward selection works in
the other direction, reducing the size of the feature set in each step. Usually it is
not feasible to try each possible combination of features because of the large number
of possible combinations. So forward and backward selection are often greedy using
heuristic functions to determine the utility of a given feature. The implication of this is,
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that feature selection methods are not guaranteed in the general case to find the optimal
subset of features for a given maximal size.

Feature selection methods can help to reduce the set of features to a subset of features,
which are apparently relevant to model the unknown response function. Often it is also
interesting to calculate variable ranks or weights indicating the relative importance of
the features. Variable ranking is a by-product of iterative feature selection methods, as
the order of adding or removing variables is determined by a heuristic relevance criterion.
In general variable ranking and relative variable importance is problematic because of
non-linear relations between features. See [78] for a discussion of such problems.

6.2.2. Relative Variable Importance in Linear Models

For linear regression the set of necessary variables can be determined through variable
selection or via shrinkage methods [83]. Variable selection methods usually wrap linear
regression and iteratively create new models adapting the subset of variables at each
step until a satisfying solution is found. Shrinkage methods integrate variable selection
directly into the modeling step by adding penalty terms for the number of variables into
the cost function. Ridge regression and the Lasso method are examples for shrinkage
methods for linear regression [83].

Linear regression models provide a set of necessary variables and also include informa-
tion about the relative importance of the variables. The variable coefficient immediately
indicates if the variable is proportional or indirectly proportional to the target variable.

Even for linear models it is not straight forward to determine the relative importance
of variables. The issue of relative variable importance for linear methods has been
discussed intensively. Surveys of the main contributions regarding this topic are given
in [87, 64, 109].

Early approaches based on decompositions of different accuracy metrics lead to in-
consistent results if the regressors are correlated. This issue has been addressed later
in [122], where an approach based on the average reduction of residual variance over
all orderings of regressors has been proposed, which was later also reinvented by [108].
The purpose of averaging over all orderings of regressors is to get more robust impor-
tance values in situations with correlated regressors. This approach has been extended
in [214, 215] based on information-theoretic error measures.

In a recent contribution [77] the approach of [122, 108] is revisited and analyzed
through simulation studies. Another recent contribution proposes the proportional
marginal decomposition method [63] to calculate relative variable importance.

6.2.3. Variable Importance in GP

As stated in the beginning of this chapter genetic programming can be used for the
analysis of relevant variables. Depending on the set of allowed symbols linear, non-
linear and conditional impact factors can be identified reliably. This section discusses a
method to gather information about the relevant variables in a system through multiple
independent GP runs.
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Two variants to approximate the relevance of variables for genetic programming have
been described in [232]. The first approach is based on the frequency of variables in the
population. The second approach is based on a variable impact measure over all models
of the population. Even though the metrics have been formulated primarily to estimate
population diversity they can also be used to calculate estimates for the relevance of
variables on the response function of a single model.

Frequency-based Variable Importance

In the frequency-based approach variable impact is either the sum of variable references
in all models or the number of models referencing a variable in the population. Both
variants of frequency-based impact estimation have minor drawbacks. The first variant
does not take the problem of code growth into consideration. The impacts calculated
for two different generations cannot be compared directly because the average size of
the solutions in the generations are different and thus the number of variable references
are also different. This issue can be resolved by calculating a relative number of variable
references. The drawback of the second variant is, that the metric does not account for
multiple references to the same variable in the same model.

Impact-based Variable Importance

For the impact-based variable relevance metric the impact of each variable over all
models of the population is calculated. To calculate the impact of a variable in a model,
the difference of the response of the model on the original and a manipulated dataset
is calculated. The idea is to manipulate the dataset in such a way as to remove the
information of the variable for which the impact should be calculated. If the difference
of the two responses on the original and the manipulated dataset is large this means,
that the values of the variable had a big influence on the response of the model and the
impact of the variable is large.

Critique of Variable Impact Calculation Through Replacement With Means

One approach to calculate the impact of a variable xi in a model m(x1, . . . , xi, . . . , xk)
is based on the increase of the model error that is occurred by replacing xi by its mean
value. The integral error I∆(f,m) of a model for a given distance function ∆(x, y) and
an optional weighting function w is:

I∆(f,m) =

∫

D
w(x)∆(f(x),m(x))dx

Usually the function f and the distribution of x is unknown so the expected error
E∆(y,m) over a set of n samples Zn = (x, y)n is used as an approximation.

E∆(Zn,m) =
1

n

∑

(x,y)∈Zn

∆(y,m(x))
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Figure 6.1.: Artificial function h1(x, y) and its response surface

The impact of variable xi is the difference of the expected error of the original model
response and the model response when xi is replaced by its mean m(x1, . . . , xi, . . . , xk).
A large increase in the distance between model response and function response indicates
that xi has a large impact on the output of the model.

Impact(xi, Zn,m) = E∆(Zn,m)− E∆(Z
′
n,m), Z ′

n = (x1, . . . , xi, . . . , xk, y)n

This way of impact calculation is problematic and can lead to misleading impact values
even for very simple functions. This is mainly caused by the fact, that a single constant
value is used as a replacement value and the impact is calculated as a distance of the
original response and the response of the manipulated model.

We use the following simple example of a bivariate function to demonstrate the prob-
lems of this approach. Figure 6.1 shows a bell-shaped function h1(x, y) with a larger
gradient in the x direction than in the y direction.

The impacts of x and y should be determined for this example function h1 by replacing
the values by their mean values. For this purpose we assume the variables x and y are
uniformly distributed in the range [−1, 1]. In this example the distribution of x and the
function f are known, so we can calculate the integral errors exactly. Figure 6.2 shows
the response surfaces of the squared differences ∆h1,x(x, y),∆h1,y(x, y) when x and y are
replaced by x = 0 and y = 0. The volume under the response surfaces represents the
impacts of x and y. The integral of ∆h1,x(x, y) is 5.80 and the integral of ∆h1,y(x, y) is
1.75, so by this definition of variable impact the impact of x is more than three times
larger than the impact of y.

It is trivial to approximate the impacts of x and y using a sample Zn = (x, y, f(x, y))n
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Figure 6.2.: Squared difference functions ∆h1,x(x, y) and ∆h1,y(x, y).

and the expected error. This calculation can be generalized for other distributions of x
and y, using a weighting function w(x) in the integral error function.

To show that the impact values calculated for h1 are not representative consider the
function h2(x, y) which is a transformation of h1. Figure 6.3 shows the function and its
response surface. The difference of h2 to h1 is that the location of the maximum value
is changed. The impacts of x and y on h2 should be nearly the same as before, because
the only difference is the location of the function.

Again we calculate the impacts of x and y using the same method as before. Figure
6.4 shows the squared difference functions ∆h2,x(x, y) and ∆h2,y(x, y). In this case the
integral of ∆h2,x(x, y) is 1.27 and the integral of ∆h2,y(x, y) is 1.75. Because of the shift
of maximum of the response function the impact of x on h2 is a lot smaller than on the
original function h1, the impact of y is the same for both functions. For h2 the impact
of x is even smaller than the impact of y.

The different impact results stem from the fact that h1(E[x], E[y]) and h2(E[x], E[y])
are different, so different replacement values are used, leading to different squared dis-
tances. The replacement value has a strong effect on the impact calculation, even though
h1 and h2 are similar, the different replacement values lead to very different variable im-
pacts. If the expected error is used to calculate the variable impact of xi the replacement
value xi depends on the available samples of xi and the impact calculation is even more
unstable.

In [232] an alternative way to calculate the variable impact is proposed that is based on
noising the variable values by adding normally distributed values to the original variable
values. This approach does not suffer the problems outlined in this section and should
be preferred. The disadvantages of this method are that it depends on the parameter
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Figure 6.3.: Artificial function h2(x, y) and its response surface

σ which determines the variance of the additive noise term and that the distribution of
the input values is changed if the original values are not normally distributed.

6.2.4. Variable Importance in Random Forests

Random forests are a supervised learning approach for classification and regression pro-
posed by [26]. The approach is based on the observation that ensembles of classification
or regression models can produce better estimations than a single model [25]. The esti-
mated value for an ensemble of models is calculated by a voting scheme or by averaging
over the estimated values of all models. This has the effect that it is less likely to receive
estimations with a large error because of the averaging effect over many models. The
requirement for this positive effect is, that the models in the ensemble should be struc-
turally diverse. Ensemble methods additionally have the nice property that estimates for
the generalization error can often be calculated easily without cross-validation [24, 26]
and that confidence intervals for estimated values can be calculated naturally.

Each model in a random forests is a classification and regression tree (CART) [28]
trained on a different subset of training samples and deliberately not pruned which is
usually necessary for CART to prevent overfitting. Even though the random forest can
contain overfit models the ensemble is not likely to overfit because a few outliers do not
have a large impact on the average prediction value over all models.

The disadvantage of random forests is that the unique property of CART that the
models are very easy to interpret and analyze is lost because of the large number of
structurally diverse trees in the forest. Thus a non-parametric variable importance
scheme for random forests has been proposed in [26, 83] to make it possible to argue
about the effects of input variables on the output value. For the permutation accuracy
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Figure 6.4.: Squared difference functions ∆h2,x(x, y) and ∆h2,y(x, y).

importance metric the importance of a variable is calculated by permuting the the out-
of-bag values of this variable for each tree in the forest. Then the output of the tree
is calculated for the permuted dataset and for the original out-of-bag dataset. The
importance of the variable is calculated as the percent increase in the accuracy of the
model. In [26] this approach is only discussed for classification, however, the approach
can also by used for regression. Permuting the variable values removes the information
of the variable to break the association of this variable with the output value while
leaving the distribution intact [76]. If the estimated values of the model are changed
dramatically after permuting the variable values this variable is important in that specific
model. This scheme works well for random forests because the averaging effect over many
models leads to robust variable importance values.

More recently the permutation variable importance metric for random forests has been
studied in more detail using simulation studies with the conclusion that this approach
has some undesirable properties [204, 203]. One problem of the original formulation of
permutation variable importance is that it assumes that regressors are not correlated.
If there are correlations the correlation is broken up because only one of the correlated
variables is permuted at each step. In [205, 206] an permutation approach is proposed
which groups variables into subsets and permutes all variables of the same subset. With
this approach the impact variable subsets can be determined, however, the computational
complexity becomes an issue when there is a large number of variable subsets.

6.2.5. Generalized Variable Importance

In [119] it is suggested that the permutation variable importance approach for random
forests can be extended to other models and the approach is adopted for artificial neural
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networks. Another approach of generalized variable impacts for black box models is
described in [172, 207]. In these contributions the idea to calculate variable impacts
not only as an average over the whole data set but also for each instance is described.
Calculating variable impacts for instances is a powerful concept which can be used
to find explanations for class values of specific instances or groups of instances. The
method described in [172] is not based on permutations but on direct manipulation of the
variable values (e.g. replacement by a representative value). The approaches described in
[119, 172, 207] all lead to inaccurate variable impact results when regressors are correlated
[209]. Thus in [209] the Interactions-based Method for Explanation is introduced which
also works for datasets with interactions between input variables. Recently the idea of
variable impacts or explanations for specific instances in the dataset has been further
pursued [120, 118, 208] in relation to identification of lever variables.

6.2.6. Improved Formulations of Variable Importance Metrics for GP

In this section improved formulations of frequency-based variable relevance Relfreq and
impact based variable relevance RelMC are described. The frequency-based variable
relevance is calculated over the whole GP run and has the advantages that it is easy
to understand and p-values for variable relevance can be calculated easily. The impact-
based variable relevance measure is based on permutation variable importance [26, 119]
and is more robust if the model contains conditional expressions or non-linear functions.

Extension of Frequency-based Variable Importance for GP

Given a set of n variables xi, i = 1 . . . n the frequency-based relevance of a variable xi is
the relative frequency of references to the variable over all models s of the population
Pop. Each model can have multiple references to the same variable.

freq(xi,Pop) =
∑

s∈Pop
CountRef(xi, s) (6.1)

rel%freq(xi,Pop) =
freq(xi,Pop)∑n

k=1 freq(xk,Pop)
(6.2)

The function CountRef returns the number of references to variable x in model s and
can be defined recursively for symbolic expressions trees:

CountRef(x, s) =

{
1 +

∑
b∈Subtrees(s)CountRef(x, b) if Symbol(s) = x

0 +
∑

b∈Subtrees(s)CountRef(x, b) if Symbol(s) 6= x
(6.3)

Over the whole GP run the variable relevance can be calculated for each population
generation Popi and can be traced over time. Tracing the variable relevance over the
whole GP run and visualizing the relative frequencies of all variables already can provide
a significant insight into the relative importance of the variables and into the dynamics
of the GP run itself. Figure 6.5 shows the trajectories of relative variable frequencies
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Figure 6.5.: Trajectories of relative variable frequencies over a single GP run for a bench-
mark dataset.
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for an exemplary genetic programming run for a benchmark dataset. The figure shows
that at the beginning the relative frequency of two variables rises, however in the later
stages the process discovered that another variable, that was not referenced very often
in the beginning, is also important to describe the response variable.

When the variable relevance is calculated only for specific generation, for instance only
for the last generation of the run, the dynamic behavior of variable impacts is not taken
into account. To account for the dynamic effects an average relevance value relfreq(xi)
for each variable xi over m generations can be calculated.

Relfreq(xi, · ) = 1

m

m∑

g=1

rel%freq(xi,Popg) (6.4)

Because of the non-deterministic nature of the GP process the relevances of variables
over multiple independent GP runs typically differ from each other. Implicit linear or
non-linear dependencies between input variables are another possible cause for differences
over independent runs. So the variable relevance results of one single GP run cannot
be trusted fully. It is desirable to analyze multiple variable relevance results in order
to get statistically significant results about which variables are most likely absolutely
necessary to explain the response variable, and which variables have a high relevance in
single runs only by chance. This can be done through basic statistical analysis over the
variable relevance vectors gathered over multiple independent GP runs.

Wilcoxon’s signed rank test [230] is used for the statistical analysis of relevances of
variable over multiple runs. The goal of the analysis is to find out, if the variable relevance
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of each variable found in the GP runs are statistically significant. For this a location
test is used to compare the relevance of each variable to the relevance of a reference
variable, that is assumed to be irrelevant to model the response variable. The selection
of this reference variable is a little bit problematic. A practical approach is to select the
variable that has the worst mean relevance over all runs as the reference variable. The
relevances are not distributed normally thus the Student’s t-test cannot be used in this
case. Furthermore, the variable relevances of a single run are not independent from each
other and must be treated as a paired value. Wilcoxon’s signed rank test can be used
for these assumptions.

Impact-based Variable Importance

The impact-based variable relevance metric RelMC is calculated using permutations of
the original values. This variable importance metric is derived form the approach that
is followed in random forests (cf. 6.2.4). Using permutation sampling for calculating the
variable relevance has the advantage that it works also for non-symmetric and discrete
variable distributions and is more robust when the model contains conditionals or non-
linear functions. The disadvantage of this method is that the strong assumption, that
all variables xi are independent, must hold.

It should be noted, that impact-based variable reference can be calculated for any kind
of estimation model ŷ = g(x), even if the structure of g is unknown. Given such a model
g the variable impact can always be calculated as only the response ŷ of the model for
certain x must be available to calculate the impact. This means that the approach is
not limited to symbolic regression but can also be used for other regression methods.

Notably, this approach suffers from the same problems as discussed in Section 6.2.4,
namely it does not work reliably with dependent input variables as the permutation
sampling breaks dependencies in input variables. The issue can be resolved by a more
exhaustive permutation sampling approach or using a generalized variable importance
approach (cf. 6.2.5).

As suggested in [232] the impacts of all variables can be aggregated over all models
of the population, optionally weighting the impact value for a given variable and model
with the quality of the model. We propose to calculate the variable impacts only for
the final solution. Over multiple independent GP runs the results of the impact-based
variable relevance vary. Again we can aggregate the impacts over multiple GP runs and
calculate a p-value for the average impact-based relevance using Wilcoxon’s signed rank
test in the same way as for the frequency-based variable relevance.

6.2.7. Validation of Variable Relevance Metrics

To demonstrate the reliability of the approach we used three different artificial bench-
mark problems for which the underlying functions are known. First we approximated
the influence of all variables on the response value using permutation testing. We ex-
ecuted GP runs with frequency-based variable relevance calculation and impact-based
variable relevance calculation for each benchmark problem to see if the relevant variables
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Parameter Value

Population size 1000
Generations 20
Training Samples 2000
Validation Samples 2000
Selection Offspring selection

50% Proportional
50% Random

Comparison factor 1.0
Success ratio 1.0
Crossover Sub-tree swapping
Mutation Single-point
Evaluation Mean squared error
Evaluation wrapper Linear scaling

Table 6.1.: Genetic programming parameter settings for the validation of variable rele-
vance metrics.

are identified reliably by genetic programming. We also calculated the Rel(impactmean)
value as described in [232] for comparison. The goal of the experiments is to find out,
if the described variable relevance metrics reliably identify the correct variables, if the
order of the relevant variables matches the order of the actual variable impacts and if
the relative relevance values are proportional to the actual variable impacts.

Table 6.1 shows the parameter settings for the experiments. For each benchmark
problem ten independent runs were executed.

Table 6.2 shows the overall variable relevance results in combination with p-values
over ten independent GP runs for the Breiman-I benchmark problem. For comparison
the approximated actual variable impacts Impactfun for the Breiman-I function are also
provided. For the Breiman-I function the signal-to-noise ratio is rather low. Still with
α = 0.01 the impact-based relevance measures correctly identified five out of seven
actually relevant variables. The frequency based relevance metric Relfreq identified only
four out of seven variables. The variables x4, x7 which have the weakest impact on the
response value could not be identified correctly by any relevance measure. The ranking
of the relevant variables is correct for all variable relevance measures, however the RelMC

measure is most accurate.

Figure 6.6 shows a kernel density estimation plot generated using the statistical soft-
ware R. The probability density function for the impact of each variable is estimated
from the observed variable impacts for the Breiman-I dataset (the averages are shown in
Table 6.2). Kernel density estimates are a way visualize the probability density function
based on a limited sample of a random variable. The plot shown in Figure 6.6 also shows
that the impacts of variables x1, x2, and x5 are significantly larger than the impacts of
the other variables.

Table 6.3 shows the overall variable relevance results in combination with the p-values
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Var Impactfun Relmean p-Val Relfreq p-Val RelMC p-Val

x1 27.333 19.437 0.002 0.286 0.002 24.453 0.002
x2 6.000 3.329 0.002 0.150 0.002 5.293 0.002
x5 6.000 2.591 0.002 0.106 0.004 4.432 0.002

Noise 4.000
x3 2.666 0.068 0.008 0.082 0.064 0.138 0.008
x6 2.666 0.499 0.008 0.067 0.010 0.971 0.008
x4 0.666 0.000 1.000 0.077 0.064 0.000 1.000
x7 0.666 0.000 1.000 0.060 0.432 0.000 1.000
x8 0.000 0.000 1.000 0.057 0.492 0.000 1.000
x9 0.000 0.000 1.000 0.053 0.695 0.000 1.000
x10 0.000 0.000 1.000 0.051 1.000 0.000 1.000

Table 6.2.: Actual variable impacts Impactfun for the Breiman-I function and variable

relevance results over ten independent GP runs.
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Figure 6.6.: Kernel density estimation of frequency-based variable impacts for the
Breiman-I dataset.
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Var Impactfun Relmean p-Val Relfreq p-Val RelMC p-Val

x2 6.400 2.956 0.002 0.315 0.002 5.913 0.002
x1 3.860 2.087 0.002 0.211 0.002 3.720 0.002
x3 1.500 0.660 0.002 0.137 0.002 1.319 0.002

Noise 1.000
x4 0.666 0.260 0.002 0.090 0.002 0.519 0.002
x5 0.166 0.028 0.002 0.049 0.020 0.055 0.002
x6 0.000 0.000 1.000 0.032 1.000 0.000 1.000
x7 0.000 0.000 1.000 0.038 0.432 0.000 1.000
x8 0.000 0.000 1.000 0.041 0.131 0.000 1.000
x9 0.000 0.000 1.000 0.034 0.846 0.000 1.000
x10 0.000 0.000 1.000 0.047 0.002 0.000 1.000

Table 6.3.: Actual variable impacts Impactfun for the Friedman-I function and variable

relevance results over ten independent GP runs.

over ten independent GP runs for the Friedman-I benchmark problem. Again the ap-
proximated actual variable impacts are also provided. With α = 0.01 the impact-based
relevance measures identified all actually relevant variables. The variable x5 with the
weakest influence is ranked highly by the variable-frequency based relevance measure,
but the result is not significant. Unfortunately with the frequency-based relevance mea-
sure the variable x10 was also identified as relevant because in the 10 runs the impact
value of x10 was consistently higher than the impact value of x6 which was used as the
reference variable. Since x6 and x10 are both irrelevant for the problem, this is a false
positive of our variable impact routine. The number of false positives should be signifi-
cantly lower if pruning is used in the GP runs to remove branches with low impacts on
the response value.

The variable ranking is identified correctly by all relevance measures. Again the
permutation sampling approximation of the variable impact is most accurate.

Table 6.4 shows the overall variable relevance results over ten independent GP runs
for the Friedman-II benchmark problem and the approximated actual variable impacts
for comparison. The benchmark problem has a high signal-to-noise ratio, so it should
be easier for GP to identify the relevant variables. With α = 0.01 genetic programming
identified and ranked four of the five relevant variables (x4, x1, x2, x5) correctly regardless
of the variable relevance metric. The variable x3 was not identified correctly, this is the
only variable in the Friedman-II function that has a quadratic influence on the function
response. The method produced no false positives for this benchmark problem. The
relevance metric based on permutation sampling of the variable impact is again most
accurate.

Figure 6.7 shows a scatter plot (X-Y plot) of the actual variable impacts and the vari-
able relevance found by genetic programming over all three benchmark problems. The
impact based relevance metrics are strongly correlated to the actual impact values. The
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Var Impactfun Relmean p-Val Relfreq p-Val RelMC p-Val

x4 16.660 7.401 0.002 0.274 0.002 14.818 0.002
x1 12.970 5.394 0.002 0.177 0.002 10.201 0.002
x2 12.970 4.895 0.002 0.164 0.002 9.156 0.002
x3 4.440 0.000 1.000 0.039 0.557 0.000 1.000
x5 4.160 1.642 0.002 0.133 0.002 3.257 0.002

Noise 1.000
x6 0.000 0.000 1.000 0.032 1.000 0.000 1.000
x7 0.000 0.000 1.000 0.039 0.557 0.000 1.000
x8 0.000 0.000 1.000 0.037 0.770 0.000 1.000
x9 0.000 0.000 1.000 0.046 0.375 0.000 1.000
x10 0.000 0.000 0.812 0.040 0.322 0.000 0.812

Table 6.4.: Actual variable impacts Impactfun for the Friedman-II function and variable

relevance results over ten independent GP runs.
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Figure 6.7.: Scatter plot of actual variable impact and variable relevance values. The
RelMC metric is very accurate with a correlation coefficient R2 = 0.97. The
Relmean metric has a correlation coefficient of R2 = 0.92.
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Var Relmean p-Val Relfreq p-Val RelMC p-Val

x6 15,963.020 0.002 0.154 0.002 13,782.287 0.002
x1 911.585 0.004 0.077 0.006 14,439.618 0.004
x3 68.450 0.016 0.065 0.006 4,736.550 0.016
x4 0.851 0.016 0.053 0.027 6,433.626 0.016
x24 0.000 1.000 0.045 0.233 0.000 1.000
x8 0.000 1.000 0.045 0.014 0.000 0.062
x7 0.000 1.000 0.033 0.106 0.000 0.188
x25 0.000 1.000 0.032 0.106 0.000 1.000
x12 0.000 1.000 0.031 0.037 0.000 0.031
x13 0.000 1.000 0.030 0.106 0.000 1.000
x5 0.000 1.000 0.029 0.233 0.000 1.000
x11 0.000 1.000 0.025 0.322 0.000 1.000
x2 0.000 1.000 0.023 0.233 0.000 1.000
x9 0.000 1.000 0.022 0.275 0.000 1.000
x10 0.000 1.000 0.022 0.233 0.000 0.062
x15 0.000 1.000 0.020 0.770 0.000 1.000
x20 0.000 1.000 0.020 0.557 0.000 1.000
x19 0.000 1.000 0.020 0.084 0.000 1.000
x23 643.499 0.002 0.019 0.131 12,173.905 0.002
x21 0.000 1.000 0.018 1.000 0.000 1.000
x17 0.000 1.000 0.017 0.846 0.000 1.000
x14 0.000 1.000 0.017 0.557 0.000 1.000
x22 0.000 1.000 0.016 1.000 0.000 1.000
x16 0.000 1.000 0.015 1.000 0.000 1.000

Table 6.5.: Variable relevance results for the Dow Chemical tower dataset over ten inde-
pendent GP runs.

RelMC is more accurate especially for high impact values. The values of the frequency-
based variable relevance metric are not shown in this diagram since they are percentage
values.

In this section we described a number of further developed variable relevance metrics
based on [232]. We tested the accuracy and reliability of the variable relevance metrics
using three artificial regression datasets for which the response generating function is
known. The actual variable influence for each benchmark function was approximated
using permutation sampling [76] and the resulting value was compared to the values
of the enhanced variable relevance metrics. We observed that genetic programming
reliably discovered the subsets of relevant variable impacts. Furthermore, the variables
were ranked correctly by all relevance metrics, and the impact-based metric based on
permutation sampling (RelMC) is most exact.
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6.3. Data Mining and Symbolic Regression

For data mining tasks a target variable is often not known beforehand. Instead the
process should identify interesting and relevant relations between variables. Multiple
extensions to the simple formulation of symbolic regression have been proposed to allow
multiple target variables or to let the GP process identify interesting target variables
implicitly.

[101] formulated extensions of symbolic regression for multi-variate targets and demon-
strated that GP is able to find solutions to simple multi-variate symbolic regression
problems. However the GP literature concentrates on the formulation for a single target
variable. Chapter 7 will treat this topic in more detail.

An alternative evaluation scheme which enables GP to search for implicit equations
(e.g., 0 = f(x)) is described in [178]. This approach is remarkable as it is not necessary
to specify target variables, instead the process will find functional expressions which
evaluate to a constant. This approach will be described in more detail in the following
section.

The most trivial way to approach a data mining task is to try to find independent
symbolic regression models for all variables. Models that accurately match the original
variable values are potentially more interesting and thus should be presented to the data
miner. However, the large number of unconnected regression models will most likely lead
to confusion. Additionally, if there are correlated variables this process will just output
a model, where the single correlated variable is used to explain the target variable. This
behavior is most likely unwanted since such relations are most likely already known.
Instead the process should be able to recognize such trivial relations and search for
models that are more interesting.

Instead of independent genetic programming runs, resulting in an unconnected set of
symbolic regression problems for all variables, it is more desirable to combine the results
in order to allow a data miner to gain a full understanding of the interrelations in the
dataset. In Section 6.5 a cooperative process for GP-based data mining is described.

6.4. GP-Based Search for Implicit Equations

Genetic programming has been used to search for implicit equations in the form of
0 = f(x, y) [178, 180]. This is essentially a way to search accurate models for multiple
target variables. For example if a function f(x, y) = 0 is to be found, the target variables
are x and y. To make sure that the process does not converge to trivial functional
expressions (e.g., 1 − 1, 2 ∗ x − x − x) partial differentials of the model for all target
variables are evaluated and compared to the numeric approximation of the differential.
The error measure is defined as the sum of errors over all partial differentials [84, 179].
The drawback of this approach is, that differentials of variables must be approximated
numerically. Especially in the presence of noisy data the noise will be further amplified by
trivial numeric differential approximation methods based on finite differences. If the data
contains noise, the problem can be alleviated through smoothing methods (e.g. using
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the locally weighted scatter-plot smoother [38, 39]) or more sophisticated interpolation
methods. However, it is likely, that relevant information in the data is lost through
smoothing or interpolation methods. This method has been applied successfully to find
equations for well known physical systems (e.g., pendulum, spring pendulum) [180].

6.5. Comprehensive Search for Symbolic Regression Models

Given a dataset that contains observed values from a system, the usual objective is to
approximate one target variable using a subset of the possible input variables. This is
often problematic because of implicit relations in the set of input variables. Pairwise
correlated variables can be detected easily but the input variables might be related in a
non-linear fashion which is difficult to detect. Implicit relations in the input variables
have the effect that it is not possible to produce one unique ideal model for the target
variables. Instead it is possible to produce equally accurate and correct models using
alternative representations resulting from the implicit relations.

A simple but very powerful way to approach this issue is to search for all accurate
models over the whole dataset. Instead of a single target variable treat each variable as
the target variable and try to create an approximation model using all other variables
as potential inputs. With this approach it is possible to uncover non-linear implicit
relations which might can be used interchangeably in models for the target variables.
This can also lead to a better understanding of the overall system because hierarchical
structures in approximation models are made explicit and can be studied in detail.

6.5.1. Case Study: Chemical-II Dataset

In this section the unguided approach to generate symbolic regression models is demon-
strated on the Chemical-II dataset. This dataset has been has been prepared and pub-
lished by Arthur Kordon, research leader at the Dow Chemical company. The dataset
contains 4999 observations of 26 variables of a chemical process and can be downloaded
from http://vanillamodeling.com/realproblems.html. The following description of
the Tower dataset also stems from the same source.

The observations in the dataset stem from a chemical process and include tempera-
tures, flows, and pressures. The target variable is the propylene concentration and is
a gas chromatography measurement at the top of a distillation tower. The propylene
concentration is measured in regular intervals of 15 minutes. The actual sampling rate
of the input variables is one minute, but 15 minutes averages of the inputs are used
to synchronize with the measurements of the target variable. The range of the mea-
sured propylene concentration is very broad and covers most of the expected operating
conditions in the distillation tower.

Modeling

A screening of the dataset for correlated variables shows that the dataset contains four
groups of variables with strong pairwise correlations. For each group one variable is se-
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Variable cluster

x20, x21
x12, x13, x16
x3, x7, x11
x8, x25

Table 6.6.: Groups of variables with strong pairwise correlations in the Chemical-II
dataset.

lected as the representative and the remaining variables are not considered for modeling.
Table 6.6 lists the identified clusters of strongly correlated variables.

For modeling the full dataset is partitioned into a training partition (rows 100–2050)
used to calculate model fitness, an internal validation partition (rows 2050–4000) used
to select the final model, and a test partition (rows 4000-4999) used to estimate the
generalization error of the final model.

Table 6.7 shows GP parameter settings for the experiments. The final model (best on
validation) is linearly scaled to match the location and scale of the original target values.
This is necessary because the squared correlation coefficient, which is invariant to scale,
and location is used as fitness function. As shown by [95] maximization of the squared
Pearson’s Product Moment Correlation Coefficient is equivalent to minimization of the
scaled mean squared error. Static length and depth constraints are used for the models to
prevent unlimited code growth. The initialization procedure PTC2 [128] creates random
trees with a target distribution for the tree length between 3 and 100 nodes.

The same parameter settings are used to create models for each remaining variable of
the dataset. Ten independent GP runs are executed for each configuration, leading to
190 symbolic regression models, produced in the same number of GP runs.

Results

Figure 6.8 shows a box-plot of the R2 of the models produced by GP for each of the
variables over 10 independent runs. From the box-plot it is immediately clear that
the dataset contains a number of implicit variable relations. GP consistently identified
almost perfect models for variables x3, x5, x6, x8, x9, x12 and x20. GP also identified a
number of highly accurate models with squared correlation coefficient larger than 0.9
for variables x1, x4, and x22. Models produced by GP for the response variable have
on average R2 = 0.87. For variables x19, x15, and x24 GP also consistently produced
relatively accurate models. For the remaining variables the R2 of the GP models varies
strongly, especially for variable x2 no accurate models are found.

The box-plot can give an indication about the ability to approximate variables when
other variable values are known. The full power of the unguided approach is more appar-
ent when the information gathered in all GP runs is combined to produce the variable
relation network shown in Figure 6.9. In the network the most relevant input variables
to approximate a variable are shown where a → b means a is a relevant variable for GP
models approximating variable b. The network is based on the permutation impact of
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Parameter Value
Population size 2000
Max. generations 100
Parent selection Tournament

Group size = 5
Replacement 1-Elitism
Initialization PTC2
Crossover Sub-tree-swapping
Mutation rate 15%
Mutation operator One-point

One-point constant shaker
Sub-tree replacement

Tree constraints static limits
Max. depth = 10
Max. length = 100

Model selection Best on validation
Fitness function R2 (maximization)
Function set +, -, *, /, avg, log, exp
Terminal set constants, variables

Table 6.7.: Genetic programming parameters for the Chemical-II dataset.
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Figure 6.8.: Box-plot of R2 on the test set of the model output and original values for
the Chemical-II dataset.
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variables in the final model. For a given variable x the permutation impact of all other
variables is calculated over the 10 models for x. Only significant impacts (p-Value <
0.005) are kept and shown in the network diagram. The variable clusters identified in
the preliminary analysis of the dataset are also shown as rectangles containing all vari-
ables of the cluster. In depth analysis of the relationships identified by GP showed, that
variables x1 and x6 and the two clusters with representatives x8 and x3 are all pairwise
strongly connected. So a larger cluster has been manually introduced that encompasses
all those variables.

Analyzing the network generated for the Chemical-II dataset in more detail, leads to
a better overall insight into the process. An immediate observation is, that the large
cluster with representative x1 and the cluster with representative x12 play a central role
in the process. Additional variables with many outgoing arrows are x10 and x19. These
two variables are often used to approximate other variables.

Another fact that is immediately clear is, that there are many double-linked variable
pairs and two long double-linked chains of variables. This indicates that the two variables
are strongly related. One chain relates the cluster with representative x20 with x5 which
is in turn strongly connected to x14. Another chain connects variables x17, x22 and x24.
Other strongly related variable pairs are x18 and x19, and x10 and x23.

The relevant input variables for models for the response variable are x23 and one
variable in the large central cluster with variable x1.

The network diagram shows the general relations of variables in the dataset. For more
detailed information the models produced for each variable should be analyzed in detail.

Result Details

In this section a number of manually selected and simplified highly accurate models
produced for the Chemical-II dataset are presented in detail.

Table 6.8 gives an overview of the presented models including the squared correlation
coefficient (R2) on the test set.

GP identified simple but highly accurate linear models for variables x6 (6.10), x12
(6.13), and x20 (6.14). GP also identified a linear model with R2 = 0.87 for the response
variable using only six input variables (6.16). For comparison we also trained a ν-SVM
regression model [222] using the same six input variables with five-fold cross-validation
and a grid search for the parameters ν, C, γ using the open source SVM implementation
libSVM [32]. The best SVM model we found has a R2 of 0.97 which is significantly better
than the linear model. Motivated by the SVM result we also trained a more complex
GP model using only the subset of six variables. The GP runs produced a non-linear
model (6.17) which after some manual simplification has a R2 = 0.90.

It is now possible to deconstruct the model for the response variable further because
accurate models for all input variables are available. The original model uses variables
x1, x6 and x12 for which accurate approximations are available. It is possible to replace
the input variables by their approximation models and so get an alternative approxi-
mation model for the response. Through this procedure the model does not necessarily
become more complex because, if the introduced models contain common terms these
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Figure 6.9.: Identified variable relations for the Chemical-II dataset.
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Target Model R2 (test)

x1 (6.5) 0.97
x3 (6.6) 0.99
x4 (6.8) 0.91
x5 (6.9) 0.99
x6 (6.10) 0.96
x8 (6.11) 0.99
x9 (6.12) 0.98
x12 (6.13) 0.98
x20 (6.14) 0.99
x22 (6.15) 0.94
Response (6.16) 0.87
Response (6.17) 0.90

Table 6.8.: Accuracy of selected and simplified models for the Chemical-II dataset on
the test set.

can be unified. In this case all approximations contain the variable x3 which does not
occur in the original model for the response variable. This hierarchical approach of
model analysis leads to a more throughout understanding of the possible impact factors
and implicit relations, that are relevant for the approximation of the response variable.
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x1 =
x6

(x3 + x8 + x10)(
x8
x10

+ x3
(x3+x10)(x3+x4+x6)

)
(6.5)

(6.6)

x3 =
log(x8)

x1 + x6 + x8 + x10
(6.7)

x4 =
x3 + x24

x223
(6.8)

x5 = log(x3 + x9 + x10 + x20) (6.9)

x6 = x3 + x8 (6.10)

x8 =
1

x1 + x3 + x6 + x10 + x24 +
1

x3+x6

(6.11)

x9 = x3 + x12 + x15 + x19 (6.12)

x12 = x3 + x9 + x20 (6.13)

x20 = x3 + x5 + x10 + x12 (6.14)

x22 =
1

x17
x1+x19+x10+c0

+ x9+exp(x17+x4+x24+c1)+c2
x2
17

(6.15)

Response = x1 + x2 + x6 + x12 + x15 + x23 (6.16)

Response = x2 + x6 + x15 +
1

x2
+

1

x12
+

x31 + x21
x1 + x6

+
x1x

2
2

x1 + x2 + x23
+

x23x6
x1x12

(6.17)

6.6. Improving GP Performance

The training time of data-based modeling algorithms is generally considered a non-issue.
In the whole process of knowledge discovery from databases the major part of the time
is spent in data preparation and interpretation and analysis of models, only a small part
of the time is spent in training [70]. Even though the time it takes for training is not a
large concern there is still a benefit in improving the training performance as long as the
quality of the final model is the same. Especially for the task of finding all interesting
and relevant models without a predetermined target variable a large number of GP runs
have to be executed. For this task reducing the training time means that more models
for all variables can be generated in the same time and the chance to find potentially
interesting models is higher.

In general two approaches are possible to increase the performance of GP, paralleliza-
tion and reduction the computational effort of fitness evaluation. Fitness evaluation is
usually the most expensive step in GP and the performance of the algorithm is bound
by the performance of the fitness function.

One especially effective approach which has been pursued intensively recently and
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combines both aspects is genetic programming on GPUs [235, 236, 113, 80, 37, 115].
The recent developments in hardware and software have made powerful massively parallel
architectures accessible for general purposes and facilitated such research.

6.6.1. Parallelization

Evolutionary algorithms in general are embarrassingly easy to parallelize because of
the concept of independent solutions which are combined to a population. A num-
ber of parallel and distributed execution schemes have been described for evolution-
ary algorithms in general [7, 139] which can also be applied to genetic programming
[13, 151, 160, 91, 201, 46, 34].

6.6.2. Improving Fitness Evaluation Performance

Often a number of preliminary experiments with a reduced training set are carried out
to find good parameter values for a algorithm before the final model is trained using the
full training set.

It is also possible to reduce the number of fitness cases dynamically in a single GP
run. The fitness value of an individual is usually only an approximation of the actual
fitness of the individual even when all fitness cases are considered. Thus, if an accurate
approximation is also possible when only a small number of fitness cases are evaluated
the performance of the algorithm can be increased.

Reducing the number of fitness cases has already been discussed by Holland who in-
troduced a method for the “optimal allocation of trials” in [86] which is based on a
solution of the multi-armed bandit problem. The method tries to find a good approxi-
mation for the fitness with a limited amount of fitness cases. Later an extended approach
called “rational allocation of trials” has been introduced in [212]. In [75] it has been
shown that the number of fitness cases that is needed in the GP fitness function can
be upper-bounded via statistical and information-theoretic considerations. In [98] it has
been shown that a very simple scheme that randomly selects a small subset of fitness
cases (e.g. 10% of the training partition) for each evaluation also work well for specific
applications and has a large effect on performance.

Recently an approach for the reduction of fitness cases specifically for symbolic regres-
sion has been introduced [223]. The aim of this approach is not primarily to improve
the performance of the algorithm but to produce more robust models by intelligent data
balancing. In the case of symbolic regression a data-set often contains a large number of
similar data points and the outer regions of the data-space are populated only sparsely.
Data balancing weights the fitness cases by relevance metrics based on the distance of a
data-point to the remaining data points and removes redundant data-points completely
in order to put more emphasis on the outer regions of the data-space. Effectively the
number of fitness cases can be removed and the performance of fitness evaluation is
increased.

Another approach to increase fitness evaluation performance is to use fitness predictors
which can for instance be co-evolved with the actual solution candidates [181].
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In conclusion it is not necessary to use all fitness cases in symbolic regression and a
number of different approaches for the reduction of fitness cases have been described in
the literature. In our experiments we found that the scheme of randomly sampling a
small subset of fitness cases for each fitness evaluation is simple and effective and does
not have a negative effect on final solution quality.
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7. Multi-Variate Symbolic Regression and
Time Series Prognosis

Prediction is very difficult, especially
about the future.

Niels Bohr

Multi-variate symbolic regression is an extension to genetic programming which in-
creases the size of the hypothesis space. The difference is that multiple variables can be
selected as target instead of only one in the case of simple symbolic regression. Multi-
variate symbolic regression models are encoded in the same way as normal symbolic
regression models, as symbolic expression trees. The difference is that the result pro-
ducing branch has multiple subtrees. The scalar results of each branch are combined to
an output vector. The n-th sub-tree of the result producing branch is a simple symbolic
regression model for the n-th target variable. The shape of a multi-variate symbolic
regression solution is shown in Figure 7.1. Figure 7.2 shows a multi-variate symbolic
regression solution that also includes automatically defined functions (ADF) [105] which
can be called in all component branches of the result producing branch (RPB).

The multi-variate variant of symbolic regression has been described already in [101].
It has been shown that simple problems (e.g. approximating the result of the vector
product function) can be solved with this extended form of symbolic regression [101]. In
this chapter we discuss the benefits of multi-variate symbolic regression in more detail
and describe how a real-world problem can be solved efficiently with this formulation.

If the target variables are independent, there is no benefit in using the multi-variate
approach as it is easier to create separate scalar models in independent GP runs for each

Program Root

RPB

Comp0 Comp1 CompN

Figure 7.1.: A multi-variate symbolic regression model has a separate branch for each
component of the result vector below the result producing branch (RPB).
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Program Root

RPB ADF0 ADF1

Comp0 Comp1 CompN Body Body

Figure 7.2.: Multi-variate symbolic regression model with result producing branch
(RPB) and two automatically defined functions (ADF0, ADF1)

target variable. If the variables are independent it is futile to try to find common building
blocks which can be used in models for the different variables. In such cases nothing
can be gained from a combined formulation where a combined model for multiple target
variables is evolved in a single GP run.

If there are dependencies between the target variables, the multi-variate formulation
might be beneficial. This is common in technical systems where output values are
often influenced by the internal state of the system and, as such, can not be treated
as independent measurements. If one is interested in both output variables then two
separate models for both output variables have to be created, using simple symbolic
regression. With multi-variate symbolic regression a single GP run produces a combined
model for both output variables. In cases like this, the benefit of the multi-variate
approach is that the GP process can evolve code fragments which can be used to estimate
multiple target variables. The effect is, that the single GP run to create a combined
model is more efficient than multiple independent runs. Additionally, if automatically
defined functions [101] are allowed, the reuse of code fragments can be made more explicit
through common ADFs which can be referenced by all component-models. Through
code reuse in multiple models, combined with the power of ADFs to extract common
code fragments and make them explicit in form of ADFs, the possibility arises to create
multi-variate hierarchical models in which the system hierarchy is mapped to the model
hierarchy. The aim of multi-variate symbolic regression in the context of knowledge
discovery is thus not solely to make the process more efficient, but to generate models
in which common building blocks are explicit as such hierarchical models are easier to
interpret. Common code fragments in ADFs reduce the amount of code that has to
be analyzed and understood, in order to understand the combined model for all target
variables.

7.1. Evaluation of Multi-Variate Symbolic Regression Models

Multi-variate symbolic regression can be formulated either as single-objective or multi-
objective optimization problem. The multi-objective formulation is straight-forward.
The estimation error is calculated for each component independently and a multi-
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objective algorithm is used for minimization of component errors. The result is a
Pareto-front of non-dominated solutions with minimal errors in components. The multi-
objective approach directly works correctly for correlated variable pairs and for differ-
ently scaled variable values. With the multi-objective approach it should also intuitively
be easier to find hierarchical models and explicit code fragments in ADFs. One algorithm
that can be used for multi-objective optimization of such models is NSGA-II [48].

For the single-objective formulation an aggregation function for the errors of the com-
ponents is necessary, in order to calculate a scalar quality value which represents the
overall quality of the model. A simple solution is to sum up the mean squared errors over
all components. The MSD is defined as the mean of the squared Euclidean distances
over all rows of the target values and the estimated values. The sum of mean squared
errors over all m components is thus the same as the mean squared Euclidean distance
over all rows shown in equation 7.1.

MSD =
1

n

n∑

i=1

L2(y
′
i, yi)

2

L2(x, y) =

√√√√
m∑

d=1

(xd − yx)2

(7.1)

The Euclidean distance cannot be used if the target variables have different scales or
locations. In such cases the component errors are weighted unfairly, so the prediction
error of the target variable with the larger scale would dominate the overall quality value.
The component errors have to be weighted to make sure that each component error has
the same impact on the overall solution quality, regardless of the scaling and location
of the original values. One solution is to scale all variable values to the same range
in a preprocessing step. This is often recommended for various data-analysis methods
to improve the solution quality. In the case of genetic programming and multi-variate
symbolic regression the scaling can also be integrated into the process. The mean and
variance of the original values are calculated for each target variable and used to scale
the original and the estimated values to a random variable with zero mean and standard
deviation of one. The aggregation of the mean squared errors of the scaled values is the
normalized mean squared error for multi-variate regression models (see Section A.1.1).

The NMSE for multi-variate regression models has drawbacks when a sub-set of the
target variables is strongly correlated. An example should help to make this easier to
understand. Obviously the output of a model for three target variables should match
the original values as closely as possible. Two of the variables are strongly correlated
while the third variable is uncorrelated. If the model matches only one of the correlated
variables well, it can be argued that the model does not accuratly match the analyzed
system as the implicit dependency between the two correlated target variables is not
modelled correctly. The NMSE treats all components as independent thus a quality
improvement of any component leads to a proportional quality improvement of the whole
model. The Mahalanobis distance (7.2) also accounts for correlations between variables
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[130]. It can be used as a quality measure for multi-variate models in place of the
NMSE. To calculate the Mahalanobis distance between an original row vector and the
estimated row vector a covariance matrix for the original target variables is necessary.
The covariance matrix C is calculated from the original vales. If the target variables
are independent, the covariance matrix is diagonal, so the Mahalanobis distance boils
down to the NMSE. If the target variables are all normalized to N(0,1), the covariance
matrix is the identity matrix. The mean Mahalanobis distance of the estimated values
of a model to the original values is larger, if the estimated values only match one of
the correlated target variables closely as the component distances are weighted by the
covariance.

LM (x, y) =
√
(x− y)TC−1(x− y) (7.2)

7.1.1. Curse of Dimensionality

The multi-variate normalized mean squared error and Mahalanobis distances can be
used up to a limited number of dimensions. For high-dimensional problems the quality
metrics are problematic because of the distribution of distances in high dimensional
spaces [5, 223]. An improved fractional distance metric (Lf norm) for high-dimensional
spaces (7.3) has been proposed in [5], which can be used for multi-variate modeling.

distf,d(x, y) =

(
d∑

i=1

(xi − yi)
f

) 1
f

, f ∈ (0, 1) (7.3)

7.2. Multi-variate Time Series Modeling and Prognosis

The multivariate regression approach is especially suited for the prognosis of multivariate
time series. The aim of time series prognosis is to predict the values of a covariate x
for future time points (xt+1, xt+2, . . . , xt+h) up to a certain horizon h based on previous
values (x0, x1, . . . , xt). Time series prognosis models in most cases include an auto-
regressive term. This means, the model includes previous values of x for the prediction
of future values. Equation (7.4) shows a simple linear auto-regressive model for xt+1

using n previous values (xt, xt−1, . . . , xt−n+1) with model parameters ai weighting the
relative contributions of the previous values. Note that a given AR model (with fixed
parameters ai) can be used to predict future values of x up to any horizon x(t + h) by
simple recurrence using the values (x̂t+1, xt, xt−1, . . . , xt−n+2) to calculate x̂t+2 and so
on.

x̂t+1 =
n−1∑

i=0

aixt−i + εt (7.4)

Genetic programming can be used to create symbolic time series models. Depending
on the type of the underlying system from which the time series was measured and
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the intended application of the model, different modeling approaches are possible. The
approach discussed here, is useful for the identification or approximation of dynamic
systems. This task is closely related to symbolic regression, however, because of the
system dynamics the previous values of x can have an influence on y as well, so the
input values of the model have to be extended to include previous values of x up to a
maximal lag l. Equation (7.5) shows a model for a dynamic system, in comparison to
regression models the time parameter is relevant and previous values of x are included
as model inputs. In order to create dynamic models with genetic programming, the
terminal set has to be extended to include terminals for lagged variables up a certain
maximal lag limit. For dynamic models the same fitness functions, which are used for
symbolic regression, can be used (e.g. MSE).

ŷt = f(xt, xt−1, . . . , xt−l) + εt (7.5)

If the dynamic system includes a feedback loop, the response yt of the system not
only depends on the values xt and previous values of xt−i but also on previous output
values yt−i. So the model has to be extended to also include previous values of y up to
a maximal lag m and the result is the auto-regressive model 7.6.

ŷt = f(xt, xt−1, . . . , xt−l, yt−1, . . . , yt−m) + εt (7.6)

To create auto-regressive models with genetic programming the terminal set has to be
extended to also include terminal symbols for lagged values of y. This kind of model can
be used to predict the future values of y when the future values of the input / control
variables are known. The question that the model can answer is: What is the response
of the system for future values of the control variables x and current and previous values
of x and y. The estimation ŷt+1 can be feed back as input into the model and in
combination with the inputs xt+1 the estimated response ŷt+2 at time t+2 is produced.

The model cannot be used to predict future values of y when future values of x are
not known yet. In some applications it is sufficient to predict y only up to a limited
horizon h. In such cases a compromise is possible by using values of x only up to time
step xt−h as input (7.7). With this model it is possible to predict the next h values of
y based on the previous values of x and y. The disadvantage of this approach is that
recent values of x cannot be included in the approximation, the larger the prediction
horizon the larger the gap between input-values and estimated values.

ŷt+h = f(xt, xt−1, . . . , xt−l, yt+h−1, . . . , yt−m) + εt (7.7)

For this reason it is sometimes preferable to create fully auto-regressive models without
exogenous variables 7.8. This model has no explicit target variable, all values are used
as input and produced as output. Similarly to multi-variate regression, we can easily
create such multi-variate time series models with genetic programming. Note that for
a fixed model it is possible to predict future values of x to any finite horizon through
recurrence (even though the accuracy of the prognosis is expected to deteriorate with
increased time steps (t+ i) because of the accumulation of approximation errors εt+i).
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x̂t+1 = f(xt, xt−1, . . . , xt−l) (7.8)

7.2.1. Evaluation of Multi-variate Time Series Prognosis Models

In genetic programming fitness evaluation of auto-regressive models is often problematic
because of the implicitly high correlation of yt and yt−1 in time series datasets. In
symbolic regression the fitness of a solution is usually calculated as an average distance
over n pairs of original and approximated value for a data-set with n rows (e.g. MSE).
In time series modeling this fitness function assigns a relatively high fitness value to
pathological solutions, where the output value ŷt is only dominated by the input value
yt−1 because of the high correlation of two subsequent values of y. The result is that
such solutions (super-individuals) dominate the population and the algorithm quickly
converges. The final solution is practically useless because the system dynamics are not
modelled correctly and the solution cannot be used to calculate a meaningful prognosis.

The core of the problem is that it is easy to produce an accurate one-step prediction,
using the simple random walk model (ŷt = yt−1 + εt). To find better models, which
represent the system dynamics, it is necessary to evaluate time series models in an
environment where the random walk model is not a super-individual. In fact, the random
walk model should be used as a base line result. It is the worst possible model that is
accepted only when the time series cannot be predicted consistently (the original time
series is a random walk). In conclusion the random walk model is not better than any
other randomly initialized model of the first generation. So the fitness of the random
walk should be similar to the fitness of a randomly initialized model. We assume here,
that the original time series does not have a linear trend, however, the argument also
holds for time series with a long term trend.

One approach to evaluate time series models which is motivated by this idea, is to
calculate the fitness of a model on the basis of on longer sequences of predicted values.
For each point of the training set a series of predicted values up to horizon h is calculated
instead of a single one-step prognosis. The idea is that if the underlying dynamics of the
time series are identifiable, then it should be possible to find a model that consistently
outperforms the random walk model for the larger prediction horizon h.

Linear Scaling of Time Series Prognosis Models

Linear scaling is a fitness evaluation wrapper originally formulated for symbolic regres-
sion [95]. The raw output values of the model are linearly scaled to match the location
and scale of the original target values using the two parameters α and β (intercept and
slope) (7.9). The scaled mean squared error of the output values and the original target
values is used as fitness function, in order to make it easier for the evolutionary process
to find models that match the shape of the target variables. If the MSE of the unscaled
output values is used as fitness function the evolutionary process first concentrates to
create models that produce output in the correct range of the target values, reducing
genetic diversity in the progress. Only after the initial stages, the evolutionary process
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starts to match the shape of the target values. This issue is solved with linear scal-
ing as the output values are transformed to the correct location. Minimization of the
scaled mean squared error is equivalent to maximization of Pearson’s product moment
correlation coefficient [95]. The correlation coefficient can be calculated in a single pass
over the predicted and estimated values while the scaled mean squared error needs two
passes. One pass is necessary to calculate the parameter values α and β, and a second
pass is necessary to calculate the scaled mean squared error.

SMSE(y, ŷ) =
1

n

n∑

i=1

(yi − (α+ βŷi)
2

β =
Cov(y, ŷ)

Var(ŷ)

α = y − βŷ

(7.9)

Linear scaling can also be applied to time series prognosis. This is not straight forward
if the model has auto-regressive terms, because in this case the estimated output value
at point t is used as input for the prediction of the output value at point t+ 1 and the
scaled estimated values must be used as input instead of the raw estimated value. This
issue can be solved by calculating the scaled error in two steps. The algorithm for linear
scaling of time series models is proposed for the first time in Algorithm 7. First the
raw one-step predictions are calculated for the whole training set. Then α and β are
calculated based on the one-step predictions and the original target values. The resulting
scaling parameters are used to calculate the full prognosis up to the prediction horizon
for each point in the second pass over the dataset, using the scaled predicted value to
override the original measured values in y. The set of tuples (w(h), y[t], y[t+h], υ[t+h])
containing the original value at the start of the prognosis y[t], the original value at the
current horizon y[t+ h], the scaled predicted value at the current horizon υ[t+ h], and
an optional weighting w(h) is used to calculate the fitness of the model.

One straight forward fitness function, that can be used in this algorithm, is the mean
squared error over all predicted values 7.10. Please see A.1.2 for more advanced fitness
functions that can be used to calculate the fitness after the model output values have
been calculated.

MSE(P ) =
1

|P |
∑

(w(h),y[t],y[t+h],υ[t+h])∈P
(y[t+ h]− υ[t+ h])2 (7.10)

7.2.2. Case Study: Financial Time Series Prognosis

In this section we demonstrate the application of GP-based multi-variate time series
prognosis on a financial time series dataset. The dataset has been prepared by Ricardo de
A. Araújo and Glaucio G. de M. Melo for a financial time series prediction competition,
which was held as a side event of the EvoStar conference 2010 [43]. Only little information
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Algorithm 7: Linear scaling and fitness evaluation of time series prognosis models

input : Model: m, Fitness function: f , Column vector: yn, Matrix:
X = [xi,j ]n×k, Maximal lag: lmax, Horizon: hmax

output: Fitness of m

// subset of yn for which the model can be evaluated

target ← ylmax...n;
// calculate one step predictions

ŷ ← (m(yi−lmax...i−1, Xi−lmax...i×k)|i ← lmax . . . n);
// calculate linear scaling parameters

β ← Cov(target,ŷ)
Var(ŷ) ;

α ← target− βŷ;
P ← ®;
for t ← lmaxto n− hmax do

υn ← yn;
for h ← 1 to hmax do

υ[t+ h] ← α+ βm(υt+h−lmax...t+h−1, Xt+h−lmax...t+h×k);
P ← P ∪ (w(h), y[t], y[t+ h], υ[t+ h]);

end
return f(P );

end

about the origin of the dataset has been published, except that the dataset stems from
real financial time series from the Brazilian stock exchange.

The original dataset contains 200 observations of ten financial time series. The original
competition objective was to predict the next 10 data-points for each of the 10 time series.
Unfortunately the 10 data points, which were originally held back by the organizers to
evaluate the entries, have never been published. So we repartitioned the dataset into a
training partition (rows 1–190) and a test partition (rows 190–200).

Modeling

Table 7.1 shows the GP parameter settings for the time series prognosis experiments. In
this experiment static size and depth limits are used to prevent unlimited code growth.
The size limit is rather large (1000 nodes) because a single multi-variate model has ten
branches, one for each component of the multi-variate time series. The random models
of the initial population are created with the probabilistic tree creator with a uniform
target distribution of tree sizes between 1 and 1000 nodes. The function set contains
arithmetic operators including a special function for the calculation of the arithmetic
mean and additionally logarithm, exponential and sine function symbols. The terminal
set includes random constants, lagged variables and derivatives with allowed time offsets
between (t-27) and (t-1) and additionally terminal symbols to calculate the moving-
average and integral of the values of a variable over a given time span within the range
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Parameter Value
Population size 10000
Max. generations 100
Parent selection Tournament

Group size = 5
Replacement 1-Elitism
Initialization PTC2
Crossover Sub-tree-swapping
Mutation rate 15%
Mutation operator One-point

One-point constant shaker
Sub-tree replacement

Tree constraints Static limits
Max. depth = 10
Max. size = 1000

Model selection Best on validation
Fitness function scaled NMSE

Prediction horizon = 10
Function set +, -, *, /, avg, log, exp, sin
Terminal set const, lagged variable, ma, integral, derivative

Time offsets: (t-27)–(t-1)

Table 7.1.: Genetic programming parameter settings for the financial time series prog-
nosis experiments.

of allowed time offsets. For instance the expression MA(x1,−10,−5) is the moving-
average of the variable x1 in the time span from (t-10) up to (t-5). The derivative values
of a variable are approximated numerically from the original values without smoothing
(see A.2). The model is auto-recursive because all target variables are allowed also as
input variables, and the output values of the model for time t are used as input values
to calculate the output for time t+1. The maximal prediction horizon is ten time steps.
Models which do not reuse output values can be created if the time lags in all terminals
are smaller than -10.

For the GP runs the training partition spanning 190 rows is further partitioned into
a dataset that is used for fitness evaluation (rows 30–130) and an internal validation set
(rows 130–180). In total only 150 rows are used for training, because 30 rows have to
be skipped in the beginning to allow for dynamic models including time offsets, and 10
rows have to be trimmed at the end because the prediction horizon is 10. Figure 7.3
shows the model of evaluation for the 10-step prognosis of the financial time series. At
each point t of the training partition a prognosis consisting of 10 predicted values for
(t+ 1) . . . (t+ 10) is calculated.

The fitness function is the scaled normalized mean squared error for 10-step predictions
summed over the ten time series. Each component-branch of the model is linearly scaled
to fit the location and scale of that component of the original multi-variate time series as
described in algorithm (7). Scaling of branch output is based on the one-step predictions
of the model. After scaling the 10-step prognosis of the resulting model for each of the
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30 31 32 33 34 35 36 . . . 129 130

y 28.6 28.0 27.5 26.7 26.5 . . . 21.1 20.8

y′(t = 30) 26.8 27.0 26.8 26.7 26.6

y′(t = 31) 27.0 27.0 26.9 26.8 26.7

y′(t = 32) 27.0 27.0 26.9 26.8 26.7
...

. . .

y′(t = 129) 20.5 20.5

y′(t = 130) 20.5

Figure 7.3.: Model of evaluation for the 5-step prognosis of financial time series.
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Figure 7.4.: Box-plot of squared correlation coefficient (R2) over 80 models for each
component of the multi-variate financial time series.

training rows (30–100) is calculated (70 (rows)×10 (steps) predictions). Finally the
normalized mean squared error of the 700 predicted values and the actually observed
values is calculated for all ten components of the multi-variate time series and summed
up to produce the scalar fitness value. Also see sections A.1.1 and A.1.2 in the appendix
for further information on the fitness functions for multi-variate time series prognosis.

Results

Figure 7.4 shows a box plot of the squared correlation coefficient (R2) of the model
output and original values over 80 models produced by GP for each component of the
multi-variate time series. The box-plot shows that for some components the output of
the multi-variate models has a large squared correlation coefficient (x1, x3, x7, x8), while
for other components it is relatively low (x2, x5, x10).

It is tempting to conclude from the rather high R2 values for some components, that
the model can be used to accurately predict future values for these components. However,
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Figure 7.5.: Boxplot of Theil’s U over 80 models for each component of the multi-variate
financial time series. The horizontal line indicates the Theil’s U of the naive
prognosis.

the squared correlation coefficient cannot give a good insight about the actual accuracy
of the prognosis produced by the model. An accuracy metric that is better suited to
measure the accuracy of the predicted values is Theil’s inequality coefficient [213] (cf.
Section A.1.2). This metric relates the prognosis produced by the model to a naive
prognosis. We choose to compare the output of our models with the no-change model.
The interpretation of Theil’s U is very simple. A perfect prognosis has U = 0, the
naive prognosis has U = 1, and anything that is worse than the naive prognosis has
U > 1. The results for the multi-variate time series prognosis models produced by the
GP experiments are shown in the boxplot of the Theil’s U statistic for each component
in figure 7.5. This boxplot gives a more realistic indication of the accuracy of the models
when used for prognosis of the financial time series. It is immediately clear, that the
multi-variate models produced by the GP runs are actually not very useful for 10-step
prognosis of the financial time series. The models are consistently worse than the naive
no-change prediction for more than half of the variables (x3, x4, x6, x7, x9, x10). For
two variables the multi-variate models generated by GP produce a prognosis that is not
better than the naive prognosis. Only for two components (x5 and x8) the prognosis of
the GP models is consistently better than the naive prognosis.

Detailed Results

In the follwing the model with the lowest SMSE on the validation set is presented in
more detail. Equation (7.11) shows the simplified expressions for each component of the
time series. For better interpretability constant factors and offsets have been removed.
The model is very simple, x3, x8, x9 are approximated using only a linear trend (the
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variable Date is the row index). Variables x5, x6, x7 and x10 are approximated using
either the integral symbol or the moving average symbol for smoothing.

Figure 7.6 shows line charts of the original variable values and the 10-step prediction
of the model (7.11) for each component over the whole dataset. The model matches the
long term trend of the original values relatively well but fails to predict the short term
variations except for variable x7.

Figure 7.7 shows line charts of the actual continuation of the time series in the test
set (rows 190–200) and the continuation predicted by the model at time t = 190. This
line chart shows that the model is not capable to predict the short-term future values
of the multi-variate time series very well because the model only approximates the long
term trend. For most variables the predictions of the model are far off the actual values
and the model produces almost constant predictions for most variables. For variables
x3, x4, and x7 the model predicts the trend in the wrong direction. The prediction has
a positive trend, even though the variable values are actually decreasing.

In conclusion, the time series prognosis approach where GP is used to produce multi-
variate models succeeded in predicting the long term trend of the multi-variate time
series correctly, however, the short term variations are not predicted correctly.

x1(t) = x10(t− 10) + Date

x2(t) = x3(t− 24)

x3(t) = Date

x4(t) = x9(t− 8)× x8(t− 20)

x5(t) = x7(t− 1) + I(x6,−14,−4) + Date

x6(t) = I(x6,−26,−4) +MA(x8,−24,−7)

x7(t) =
1

I(x7,−8,−1)

x8(t) = Date

x9(t) = Date

x10(t) = I(x7,−8,−1)

(7.11)
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Figure 7.6.: Original values and predicted values (horizon=10) of the model (7.11) for
the financial time series dataset.
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Figure 7.7.: Actual continuation and predicted continuation (horizon=1..10) of the
model (7.11) for the test partition (rows 190–200) of the financial time series
dataset.
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8. Applications and Case Studies

The best thing about being a
statistician is that you get to play in
everyone’s backyard.

John Tukey

Genetic programming with the enhancements discussed in the preceding chapters can
be used effectively to identify interrelations between variables of complex systems. In
this chapter we apply the methods discussed in the previous chapters to analyze: the
blast furnace process for iron production, an industrial chemical process, and interactions
of macro-economic variables.

8.1. Blast Furnace

Parts of this section have been published by the author in [106]. The author thanks
Christoph Feilmayr for his expert input about the blast furnace process and for critically
reviewing draft versions of this section.

The blast furnace is the most common process to produce hot metal globally. Around
881 million tons of hot metal and 1240 million tons of steel were produced in 2006 [199].
More than 60% of the iron used for steel production is produced in the blast furnace
process [182].

The raw materials for the production of hot metal enter the blast furnace via two paths.
At the top of the blast furnace ferrous oxides and coke are charged in alternating layers.
The ferrous oxides include sinter, pellets and lump ore. Additionally feedstock to adjust
the basicity is also charged at the top of the blast furnace. In the lower area of the blast
furnace the hot blast (air, 1200 ◦C) and reducing agents are injected through tuyeres.
Reducing agents include heavy oil, pulverized coal, coke oven or natural gas, and coke
tar. Sometimes other reducing agents, like waste plastics, are added to substitute coke.
The products of the blast furnace are liquid iron (hot metal) and the liquid byproduct
slag, tapped at the bottom, and blast furnace gas which is collected at the top.

Figure 8.1 shows a schematic diagram of a blast furnace for the production of pig iron
(image taken from [106]).

Inside the blast furnace the raw materials undergo a number of physical and chemical
reactions. The ferrous oxides and coke gradually move down into the lower and hotter
parts of the furnace. In this process the mechanical properties of ferrous oxides change
because of pressure, temperature and the reducing gas atmosphere. The oxygen con-
tained in ferrous oxides is removed by the reducing agents carbon, carbon monoxide and
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Figure 8.1.: Schematic diagram of the blast furnace and input and output materials. At
the top ferrous oxides and coke are charged in alternating layers. Near the
bottom the hot blast and reducing agents are injected through the tuyeres.
Hot metal and slag are tapped in regular intervals from the hearth of the
blast furnace. Blast furnace gas is collected at the top of the blast furnace.

in minor proportion hydrogen. Carbon monoxide is created through partial oxidation
of reducing agents and from carbon dioxide and carbon (Boudouard-reaction). In the
upper part of the blast furnace the carbon monoxide reduces the ferrous oxides creating
carbon dioxide. The resulting metallic iron is melted and carburized. For more details
about the process see [202, 155, 184].

The general process and the physical and chemical reactions occurring in the blast
furnace are quite well understood. On a detailed level many of the inter-relationships
of different parameters and the occurrence of fluctuations and unsteady behavior in the
blast furnace are not totally understood. An example is the change in the cooling losses
via the walls of the furnace. Changes in the cooling losses are strongly related to the
efficiency of the process. However the causes for the effect are not totally understood.
Knowledge about such effects can be used to improve various aspects of the blast furnace
process, e.g. the quality of the products, the amount of resources consumed, or the
stability of the process.

A number of mathematical and simulation models have been developed for specific
processes in the blast furnace [11, 12, 192]. A survey of recent progress on mathematical
models for the blast furnace is given in [219]. Additionally data-based methods have been
applied to model certain aspects of the blast furnace process. The data-based approaches
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include neural networks [170, 35, 225, 123, 177], genetic algorithms [158, 176], support
vector machines [226], and genetic programming [106].

8.1.1. Modeling

In this section we describe the application of unguided genetic programming to identify
interesting interrelations in the blast furnace process, using the principles discussed in
the previous chapters.

The basis of our analysis is a dataset containing hourly measurements of the set of
variables of the blast furnace listed in Table 8.2. The dataset contains almost 5500 rows,
rows 100–3800 are used for training and rows 3800–5400 for testing. Only the first half
of the training set (rows 100–1949) is used to determine the accuracy of a model. The
other half of the training set (rows 1950–3800) is used for validation and to select the
final model. The dataset is not shuffled because the observations are measured over time
and the nature of the process is implicitly dynamic.

In each GP configuration one of the variables listed in Table 8.2 is treated as the
target variable and all remaining variables are allowed as input variables. This leads
to 23 different configurations, one for each target variable. For each configuration 30
independent runs have been executed. Table 8.1 lists the parameter settings for the
GP algorithm. Dynamic depth limits are used to increase model parsimony and the
correlation between training and validation fitness is used as overfitting indicator. If
the correlation decreases to a value below 0.2, the run is stopped before reaching the
maximum number of generations (150). The model with the largest R2 on the validation
set is linearly scaled to fit the location and scale of the target variables and returned as
the result of the GP run.

8.1.2. Results

Figure 8.2 shows a box-plot of the model accuracy (R2) over 30 independent runs for
each target variable of the blast furnace dataset. The R2 values are calculated from the
response of the validation-best model of each run on the test set. Whiskers indicate four
times the inter-quartile range, values outside of that range are indicated by small circles
in the box-plot.

Almost all models for the hot blast pressure result in a perfect approximation (R2 =
1.0). Very good approximations are also possible for the O2 propotion of the hot blast
and for the flame temperature. The hot blast temperature, the coke reactivity index,
and the amount of water injected through tuyeres cannot be modelled accuratly with
this approach.

Figure 8.3 shows the network of the most relevant input variables for each target
variable. Where an arrow a → b indicates that variable a is a relevant variable for
approximating variable b. For each target variable the three most relevant input variables
are shown. The variable relevance is determined using the frequency-based relevance
measure described in Chapter 6.
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Parameter Value
Population size 2000
Max. generations 150
Parent selection Tournament

Group size = 7
Replacement 1-Elitism
Initialization PTC2
Crossover Sub-tree-swapping
Mutation rate 15%
Mutation operator One-point

One-point constant shaker
Sub-tree replacement

Tree constraints Dynamic depth limit
Initial limit = 7

Model selection Best on validation
Stopping criterion Corr(Fitnesstrain,Fitnessval) < 0.2
Fitness function R2 (maximization)
Function set +,-,*,/,avg,log,exp
Terminal set constants, variable

Table 8.1.: Genetic programming parameters for the blast furnace dataset.

Group Variable

Hot blast

pressure
O2 proportion
speed
amount
temperature
total humidity

Tuyere Injection
amount of heavy oil
amount of coal tar
amount of water

Charging

coke charge weight
amount of pellets
amount of lump ore
amount of sinter
amount of coke
coke reactivity index
burden basicity B2

Tapping
hot metal temperature
amount of slag
amount of alkali

Blast furnace top gas
temperature
gas utilization CO

Process parameters
melting rate
cooling losses (staves)

Table 8.2.: Variables included in the blast furnace dataset.
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Figure 8.2.: Box-plot of R2 value on the test set of models for the blast furnace dataset.
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Some variables in the network are connected by arrows in both directions. This is an
indicator that the pair of variables is strongly related. The value of the first variable can
be approximated, if the value of the second variable is known and vice versa.

Variables that have many outgoing arrows play a central role in the process and can be
used to approximate many other variables. In the blast furnace network central variables
are the melting rate, the amount of slag, the amount of injected heavy oil, the amount
of pellets, and the hot blast speed and its O2 proportion.

In Figure 8.3 all target variables are displayed to present the full results of the ex-
periments. In a data mining scenario it is a good idea to filter the results dynamically,
showing only results for target variables for which accurate models are available. The
unfiltered variable relationship network should be interpreted in combination with the
box plot in Figure 8.2, because the significance (not in the statistical sense) of arrows
pointing to variables which cannot be approximated accurately, is low. One example are
the cooling losses of the staves. The three most relevant input variables for models for
the cooling losses are: the gas utilization (CO), the amount of alkali, and the amount
of heavy oil injected through tuyeres. This result has to be viewed critically because all
models for the cooling losses, which have been found in the process, are rather inaccurate
(R2 value of approximately 0.2). In any case, the knowledge gained by this experiment
can be used to study the effects of these three variables on the cooling losses in more
detail.

8.1.3. Result Details

The relationship network for the blast furnace process presented in Figure 8.3 provides
a good overview of the blast furnace process. However, many interesting details are
not shown in the network because this would add visual clutter to the figure and make
it hard to interpret the results. For a more thorough analysis it is necessary to look
at the models in more detail. In this section we present a number of selected models
for a subset of target variables for which accurate models have been identified. The
models presented in this section are simplified versions of the original models produced
by GP. The simplification includes manual pruning of branches with minor impact on
the prediction and automatic simplification. Table 8.3 gives an overview of the models
presented below.

It is important to note that the models presented in Equations 8.1 to 8.12 are the direct
result of a data-analysis process and can only show relations of variable values in the
dataset in a statistical sense. In particular, the models do not necessarily approximate
actual physical or chemical relations or causations in the blast furnace process.

The models show a strong relation of the melting rate with the hot blast parameters.
The melting rate is used in models for the hot blast parameters: pressure (8.1), O2-
proportion (8.5), the hot blast amount (8.9), and the total humidity (8.8) which is largely
determined by the hot blast. In return the hot blast parameters play an important role in
the model for the melting rate (8.11). Parameters of the hot blast are directly controlled
by the operator who adjusts the amount, the temperature, and the O2 proportion of
the hot blast [62]. As such the models identified for the hot blast are not interesting for

124



Hot blast
pressure

Hot blast
O2 proportion

Total humidity

Flame
temp.

Melting rate

Gas utilization
CO

Water
injection

Coke charge
weight

Pellets

Hot blast
speed

Heavy oil
injection

Coal tar
injection

Coke

Hot blast
amount

Hot blast
temp.

Coke reactivity
index

Blast Furnace
 top gas temp.

Liquid iron
temp.

Cooling losses
(staves)

Slag

Alkali

Burden
Basicity B2

Lump ore

Sinter

Figure 8.3.: Relationships of blast furnace variables identified with unguided GP-based
data mining. Arrows indicate a dependency in the aspect of data modeling
and do not necessarily match physical or chemical causations.

Variable Model R2

Hot blast pressure (8.1) 1.0
Hot blast O2-proportion (8.5) 0.98
Flame temperature (8.6) 0.96
Total humidity (8.8) 0.86
Hot blast amount (8.9) 0.87
Melting rate (8.11) 0.89
Amount of slag (8.12) 0.77

Table 8.3.: Overview of selected models for the blast furnace process.
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Figure 8.4.: Scatter plot of the original values of PressureHB and the output of model
8.1.

the blast furnace operator [62]. However, they are helpful for the interpretation of other
models as they represent the implicit relations of different variables which might be used
interchangeably by GP in models for more interesting variables like the melting rate.

The pressure of the hot blast is a result of the hot blast amount and temperature and
permeability of the burden through which the hot blast is pressed [62]. The model iden-
tified using symbolic regression is shown in Equation 8.1. It has a very high correlation
with the original measured values considering only the test partition.

PressureHB = c0 log
c1SpeedHB

AmountHB × TempHB

+ c2

c0 = −11.4233

c1 = 0.79701

c2 = −68.9197

(8.1)

The scatter plot of the original values and the output of this model is shown in Figure
8.4. As can be seen in the scatter plot the value is approximated correctly for the
test set, however, an additional unknown term which is not included in the model also
influences the pressure of the hot blast. This missing term is the tuyere area which
changes intermittently every two to six months and stays constant over large time spans
[62]. As can be seen in Figure 8.4 the tuyere area is changed five times over the whole
period from which the blast furnace data set was collected.

Model 8.1 can be further simplified to the expression shown in Equation 8.2.

PressureHB = α(− log(SpeedHB) + log(AmountHB) + log(TempHB)) + β (8.2)
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Rows α β

1–788 11.35 -67.57
788–1175 11.00 -64.09
1175–1182 9.70 -56.39
1182–1473 10.68 -62.68
1473–5450 11.42 -67.80

Table 8.4.: Scaling parameters α and β for the model for PressureHB shown in Equation
8.2 for different partitions of the blast furnace data set.

Using the full data set we determined the parameters α and β in order to fit the scale
and location of the model output for the differences caused by changes in tuyere area.
The resulting parameter values for α and β are shown in Table 8.4.

The models shown Equations 8.1 and 8.2 approximate the pressure of the hot blast
based on the hot blast amount, speed, and temperature. However, the model disregards
the known causal relationship of the three variables shown in Equations 8.4 and 8.3.

AmountactualHB = AmountnormHB × TempHB + 273

273
× 1.013

PressureHB + 1
(8.3)

SpeedHB =
AmountactualHB

3600 Tuyere area
(8.4)

In particular, the injected hot blast amount (AmountnormHB ) is a controlled value. The hot
blast speed depends on the tuyere area and the actual hot blast amount (AmountactualHB ),
which in turn depends on the controlled hot blast amount (AmountnormHB ), temperature,
and pressure. The hot blast temperature is held at a constant value necessary for the
operation of the blast furnace, and the tuyere area is also constant over large time spans.
The hot blast pressure physically depends on the permeability of the burden and the
hot blast parameters. It is physically not reasonable to explain the pressure of the hot
blast based on the hot blast amount and speed, because the hot blast speed is a result
of the pressure and the controlled hot blast amount [62].

The model for the O2 proportion of the hot blast shown in Equation 8.5 has a very
high squared correlation coefficient of 0.98. The value is a direct result of the control
parameters and not particularly interesting because the value can be calculated directly
using a known formula [62].

O2-propHB =
c0TempHB + c1Melting rate + c2Humidity + c3

c4TempFlame + c5Humidity + c6Heavy oil + c7Coal tar + c8

× c9
c10Gas consCO + c11TempHB + c12

+ c13

(8.5)

The model for the flame temperature shown in Equation 8.6 has a very high squared
correlation coefficient of 0.96 and contains both, the melting rate and hot blast pa-
rameters. The flame temperature can be calculated via a known formula from the O2

proportion and temperature of the hot blast, the amount of injected materials, and a
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fictitious coke temperature. The coke temperature is fixed at about the same tempera-
ture of liquid slag in the furnace (about 1500◦C). With this temperature it is possible
to calculated the adiabatic energy balance in the flame region to determine the flame
temperature [62].

The model shown in Equation 8.6 shows a statistical relation of the flame temperature
to the amount of coke and the O2 proportion of the hot blast, however, it does not
match the known formula. In particular, factors that are known to have an impact on
the flame temperature, namely the injected amounts of heavy oil and coal tar, have not
been identified correctly [62]. Thus, symbolic regression was not able to rediscover the
known physical model and the model is not useful for the blast furnace operator.

TempFlame = c1Melting rate + c2Coke + c3O2-propHB + c4Humidity + c5

c1 = −0.24276

c2 = 0.41853

c3 = 37.35

c4 = −5.7866

c5 = 1370.8

(8.6)

The model can be further simplified by removing the variables Coke and Melting rate.
The resulting model shown in Equation 8.7 still has an R2 value of 0.95 on the test set.

TempFlame = c1O2-propHB + c2Humidity + c3

c1 = 37.35

c2 = −5.7866

c3 = 1448.7

(8.7)

Equation 8.8 shows a data-based model for the total humidity with a squared cor-
relation coefficient value of 0.86. The total humidity is physically always a result of
the ambient atmospheric humidity, the enrichment of the hot blast with vapor, and the
amount of water injected via tuyeres [62]. The enrichment with vapor and the amount of
water injected via tuyeres are controlled by the operator. The humidity is physically not
connected to the burden composition (amount of lump ore, pellets, coke) or the melting
rate. Thus, the model produced by symbolic regression must be criticized as it does not
match the known relationships in the actual process [62].

Humidity =
c0O2-propHB + c1

Coke + c2

c3Temp.Flame × S

S = c4Coal tar + c5Lump ore + c6Melting rate

+ c7Pellets + c8TempFlame + c9Heavy oil + c10

(8.8)

The model for the hot blast amount shown in Equation 8.9 has a squared correlation
coefficient of 0.87. The model produced through data-analysis shows a connection of
the hot blast amount to the melting rate and the speed of the hot blast. Additionally
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the total humidity and the amount of sinter also play a role in this model for the hot
blast amount. The impact of the total humidity is, however, rather small. If humidity
is removed from the model by setting the numerator to 1 in Equation 8.9 the resulting
output still has an R2 of 0.85.

AmountHB =
c0Humidity + c1

Melt. rate× SpeedHB × (c2Melt. rate + c3)× (c4Sinter + c5)× c6
+ c7

c0 = 2.01106× 1014

c1 = −6.29366e× 1016

c2 = −1.5131

c3 = 49.334

c4 = −1.1368

c5 = −2.355× 103

c6 = −11.098

c7 = 3.75× 105

(8.9)

Equation 8.11 shows a model for the melting rate with a rather high squared correlation
coefficient of 0.89. The melting rate is primarily a result of the absolute amount of O2

injected into the furnace and is also related to the efficiency of the furnace. A simple
approximation for the melting rate is

Total amount of O2

[220 . . . 245]
(8.10)

When the furnace is working properly the melting rate is higher (O2/220), when the
furnace is working inefficiently the melting rate decreases (O2/245) and high cooling
losses can be observed. Additional factors that are known to effect the melting rate are
the burden composition and the amount of slag. Data-based modeling of the melting rate
is interesting because the physical causes for changes in the melting rate are not fully
understood and a data-based model could lead to better insights into the influencing
factors. The model generated through data-analysis shown in Equation 8.11 also shows
the known relation of the melting rate and the amount of O2. The cooling losses and the
amount of lump ore have also been identified as factors connected to the melting rate.
Additionally, the gas utilization of CO plays a role in this model for the melting rate.

Melting rate = log(c0 × TempHB ×O2-propHB × (c1Cool. loss + c2AmountHB + c3)

+ c4 ×Gas utilCO × (c5Lump ore + c6)× (c7AmountHB + c8))

(8.11)

The model for slag shown in Equation 8.12 has a squared correlation coefficient of 0.77.
It is possible to calculate the amount of slag directly from the amounts of input material
charged at the top of the blast furnace, thus the data-based model for the amount of
slag is not useful [62].
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Slag = c0Sinter +
c1Heavy oil + c2
c3 log(Alkali) + c4

+ c5Alkali (8.12)

8.1.4. Concluding Remarks

Using a comprehensive symbolic regression approach a number of data-based models
have been identified for certain variables in the blast furnace process that approximate
the observed values rather accurately.

In the detailed analysis of the models presented in this section it became clear, that
the majority of the models are not useful for the blast furnace operator because the real
process is not described correctly [62]. In particular, the symbolic regression models
often contain input variables which are known to be independent from the target vari-
able, whereas input variables which do have an influence on the target variable are not
identified correctly.

Additionally, the comprehensive symbolic regression approach produced many models
which are not useful for the blast furnace operator because the modeling process is
untargeted. In particular, some variables which are considered as target variables are not
relevant for the analysis of the process because they are directly or indirectly controlled
by the blast furnace operator [62]. Also, the value of some variables can be determined
through known formulas which are more accurate than the data-based models.

As described in the previous sections, many variables in the blast furnace process
are implicitly related, either because of underlying physical relations, or because of the
external control of blast furnace parameters. This causes problems in the identifica-
tion and description of symbolic regression models, because it is possible to express an
identified dependency in multiple different but semantically identical ways via the im-
plicit relations. Usually, implicit relations are not known a-priori in data-based modeling
methods, thus a method to identify all implicit dependencies can be useful. However, in
the situation of the blast furnace process many of the implicit dependencies are already
known, thus the untargeted approach is inefficient and misleading. Instead, it is better
to create models for a few carefully selected target variables, where the set of input
variables is restricted to a few variables. For the definition of the modeling scenarios,
as well as for the interpretation of the models, expert knowledge about the process and
the implicit dependencies is necessary.

In retrospect the comprehensive symbolic regression approach is not useful for mod-
eling the blast furnace process, where many physical relations are known beforehand.
A very interesting extension of that approach, left for future work, would be to include
a-priori knowledge into the modeling process. If the control parameters and known
causal chains are predefined and supplied as input to the modeling approach it would be
possible to restrict the search for actually relevant and potentially interesting models.
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8.2. Econometric Modeling

Macro-economic models describe the dynamics of economic quantities of countries or
regions, as well as their interaction on international markets. Macro-economic variables
that play a role in such models are for instance the unemployment rate, gross domestic
product, current account figures and monetary aggregates. Macro-economic models can
be used to estimate the current economic conditions and to forecast economic develop-
ments and trends. Therefore macro-economic models play a substantial role in financial
and political decisions.

Genetic programming has been used to rediscover well known non-linear econometric
models from noisy datasets [100, 101]. Numerous papers have been published, describ-
ing applications of genetic programming in finance and econometrics, in particular for
modeling and prediction of financial time series [36, 121, 92, 216, 144, 93, 31] and the
discovery of effective trading rules [143, 141, 142, 140, 131, 50, 51, 237].

In this contribution we take up the idea of using symbolic regression to generate models
describing macro-economic interactions based on observations of economic quantities.
However, contrary to the constrained situation studied in [100], we use a more extensive
dataset with observations of many different economic quantities, and aim to identify all
potentially interesting economic interactions that can be derived from the observations
in the dataset. Also, we are not concerned about the prognosis of economic time series,
but in the relation of different economic variables over the observed time span.

8.2.1. Macro-Economic Dataset

The dataset we used for the discovery of macro-economic models has been collected
and kindly provided to us by Dr. Stefan Fink. The original dataset contains monthly
observations of 104 economic variables and indexes from the United States of America,
Germany, and the Euro zone in the time span from January 1978 until December 2008.
However, not all variables contain values for the full time span so, as preparation for
modeling with GP, we reduced the number of rows to cover the time span from January
1980 until July 2007 (331 rows). Next we reduced the set of input variables and kept
only those variables, for which values for the whole time span are available. All variable
values have been scaled to values between 1 and 2. The variable days is a index variable
for the number of days elapsed since 01/01/1980. Using this variable, the GP process
can theoretically identify seasonal changes in the variables. Table 8.5 lists the remaining
variables of the macro-economic dataset.

Preliminary analysis of the dataset showed, that some of the variables are strongly
correlated. The strongly correlated variables pairs are: the number of housing starts
and the number of building permits, the ISM manufacturing purchase managers index
and the Chicago purchase managers index, and the university of Michigan sentiment
index and the university of Michigan conditions index. The three variables correlated
variables, housing starts, ISM mfg PMI, and U. Mich. sentiment have been removed
from the dataset.

The following variables have a general rising trend and are pairwise strongly cor-
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Variable Data

Days

d(US Average Earnings)

US Building Permits

US Capacity utilization

US Chicago PMI

US Consumer Confidence

d(US Consumption, adj)

d(US CPI inflation, mm)

d(US Current Account)

US Domestic Car Sales

d(US Existing Home Sales)

US Fed Budget

US Foreign Buying, T-Bonds

US Help Wanted Index

US Housing Starts

d(US Industrial Output mm)

d(US International Trade $)

US ISM mfg PMI

d(US Leading Indicators)

US Manufacturing Payroll

US Mich conditions prel

US Mich expecations prel

US Mich InflErw 1y

US Mich InflErw 5y

US Mich sentiment prel

US National Activity Index

US New Home Sales

d(US nonfarm payrolls)

d(US Personal Income)

US Phil Fed business Index

d(US Producer Prices mm)

US Unemployment

d(EZ Producer Price mm)

d(GER Exports)

d(GER Imports mm)

d(GER Producer Price)

GER Wholesale price index

Table 8.5.: List of economic variables considered for the identification of macro-economic
relations
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related: personal income, existing house sales, current account, international trade,
consumption, leading indicators, industrial output, average earnings, non-farm payrolls,
producer price, CPI inflation, imports (GER), exports (GER), producer price (EZ).
These correlations are not particularly useful, so we decided to study the derivatives
(monthly changes) of the variables instead of the absolute values to find more interest-
ing relations. The derivative variables (d(x)) are calculated using the five point formula
for the numerical approximation of the derivative (see Section A.2). The drawback of
the numerical approximation of the derivative is, that the noise in the original values is
amplified by the calculation of the derivative and it is more difficult to produce accurate
models for the derivative variable.

8.2.2. Modeling

The dataset is split into training (rows 13–300) and test (rows 300–331). The testing
period is January 2005 to July 2007. Only rows 13–200 are used for fitness evaluation
and rows 100–300 are used as internal validation set for overfitting detection and for
the selection of the final (best on validation) model. Note, that there is an overlapping
region of rows that are used for the fitness calculation and for internal validation. The
dataset is rather small and the overlap is on purpose to increase the number of rows,
used for validation. The drawback of the overlap is, that the chance to return overfit
models is larger.

The goal of the modeling step is to identify the network of relevant variable interactions
in the macro-economic dataset. Thus, several symbolic regression runs were executed
to produce approximation models for each variable of the dataset. The same parameter
settings were used for all runs. Only the target variable and the list of allowed input
variables was adapted. The GP parameter settings for our experiments are specified in
Table 8.6. We used rather standard GP configuration with tree-based solution encoding,
tournament selection, sub-tree swapping crossover, and two mutation operators. The
fitness function is the squared correlation coefficient of the model output and the actual
values of target variables. Only the final model is linearly scaled to match the location
and scale of the target variable [95].

In the experiments we used two adaptations of the algorithm to reduce bloat and
overfitting described in the previous chapters. Dynamic depth limits [188] with an initial
depth limit of seven are used to reduce the amount of bloat. An internal validation set
is used to reduce the chance of overfitting. Each solution candidate is evaluated on the
training and on the validation set. Selection is based solely on the fitness on the training
set, the fitness on the validation set is used as an indicator for overfitting. Models that
have a high training fitness but a low validation fitness are likely to be overfit. Thus,
after each iteration the correlation of the training- and validation fitness values of all
solution candidates in the population is calculated using Spearman’s rank correlation
ρ(Fitnesstrain,Fitnessval). If the correlation of training- and validation fitness in the
population drops below a certain threshold the algorithm is stopped.
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Parameter Value
Population size 2000
Max. generations 150
Parent selection Tournament (group size = 7)
Replacement 1-Elitism
Initialization PTC2 [127]
Crossover Sub-tree-swapping
Mutation 7% One-point, 7% sub-tree replacement
Tree constraints Dynamic depth limit (initial limit = 7)
Model selection Best on validation
Stopping criterion ρ(Fitnesstrain,Fitnessval) < 0.2
Fitness function R2 (maximization)
Function set +, -, *, /, avg, log, exp, sin
Terminal set constants, variables, lagged variables (t-12) . . . (t-1)

Table 8.6.: Genetic programming parameters.

8.2.3. Results

For each variable of the dataset 30 independent GP runs have been executed using the
open source software HeuristicLab on four blades of a blade-system each equipped with
an 8-core Intel Xeon processor and 32GB RAM. The result is a collection of 990 models
(generated in the same number of GP runs) representing the (non-linear) interactions
between all variables. Figure 8.5 shows the box-plot of the squared correlation coefficient
(R2) of the model output and the original values on the test set for the 30 models for
each variable.

Variable Interaction Network

For each target variable we calculated the frequency-based relevance of all possible input
variables. In Figure 8.6 the three most relevant input variables for each target variable
are shown, where an arrow (a → b) means that variable a is a relevant variable in models
for variable b. The variable pairs with large correlations (R2 > 0.85) have been grouped.
Only a single variable of each group was allowed as input variable. The reasoning behind
this is, that if there is a high correlation between variables, the variables can be used as
input interchangeably.

The network of relevant variables shows many strong double-linked variable relations.
Strongly related variables discovered by GP are for instance exports and imports of
Germany, consumption and existing home sales, building permits and new home sales,
Chicago PMI and non-farm payrolls and a few more. GP also discovered a chain strongly
related variables, connecting the producer price indexes of the euro zone, Germany and
the US with the US CPI inflation.

A large strongly connected cluster that contains the variables unemployment, capacity
utilization, help wanted index, consumer confidence, U. Mich. expectations, U. Mich.
conditions, U. Mich. 1-year inflation, building permits, new home sales, and manufac-
turing payrolls has also been identified by our approach.
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Figure 8.5.: Box-plot of R2 values on the test set of models for the macro-economic
dataset.
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d(CPI
inflation)d(Average

Earnings)

d(Producer
Prices)
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Producer Prices)

d(Current
Account)

d(International
Trade)

d(DE
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d(Personal
Income)
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InflErw 1y

d(Leading
Indicators)

New
Home Sales

Manufacturing
Payroll

Mich
conditions 

National Activity
Index
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Home Sales)
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Help Wanted
Index

d(nonfarm
payrolls)
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d(DE
Exports)

Unemployment

Capacity
utilization
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PMI

d(Industrial
Output)
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Producer Prices)

d(Consumption)

Figure 8.6.: Relationships of macro-economic variables identified with comprehensive
symbolic regression and frequency-based variable relevance metrics. This
figure has been plotted using GraphViz.
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Variable Model R2

Building permits (8.13) 0.93
New home sales (8.14) 0.82
Manufacturing payrolls (8.15) 0.89
Help wanted index (8.16) 0.82
Wholesale price index (GER) (8.17) 0.61
Producer price index (GER) (8.20) 0.74
Producer price index (EZ) (8.18) 0.82
CPI inflation (8.19) 0.93
Capacity utilization (8.21) 0.76
National activity index (8.22) 0.66
U. Michigan conditions index (8.23) 0.69

Table 8.7.: Overview model accuracy for the simplified macro-economic models identified
by GP.

Outside of the central cluster, the variables national activity index, CPI inflation, non-
farm payrolls and leading indicators also have a large number of outgoing connections,
indicating that these variables play an important role for the approximation of many
other variables.

Detailed Models

The variable interaction network only provides a course grained high level view on the
identified macro-economic interactions. To obtain a better understanding of the identi-
fied macro-economic relations it is necessary to analyze single models in more detail. In
the following we present a number of manually selected and simplified models identified
by GP. Table 8.7 shows an overview of model accuracy on the test set for the presented
models.

The help wanted index is calculated from the number of job advertisements in major
newspapers and is usually considered to be related to the unemployment rate [40], [1].
The model for the help wanted index shown in Equation 8.16 has a R2 value of 0.82 on the
test set. The model includes the manufacturing payrolls and the capacity utilization as
relevant factors. Interestingly, the unemployment rate which was also available as input
variable is not used, instead other indicators for economic conditions (Chicago PMI,
U. Mich cond.) are included in the model. Interestingly the model also includes the
building permits and wholesale price index of Germany.

Help wanted index = Building permits +Mfg payroll

+ Capacity utilization +Wholesale price index (GER)

+ Chicago PMI +Mfg Payroll(t− 5)

+Mich cond.(t− 3)

(8.16)
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50 100 150 200 250 300

1

1.5

2

Building permits

Original Estimated

Building permits = Unemployment + Unemployment(t− 5)

+ New home sales

+ New home sales(t− 2) + New home sales(t− 4)

+ log(Consumer conf.(t− 1)) + Domestic car sales

(8.13)

50 100 150 200 250 300

1

1.5

2

New home sales

Original Estimated

New home sales = Building permits +
1

log(mfg payroll) + c0
(8.14)
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1.5

Manufacturing payrolls

Original Estimated

Mfg payrolls =
Days + c0

Help wanted index×Help wanted index(t− 6)

+ log(Consumer conf.(t− 1) +Mich 1y infl(t− 6))

(8.15)
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2

Help wanted index

Original Estimated

Figure 8.7.: Line chart of the actual value of the US Help wanted index and the estimated
values produced by the model (Equation 8.16). Test set starts at index 300.

Figure 8.7 shows a line chart for the actual values of the help wanted index in the US
and the estimated values of the model (Equation 8.16) over the whole time span covered
by the dataset.

The consumer price index measures the change in prices paid by customers for a
certain market basket containing goods and services, and is measure for the inflation in
an economy. The output of the model for the CPI inflation in the US shown in Equation
8.19 is very accurate with a squared correlation coefficient of 0.93 on the test set. The
model approximates the consumer price index based on the unemployment, car sales,
New home sales, and the consumer confidence.

CPI inflation = Unemployment + Domestic car sales + New home sales

+ log(New home sales(t− 4) + New home sales(t− 2)

+ Consumer conf.(t− 1) + Unemployment(t− 5))

(8.19)
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50 100 150 200 250 300

1.5

2

Wholesale price (GER)

Original Estimated

Wholesale price (GER) = Help wanted index + Consumer conf.

+ exp(Help wanted index +Mich expect.(t− 1))

+
1

Mich expect.(t− 8)
+ Capacity util.(t− 2)

+ exp(Help wanted index(t− 12))

× (Help wanted Index + c0)

(8.17)
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·10−2
Producer price (EZ)

Original Estimated

Producer price (EZ) = d(CPI inflation) + d(Producer price (GER)) (8.18)
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Figure 8.8.: Line chart of the actual value of the US CPI inflation and the estimated
values produced by the model (Equation 8.19).

50 100 150 200 250 300
−2

0

2

·10−2
Producer price (GER)

Original Estimated

Producer price (GER) = d(Producer Price (EZ)) +Mich 1y infl.(t− 6)2

+ d(EZ Producer price)× Consumer conf.

+ d(EZ Producer price)×Mich cond.(t− 8))

(8.20)

Figure 8.8 shows a line chart for the actual values of the CPI inflation in the US and
the estimated values of the model (Equation 8.19) over the whole time span covered
by the dataset. Notably the drop of the CPI in the test set (starting at index 300) is
estimated correctly by the model.

8.2.4. Concluding Remarks

The application of the proposed approach on the macro-economic dataset resulted in
a high level overview of macro-economic variable interactions. The variable interaction
network provides information that is not apparent from analysis of single models, and
thus supplements the information gained from detailed analysis of single models. In the
experiments we used dynamic depth limits to counteract bloat and an internal validation
set to detect overfitting using the correlation of training- and validation fitness. A
number of selected models for instance for the US Help wanted index and the US CPI
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Capacity utilization
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Capacity utilization = Unemployment +Mfg payrolls (8.21)
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2

National activity index

Original Estimated

National activity = (d(Non-farm payrolls) + d(Non-farm payrolls)(t− 1)

+ d(Industrial output) + d(Industrial output)(t− 1)

+ Building permits)

× (
1

d(Existing home sales)(t− 4)

+ New home sales(t− 12) + c)

(8.22)
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50 100 150 200 250 300
1

1.5

2

U. Mich. conditions index

Original Estimated

Mich. cond. = Mfg payrolls(t− 10)

× Consumer conf.

× (Mich 1-year inflation +Mich expect.

+ Help wanted index(t− 2) + c)

× (
c

Consumer conf.× (Mich expect. + c)

+ Help wanted index×Wholesale price (GER)(t− 9) + c)

×
(

c

Consumer conf.× (Mich expect. + c)
+ c

)

(8.23)

inflation have been presented and discussed in detail. The models are rather accurate
also on the test set and are relatively comprehensible.
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Correlated variables

x33, x51, x52, x53
x35, x37
x31, x47
x39, x40
x1, x7, x10, x38
x4, x20, x21
x54, x55
x9, x16, x17, x18, x19
x23, x24, x25, x26, x27, x28

Table 8.8.: Clusters of strongly correlated variables in the chemical dataset. The variable
used as representative for the cluster in the modeling process is indicated in
bold font.

8.3. Chemical Process

The last application studied in this chapter is the analysis of data from a chemical pro-
cess. The dataset analyzed in this section has been prepared and published by Arthur
Kordon of Dow Chemical for the symbolic regression competition, which has been held
as a side event of the EvoStar conference 2010. Only little information about chemi-
cal process, from which the data was collected, is available. The measurements stem
from a real industrial process. The input variables are process parameters like temper-
atures, pressures and material flows (input material). The target variable y describes
the chemical composition of the output of the process. The values of y are measured
in the laboratory and are noisy and rather expensive to measure. The objective is to
find a robust model which accurately approximates the lab value y from the process
parameters (virtual sensor). Through interpretation of the model it is possible to gain
a better understanding of the impacts of different process parameters on the chemical
composition. This knowledge can be used for controlling the process, in order to improve
product quality.

Some of the input variables are implicitly related so a full search for non-linear relations
on the whole dataset is beneficial in order to get a better understanding of the whole
process. This is also helpful for the interpretation of model for y as the implicit relations
can be used to generalize over multiple equally accurate models for y.

8.3.1. Modeling

Preliminary analysis shows that a number of variable pairs are strongly correlated leading
to a number of clusters of strongly correlated variables. For each cluster only a single
representative variable is kept in the dataset the remaining variables in the cluster are
removed because they can be expressed through the representative variable of the cluster.
Table 8.8 lists the clusters identified by correlation analysis.

The dataset contains 57 input variables x1–x57 and the target variable y. The dataset
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Parameter Value
Population size 2000
Max. generations 150
Parent selection Tournament

Group size = 7
Replacement 1-Elitism
Initialization PTC2
Crossover Sub-tree-swapping
Mutation rate 15%
Mutation operator One-point

One-point constant shaker
Sub-tree replacement

Tree constraints Dynamic depth limit
Initial limit = 7

Model selection Best on validation
Stopping criterion Corr(Fitnesstrain,Fitnessval) < 0.2
Fitness function R2 (maximization)
Function set +, -, *, /, avg, log, exp
Terminal set constants, variables

Table 8.9.: Genetic programming parameters for the symbolic regression experiments
with the chemical dataset.

is split into a training partition (747 rows) and a test partition (319 rows). The first 30
rows of the training partition are not used at all, rows 30–388 are used to calculate fitness
and rows 388–746 are used as internal validation partition for overfitting detection and
to select the final (validation-best) model. Fitness is calculated as squared correlation
coefficient of the model output and the original target values. The GP parameter settings
are specified in Table 8.9. The final model is linearly scaled using the target values from
row 30–746. The squared correlation coefficient R2 values reported are calculated from
the final model output applied to the test partition.

8.3.2. Results

Figure 8.9 shows the squared correlation coefficient (R2) over 30 models for each variable.
GP reliably found very accurate models for the variables x9 (representative for x16, x17,
x18, and x19) , x1 (representative for x7, x10, and x38), x46, and x36. The R2 of the
models for x54 and x23 are scattered over a large range but a few GP runs produced
accurate models. The models for the target variable y have a median R2 of 0.6 on the
test set. For variable x4 (which is the representative of a cluster also containing x20 and
x21) no accurate models have been found.

Figure 8.10 shows the network of the most relevant input variables for modeling each
variable. The three most relevant input variables, as determined by the frequency-based
relevance metric are shown for each variable. The variable relation network shows that
variables x11 and x12 are also strongly connected to the cluster with the representative
x23. There is a long chain of clusters strongly connected to the target variable y. The
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Figure 8.9.: Box-plot of R2 value on the test set of models for the chemical dataset.

target variable y is connected to the cluster with representative x35 which is in turn
strongly connected to the cluster with representative x1 which is again strongly connected
to the cluster with representative x54 which is strongly connected to the cluster with
representatives x9. The most relevant input variables for the target variable y are x35,
x49 and x32 (which is itself connected strongly to x49). Interestingly the variable y
plays an important role for the approximation of the cluster with representative x33,
however, as shown in the box-plot the models for x33 are not very accurate. Generally
in the chemical dataset, there are many variable pairs that are doubly-linked, which is
an indicator that the variable pair is strongly related.

Central variables of the network with many outgoing arrows are: x13, x8, x6, x5, x30,
and x42.

The variables x11, x12, and the cluster with representative x23 are not among the
most relevant variables for modeling any other variable. The same is true for the cluster
containing variables x4, x20, and x21.

8.3.3. Detailed Results

In the following a number of selected and simplified models are presented in more detail.
Table 8.10 lists all models together with the squared correlation coefficient of the model
output and the original target values on the test set. The unguided search for models
in the chemical dataset produced very accurate linear models for x31 (8.28), x32 (8.29),
x46 (8.33), and x49 (8.35). The model for the target variable y contains x32, x31, and
x49 as input variables, so further information about the nature of these two variables is
relevant for the interpretation of the model produced for y. For the variable x35, that
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Figure 8.10.: Relationships of variables in the Chemical-I dataset identified with un-
guided GP-based data mining
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Variable Model R2

x1 (8.24) 0.98
x9 (8.25) 0.85
x14 (8.26) 0.76
x15 (8.27) 0.65
x31 (8.28) 0.83
x32 (8.29) 0.96
x35 (8.30) 0.90
x39 (8.31) 0.86
x42 (8.32) 0.84
x46 (8.33) 0.93
x48 (8.34) 0.51
x49 (8.35) 0.93
x54 (8.36) 0.71
y (8.3.3) 0.64

Table 8.10.: Overview of models for the chemical dataset.

also occurs in the model for y, a very accurate non-linear model has been found (8.30)
which relates x35 to variables x6, x33, and x57. The only variable occurring in the model
for y, which cannot be approximated accurately through other variables, is x48 (8.34).

x1 =x8 + x9 + x29 + x15 + x34 + x35 + x45 + y +
x9 (x57 + x34 + x49)

x54
(8.24)

x9 =
1

x35 + x54
(8.25)

x14 = x15 + x50 +
1

exp(x8)
(8.26)

x15 = log




exp(x14)
log(y) + c0

log(x5 + c1)× exp(x14 + c2)


 (8.27)

x31 = x30 + x32 + x46 + x50 (8.28)

x32 = x5 + x14 + x31 + x33 + x44 + x46 + x49 + x50 (8.29)
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x35 =
1

x33 +
x2
1(x6+c0)
x57+c1

+ c2
(8.30)

x39 =
x30 +

x13

(x50+c0)
2 + c

x5 + x29 + x41 + x45 + x46 + x50 + c
(8.31)

x42 =
1

x34 + x43 + x45
(8.32)

x46 = x3 + x5 + x8 + x30 + x31 + x36 + x39 + x44 + x45 + x49 (8.33)

x48 =
(x5 + x44 + c) (x30 + x33 + x34 + c) (x33 + c) (x42 + c)

x34 + c
(8.34)

x49 = x1 + x8 + x31 + x32 + x44 + x46 + x54 + x50 (8.35)

x54 = exp

(
exp

(
x9

x22x30

))
(8.36)
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9. Concluding Remarks

The main topic of this work is the application of genetic programming, in particular
symbolic regression, for the identification of comprehensible and accurate models in real-
world scenarios. We have focused on aspects of symbolic regression that are relevant
for practical applications. The main contribution is the description of a comprehensive
symbolic regression method for the identification of variable interaction networks. Such
networks provide a coarse grained overview of the strongest (non-linear) dependencies
of variables in the studied system. This method is based on a new approach to quantify
relevant input variables, which is presented for the first time in this thesis.

In practical applications a major concern is the comprehensibility and generality of
models. Thus, methods to reduce bloat and overfitting are prominently featured in this
thesis as well. Additionally, we also describe a new method for auto-regressive modeling
of multi-variate time series with genetic programming. The methods described in the
first part of this thesis are applied to a number of real-world problems in the second
part.

The following topics are covered in this thesis:

• The problem of bloat and a number of bloat control methods are discussed. In
this thesis the effect of offspring selection on bloat is analyzed for the first time.
We have observed that offspring selection does not reduce bloat, instead it has the
tendency to increase bloat because of the higher selection pressure.

• Overfitting is an issue in symbolic regression that can occur even in the absence of
bloat . Bloat and overfitting are two related but separate phenomena. We suggest
that an effective symbolic regression approach should include specific countermea-
sures for bloat and overfitting. In this thesis a new approach for the detection
of overfitting based on the correlation of training- and validation fitness is de-
scribed for the first time. Based on this overfitting criterion, we propose two new
approaches to reduce overfitting. The first approach uses covariant parsimony pres-
sure to adaptively control the average program length in the population based on
the overfitting criterion. The second approach uses selective pruning in overfitting
phases to remove code fragments that have only a small effect on the fitness of the
model but potentially have a negative effect on the generalization ability of the
model.

The newly proposed overfitting criterion and the two approaches for overfitting
reduction are tested on two real world datasets where standard genetic program-
ming produces overfit models and based on the results we have observed that the
overfitting criterion reliably indicates overfitting phases and that the two proposed
methods reduce overfitting.

151



In this thesis the effects of offspring selection on overfitting are analyzed for the
first time. We observe that the overfitting effect is stronger because of the higher
selection pressure resulting from offspring selection. Thus, we strongly advise to
use an effective method for the validation of symbolic regression models produced
in runs with offspring selection.

• Genetic programming has the tendency to build convoluted solutions containing
unoptimized code or introns. This effect can be reduced but not completely pre-
vented through bloat control methods. Such convoluted solutions are problematic
in practical applications, thus we suggest to simplify symbolic regression solutions
in two steps. First the model should be simplified using algebraic transformations
and in a second step the branches which have only a minor effect on the output
should be removed through either automatic or manual pruning. In this thesis we
show that this simplification approach significantly improves the comprehensibil-
ity of symbolic regression solutions while the fitness of the model is only slightly
decreased.

In this context, we also suggest that a small function set including only few simple
operators should be preferred for practical applications. Arithmetic expressions
can be simplified easily and are easier to comprehend than expressions with deeply
nested complex functions.

• Measuring variable importance is a big topic in regression modeling and is con-
nected to feature selection. In practical applications the information about the
relevant factors that might have an effect on a target variable is often very valu-
able.

In this thesis we review different ways to determine relative variable importance
in regression modeling and propose two new methods to determine relevant vari-
ables in symbolic regression. The first method is specific for symbolic regression,
and calculates variable importance as the average relative frequency of variable
references over the whole symbolic regression run. The second method is derived
from the variable importance metric used for random forests and uses permutation
sampling to estimate the relative importance of a variable in a regression model.

The different methods are applied to a number of benchmark problems where the
variable importance is known a-priori, and the results show that the permutation
sampling approach produces the best approximations for the variable importance.

Additionally, we discuss at length an approach to determine variable importance,
where the values of the variable are replaced by the average value. We conclude that
this approach should not be used as it produces misleading variable importance
results even for very simple examples.

• Real-world datasets are often characterized by many highly correlated variables and
other non-linear variable interactions. In this thesis the approach of comprehensive
symbolic regression is described for the first time. The approach aims to produce a
coarse-grained overview of all variable dependencies that are apparent in a dataset
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and is based on variable relevance metrics. We suggest to apply the method to
explore implicit dependencies in the dataset whenever a new data-analysis problem
is approached. The advantage of this method is that the implicit relations, which
might be known by a domain expert but are often unknown to the data analyst,
are made explicit and can be considered in the analysis of a specific aspect of the
system.

• Time series modeling and prognosis of time series is a topic that is relevant es-
pecially in finance and economics. In this work we present for the first time an
approach to generate auto-regressive models for multi-variate time series with ge-
netic programming. In this context, a specialized fitness function that extends
linear scaling also to time series prognosis is described. The proposed approach
is applied to predict future values of a multi-variate financial time series. The
resulting model approximates the long term of the time series accurately, however,
the short term variations are not predicted correctly.

• In the second part the described methods are applied to three real-world data-
analysis problems. The comprehensive symbolic regression approach produces
interesting results for the chemical dataset and the economic dataset. In those
two application scenarios no prior knowledge about variable interactions is avail-
able, thus the comprehensive modeling approach is reasonable to uncover implicit
variable relations. In contrast, for the blast furnace process most of the under-
lying physical relations are already known a-priori and the untargeted modeling
approach results in too many models. Additionally, most of the models are either
not useful for the blast furnace operator or are only crude approximations of al-
ready known physical dependencies. Thus, we conclude that the comprehensive
symbolic regression approach is useful when there is only little knowledge about
the dataset, however, if many of the implicit relations are known already a more
targeted modeling approach should be preferred.

The models produced by the comprehensive symbolic regression approach using
the enhancements against bloat and overfitting are relatively accurate and com-
prehensible.

Needless to say this thesis does not claim to provide answers to all issues encountered
in symbolic regression. Many new ideas and future research topics arise naturally from
some results of this work. Four particular noteworthy topics are:

• Generalization of variable relevance metrics to other learning methods. The vari-
able relevance measure based on permutation sampling can be used for any re-
gression model, and as a matter of fact there have been approaches to apply it
to neural networks and support vector machine models. Such approaches are in-
teresting as the information gained through variable importance measures is often
very insightful.

• Improving the multi-variate modeling approach through distance metrics for high-
dimensional spaces. The experimental results show that multi-variate symbolic
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regression models can be generated with genetic programming, however, the ac-
curacies of the models are rather disappointing. It would be interesting to try
if the model accuracy can be improved by using specialized distance metrics for
high-dimensional spaces to calculate fitness of multi-variate models.

• Analysis of overfitting and model complexity. In this thesis various approaches to
reduce overfitting are described, however, all approaches assume that overfitting
can be reduced by reducing the solution length. Essentially program length and
model complexity are treated as equal. This is slightly questionable, as seman-
tically simple models can be represented as very long programs, and vice versa.
Thus, it would be interesting to analyze overfitting in relation to model complexity
and design methods to reduce overfitting by controlling model complexity instead
of program length.

• Integration of a-priori knowledge for a targeted exploration of datasets. The com-
prehensive symbolic regression approach is not effective if a lot of a-priori knowl-
edge about the modeled system is available, as for instance in the blast furnace
application scenario. In such situations a more targeted modeling approach that
takes a-priori knowledge into consideration is promising.
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A. Additional Material

A.1. Model Accuracy Metrics

Throughout this work various different statistics are used to estimate the quality of
models. The general quality of a prediction model is subjective and depends on the
context, in which the model should be applied. The most relevant values for the model
quality are its accuracy and its comprehensibility. The accuracy can be quantified more
easily while the comprehensibility of a model is subjective. The accuracy of the model
can be calculated from the output values ŷi of the given model and the actual target
values yi. A number of frequently used statistics for the accuracy of model output are
defined in the following sections.

A.1.1. Regression Models

The quality of regression models ŷi = g(xi) = yi + ε can be determined by comparing
the output values of the model ŷi with the actual target values yi usually through the
analysis of residuals ri = ŷi − yi. In the following the symbol p is used instead of ŷ for
the predicted values of a model.

Mean Squared Error

The most well known accuracy metric for regression models is the mean squared error
(MSE) function

MSE(p,y) =
1

n

n∑

i=1

(pi − yi)
2, (A.1)

which is defined as the sum of the squared residuals of two vectors p,y with n elements
over the number of elements n.

For many applications the MSE of the predicted values and the original target values
is a good indicator for the loss incurred by incorrect predictions of the model. One
problem of the MSE function is, that outliers can have strong influence on the result.
Another problem is that MSE value depends on the location and scale of the original
and estimated target variable values. Thus, the MSE is not invariant to linear trans-
formations of the target variable values and MSE values of different input vectors y are
not comparable. The root mean squared error (RMSE)

RMSE(p,y) =
√
MSE(p,y) (A.2)

is often reported in practice because it has the same dimension as the original values.
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Normalized Mean Squared Error

Sometimes it is necessary to compare the accuracy of predictions for different target
variables with different locations or scales. The MSE has the drawback, that it depends
on the scale and the location of the target values, so the MSE of a prediction for one
target variable cannot be readily compared to the MSE of a prediction for another target
variable when the target variable values have not been normalized. The normalized mean
squared error (NMSE) function

NMSE(p,y) =
1

n

n∑

i=1

(
pi − y

sy
− yi − y

sy

)2

=
1

n

1

s2y

n∑

i=1

(pi − yi)
2

=
MSE(p,y)

s2y

s2y =
1

n− 1

n∑

i=1

(yi − y)2

(A.3)

is one possibility to overcome the problem. In the NMSE function the input samples
y and p are standardized using the mean y and population variance s2y of the original
target variable. The NMSE value is a coefficient without dimension and the result for
different input vectors can be compared easily, even with different locations and scales.
The NMSE function is also relevant for the calculation of squared errors of the output
of multi-variate regression models.

Multi-Variate Normalized Mean Squared Error

The extension of the normalized mean squared error to multi-variate inputs P and Y ,

P = (pi,j)i=1...n,j=1...k,

Y = (yi,j)i=1...n,j=1...k,

with n values of dimension k, is the mean of the squared normalized Euclidean distances
(A.5) of the actual values yi and the predicted values pi.

MVNMSE(P, Y ) =
1

n

n∑

i=1

d(pi,yi)
2 (A.4)

d(pi,yi) =

√√√√
k∑

d=1

(
pi,d − y·,d

syd
− yi,d − y·,d

syd

)2

s2y,d =
1

n− 1

n∑

i=1

(yi,d − y·,d)2,

(A.5)

where s2y,d is the population variance of the d-th component of the original values of the
target variable.
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Mean Absolute Percentage Error

The mean absolute percentage error MAPE or relative error of a regression model is an
intuitive and easily understandable accuracy metric. The MAPE of a vector of predicted
values p and a vector of original values y) is

MAPE(p,y) =
1

n

n∑

i=1

∣∣∣∣
pi − yi

yi

∣∣∣∣ . (A.6)

The MAPE function gives the average percental error of the predicted values p relative
to the original values y. The result value is not defined if the original values contain
elements equal to zero.

The MAPE functions is a generalization of the mean relative error (MRE) function

MRE(p,y) =
1

n

n∑

i=1

pi − yi
yi

, yi > 0, (A.7)

which is not defined for target variables that can take negative or zero values. For
target variable that only have strictly positive values, the MAPE and MRE metrics are
equivalent.

Pearson’s Product Moment Correlation Coefficient

Pearson’s product moment correlation coefficient ρ (PPMC) is a measure for the cor-
relation between two samples, in this case estimated values p and the target values
y.

ρ(p,y) =
Cov(p,y)√

Var(p)
√
Var(y)

Cov(p,y) =
1

n− 1

n∑

i=1

(pi − p)(yi − y)

Var(x) =
1

n− 1

n∑

i=1

(xi − x)2,

(A.8)

where Cov(p,y) is the sample covariance of vectors p and y, and Var(x) is the sample
variance of vector x.

ρ can assume a value in the range of [−1 . . . 1], where a value of −1 indicates perfectly
indirectly correlated values, and a value of +1 indicates perfectly positive correlated
values. A value of zero means there is no correlation of both variables. Note that ρ = 0
does not imply independence of the two samples; this is for instance discussed in [211]
which introduces the distance correlation function. Usually the value of ρ2 (R2) is used
as a metric for the accuracy of the model.

The PPMC is only applicable when the values of both samples stem from normally
distributed random variables.
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A.1.2. Time Series Models

All metrics for regression models can also be calculated for time series forecasts. For
time series models, however, additional metrics for the accuracy of forecasts and predic-
tions are frequently useful. Some of these accuracy metrics for time series forecasts are
discussed in the following sections.

Mean Squared Error for Forecasts

The mean squared prediction error for time series forecasts p with forecast horizon h for
the original time series y with n elements is

MSPE(p,y, h) =
1

n− h

n−h∑

t=1

(pt+h − yt+h)
2. (A.9)

This function can be generalized to multi-step forecasts P

P = (pt,j)t=1...n,j=1...h, (A.10)

where one forecast pt is a vector of predictions (pt,1, pt,2, . . . , pt,h) for horizons j = 1 . . . h
for the actual values y. The MSPE for multi-step forecasts P is

MSPE(P,y, h) =
1

n− h

n−h∑

t=1

1

h

h∑

j=1

(pt,j − yt+j)
2w(j). (A.11)

The MSPE function for forecasts is simply the average of the squared errors of the
predicted values pt,j relative to the actual values yt+j over all forecasts t and horizons
j, and thus very similar to the more familiar MSE function. Optionally forecasts for a
given horizon j can be weighted using a weight function w(j) to decrease the influence
of predictions of large horizons relative to short term predictions.

Theil’s U Statistic

Theil’s inequality coefficient U2 [213] is a statistic for the accuracy of forecasts of times.
It relates the mean squared prediction error MSPE(P,y, h) of predictions P with the
MSPE of a naive no-change forecast. Given a series of pairs of predicted changes Pi and
observed changes Ai, Theil’s inequality coefficient U is:

U2 =

∑
(Pi −Ai)

2

∑
A2

i

(A.12)

∑
(Pi−Ai)

2 in the numerator is the sum over all squared errors of pairs of predicted and
realized changes. The denominator

∑
A2

i is the sum of squared observed changes, which
is equivalent to the squared error of a no-change model. Theil’s inequality coefficient U
can be interpreted as the root mean squared prediction error of the predicted changes
over the root mean squared prediction error of naive no-change predictions. Usually the
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model for the naive predictions is the no-change model pt,h = yt. If the underlying time
series has a clear linear trend, the linear model pt,h = hdyt + yt should be used instead,
where d is the linear trend of the series y calculated as the mean of the percental changes
of y.

The inequality coefficient value can be easily interpreted. A perfect prediction has
an inequality coefficient of zero, a prediction with an inequality coefficient between zero
and one is better than a naive no-change prediction, and predictions with an inequality
coefficient over one are worse than naive predictions.

In [213] relative predicted P̂t and relative realized changes Ât are used for the anal-
ysis of economic forecasts because in this application the relative changes of economic
variables over time are more interesting than the levels of the variables.

Ât =
at − at−1

at−1
(A.13)

P̂t =
pt − a∗t−1

a∗t−1

(A.14)

Where at is the actual level of the analyzed variable at time t, at−1 is the actual level
at the previous time step, pt is the implied predicted level of the variable and a∗t−1 is the
level of the variable at time t−1 as it was estimated at the time when the prediction was
made. This distinction is made deliberately because, especially for economic forecasts,
the value of a variable at a given time might be adjusted over time as more data become
available.

To overcome the problem that relative changes are asymmetric (a 5 percent increase
followed by a 5 percent decrease does not accumulate to the original value) Theil worked
with the logarithms of (1 + P̂t) and (1 + Ât):

At = log(1 + Ât) (A.15)

Pt = log(1 + P̂t) (A.16)

This approach cannot be used when the variables can take negative or zero values.
In such cases alternative definitions of realized or observed changes Ai and predicted
changes Pi must be used.

Given n pairs of one step forecasts ŷt from any time series prognosis model and ob-
served values of the time series yt, the (n−1) pairs of predicted changes Pi and observed
changes Ai can be defined as:

Pi = ŷt − yt−1 (A.17)

Ai = yt − yt−1 (A.18)

The definition of the inequality coefficient can be extended to multi-step forecasts
up to a finite positive horizon h. In this case a forecast at time t is a combination h
predictions ŷt+1, ŷt+2, . . . , ŷt+h which can be paired with the actually observed values
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yt+1, yt+2, . . . , yt+h for the calculation of the inequality coefficient of the predictions.
Given a multi-step forecast at time t for horizons i ∈ [1..h] the set of pairs of predicted
changes Pt,h and realized changes At,h for this forecast is:

Pt,i = ŷt+i − yt (A.19)

At,i = yt+i − yt (A.20)

Given n observed values of the time series yt we can calculate the inequality coefficient
for (n− h) multi-step forecasts as:

U2 =

∑n−h
t=1

∑h
i=1(Pt,i −At,i)

2

∑n−h
t=1

∑h
i=1A

2
t,i

(A.21)

Directional Symmetry

The directional symmetry (DS) of time series forecast is a statistic for the accuracy
of predictions of directional changes. The directional symmetry is the percentage of
directional changes of the target variable that are predicted correctly.

DS = 100
1

n− h

n−h∑

t=0

h∑

i=1

dt,i (A.22)

dt,i =

{
1, if Pt,iAt,i ≥ 0

0, otherwise
(A.23)

Pt,i = ŷt+i − yt (A.24)

At,i = yt+i − yt (A.25)

Weighted Directional Symmetry

The weighted directional symmetry includes the size of the change into the metric.
Because of its discrete definition the directional symmetry metric does not give a good
estimation of the quality of the model. For instance, if the model can forecast small
directional changes correctly, but cannot forecast large directional changes, then the
quality of the model is actually worse than the directional symmetry indicates. For this
reason the weighted directional symmetry includes the size of the change.

WDS = 100
1

n− h

n−h∑

t=0

h∑

i=1

dt,i |(yt+i − ŷt+i| (A.26)

dt,i =

{
1, if Pt,iAt,i ≥ 0

0, otherwise
(A.27)

Pt,i = ŷt+i − yt (A.28)

At,i = yt+i − yt (A.29)
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The weighted directional symmetry of models which can predict large directional
changes better might have a better weighted directional symmetry, than models that
predict more of the total directional changes correctly but fail at predicting large direc-
tional changes.

A.2. Numerical Approximation of Derivatives

In some situations it is necessary to calculate derivatives of input variables before, as a
preprocessing step for modeling. This is common for time series modeling where dx

dt is
either the target variable or used as an input variable. Because the generating function
of the variable values is generally not known in such situations, the derivative can only
be approximated numerically using the original data of variable x. The three point
formula A.30 or the slightly more accurate five-point approximation A.31 are central
approximations and use forward and backward data of the series. Strictly forward A.32 or
backward A.33 approximations are also useful for instance to calculate derivatives at the
endpoints of a data series. Also see [167] for more details about numeric approximations
of derivatives and integrals.

f ′(x) =
f(x+ h)− f(x− h)

2h
(A.30)

f ′(x) =
−f(x+ 2h) + 8f(x+ h)− 8f(x− h) + f(x− 2h)

12h
(A.31)

f ′(x) =
−3f(x) + 4f(x+ h)− f(x+ 2h)

2h
(A.32)

f ′(x) =
+3f(x)− 4f(x− h) + f(x− 2h)

2h
(A.33)

It has to be noted that numeric approximations of derivatives are problematic when
the original data series contains noisy values, because the noise is amplified when calcu-
lating the derivative. Often it is necessary to smooth the original data series before its
derivative can be calculated, for instance using a Savitzky-Golay filter [175, 200, 167].
The drawback of smoothing is that relevant information, that is necessary for modeling,
might be lost. A recent contribution discussing numeric derivation of noisy data is [33].

A.3. Datasets Used in Experiments

In this section the origin and details about the datasets, used in experiments in this
work, are given. All data sets can be downloaded from http://dev.heuristiclab.com/

trac/hl/core/wiki/AdditionalMaterial, either in comma-separated values format or
as HeuristicLab problem files.
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A.3.1. Artificial benchmark datasets

Friedman I

This dataset is described in [71] where it is used to benchmark the multi-variate adaptive
regression splines (MARS) algorithm. The signal-to-noise ratio in this dataset is rather
low, so it is difficult to rediscover the generating function, especially the terms below
the noise level (x4 and x5).

x1, . . . , x10 are sampled uniformly from the unit hypercube.

f(x) = 0.1e4x1 +
4

1 + e−20(x2−0.5)
+ 3x3 + 2x4 + x5

yi = f(xi) + εi, 1 ≤ i ≤ N
(A.34)

εi is generated from the standard normal distribution.
This dataset is used to analyze different variable relevance metrics for GP in Chapter

6, and to study bloat and anti-bloat measures in Chapter 4.

Friedman II

This dataset is also described in [71] and used to benchmark the MARS algorithm. The
signal-to-noise ratio is high, so it is easier to rediscover the generating function than for
the Friedman-I dataset.

x1, . . . , x10 are sampled uniformly from the unit hypercube.

f(x) = 10 sin(πx1x2) + 20(x3 − 1

2
)2 + 10x4 + 5x5 + σ(0, 1) (A.35)

This dataset is used to analyze different variable relevance metrics for GP in Chapter
6, and to study bloat and anti-bloat measures in Chapter 4.

Breiman I

This dataset is described in [28] where it is used to benchmark the classification and
regression trees (CART) algorithm. The signal-to-noise ratio is rather low and addi-
tionally it contains a crisp conditional which makes it rather difficult to rediscover the
generating function with a symbolic regression approach.

x1, . . . , x10 are randomly sampled attributes following the probability distributions:

P (x1 = −1) = P (x1 = 1) =
1

2

P (xm = −1) = P (xm = 0) = P (Xm = 1) =
1

3
,m = 2, . . . , 10

f(x) =

{
x1 = 1, 3 + 3x2 + 2x3 + x4

otherwise −3 + 3x5 + 2x6 + x7

y = f(x) + εi

ε ∼ N(0, 2)

(A.36)
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This dataset is used to analyze different variable relevance metrics for GP in Chapter
6, and to study bloat and anti-bloat measures in Chapter 4.

A.3.2. Real World Datasets

Chemical-I

This dataset has been prepared and published by Arthur Kordon, research leader at the
Dow Chemical company for the EvoCompetitions side event of the EvoStar conference
2010. The dataset stems from a real industrial process and contains 747+319 observa-
tions of 58 variables. The values of the target variable are noisy lab measurements of the
chemical composition of the product which are expensive to measure. The remaining 57
variables are material flows, pressures, temperatures collected from the process which
can be measured easily.

This dataset is used in Chapter 4 to study bloat and anti-bloat measures, and in
Chapter 5 to analyze overfitting and anti-overfitting methods for GP. In Chapter 8 this
dataset is studied in full detail.

Chemical-II

This dataset is the “Tower” dataset which has also been prepared and published by
Arthur Kordon, Dow Chemical. The dataset contains 4999 observations of 26 vari-
ables of a chemical process and can be downloaded from http://vanillamodeling.

com/realproblems.html. The following description of the Tower dataset also stems
from the same URL.

The observations in the dataset stem from a chemical process and include tempera-
tures, flows, and pressures. The target variable is the propylene concentration and is
a gas chromatography measurement at the top of a distillation tower. The propylene
concentration is measured in regular intervals of 15 minutes. The actual sampling rate
of the input variables is one minute, but 15 minutes averages of the inputs are used
to synchronize with the measurements of the target variable. The range of the mea-
sured propylene concentration is very broad and covers most of the expected operating
conditions in the distillation tower.

The dataset is used in this work to study different variable relevance metrics for GP
in Chapter 6.

Blast Furnace Dataset

This dataset contains measurements of a blast furnace for the production of liquid iron
at the voestalpine plant in Linz. The dataset contains hourly measurements over a time
span of several years and is treated as a time series. The observations stem from a tightly
controlled blast furnace process. The data set contains sensitive information and thus is
unfortunately not freely available.

This dataset is studied in full detail in Chapter 8.
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Financial-I

The dataset has been prepared by Ricardo de A. Araújo and Glaucio G. de M. Melo
for a financial time series prediction competition which was held as a side event of the
EvoStar conference 2010 [43]. Only little information about the origin of the dataset has
been published, except that the dataset stems from real financial time series from the
Brazilian stock exchange.

The original dataset contains 200 observations of ten financial time series. The original
competition objective was to predict the next 10 data-points for each of the 10 time series.
Unfortunately the 10 data points, which were originally held back by the organizers to
evaluate the entries, have never been published.

The dataset was used to demonstrate GP-based multi-variate time series prognosis in
Chapter 7

Macro-Economic

This dataset has been prepared and provided to us by Dr. Stefan Fink. The dataset
contains 331 monthly observations of 33 macro economic variables mainly from the US
in the time span from January 1980 until July 2007.

The dataset is studied in full detail in Chapter 8

Housing

This dataset is the Boston housing dataset from the UCI machine learning repository [69]
and can be downloaded from http://archive.ics.uci.edu/ml/datasets/Housing.
The original data source is the StatLib library, which is maintained at Carnegie Mellon
University. The dataset contains 506 observations of 14 variables concerning the housing
values in the suburbs around Boston.

The dataset is used in this thesis to study overfitting and anti-overfitting measures for
GP in Chapter 5.
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A.4. Colophon

This thesis has been type set with LATEX and BibTEX. The author used primarily emacs

to edit the source files. Subversion has been used as revision control system for all
related files.

The variable relationship graphs in Chapters 6 and 8 have been generated with the
Graphviz graph visualization software. The line-charts, scatter-plots, and 3-d surface
plots have been generated with the pgfplots package by Christian Feuersänger. The
result tables have been generated with the pgfplotstable package also by Christan
Feuersänger. Box-plots in Chapters 6 and 8 and the kernel density estimation plot
have been created using R, the free software environment for statistical computing and
graphics. Screenshots in Chapters 4 6 show HeuristicLab http://dev.heuristiclab.

com, a software environment for heuristic optimization developed by members of the
research group HEAL. Bitmap graphics have been edited with Paint.NET and converted
to postscript format with Inkscape.
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