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JOHANNES KEPLER

JKU

Technisch-Naturwissenschaftliche

Fakultät

Adaptive Heuristic Approaches for Dynamic
Vehicle Routing - Algorithmic and Practical

Aspects

DISSERTATION

zur Erlangung des akademischen Grades

Doktor

im Doktoratsstudium der

Technischen Wissenschaften

Eingereicht von:

Stefan Vonolfen, MSc

Angefertigt am:

Institut für Formale Modelle und Verifikation

Beurteilung:

Priv.-Doz. Dr. Michael Affenzeller (Betreuung)
Univ.-Prof. Dr. Karl Dörner

Linz, Juni, 2014





Acknowledgments

The work presented in this thesis would not have been possible without the
many fruitful discussions with my colleagues from the research group Heuris-
tic and Evolutionary Algorithms Laboratory (HEAL) and without the Heuris-
ticLab optimization environment as a software infrastructure (the web pages
of all members of HEAL as well as further information about HeuristicLab
can be found at: http://www.heuristiclab.com).

Particularly, I would like to thank Michael Affenzeller for his guidance
concerning the algorithmic aspects of this thesis as my supervisor as well as
providing a very supportive working environment as the research group head.
I would also like to thank Stefan Wagner for triggering my research interest in
metaheuristic algorithms during the supervision of my bachelor and master
thesis. The discussions with my colleagues Andreas Beham and Erik Pitzer
about vehicle routing, fitness landscape analysis, and algorithm selection
led to many ideas presented in this thesis. Michael Kommenda provided
important insights on genetic programming and Monika Kofler contributed
knowledge about storage assignment. Stephan Hutterer was working on the
generation of policies for smart grids and pointed out many links to related
literature.

I would also like to thank Prof. Karl Dörner from the institute for pro-
duction and logistics management at the JKU for giving me the possibility
to present my work at the ORP3 workshop as well as during a seminar at
his institute. The workshop provided the possibility to submit my work to
a renowned international operations research journal (the article is currently
in third revision and is based on topics presented in this thesis). The discus-
sions at the seminar and the workshop as well as the review comments on the
journal article provided many valuable insights about algorithmic extensions
and modeling aspects.

Last, but not least I would also like to acknowledge the received funding.
The work described in this thesis was done within the Josef Ressel Centre
for Heuristic Optimization supported by the Austrian Research Promotion
Agency (FFG) as well as the Regio 13 program sponsored by the European
Regional Development Fund and by Upper Austrian public funds.





Eidesstattliche Erklärung
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Zusammenfassung

Die dynamische Tourenplanung gewinnt im Bereich der Logistikoptimierung
mehr und mehr an Bedeutung. Die Entwicklung von immer effizienteren Opti-
mierungalgorithmen sowie technologische Verbesserungen von Telematiksys-
temen ermöglichen den Einsatz von praxisnahen Modellen in Unternehmen.

Bei der Entwicklung von Optimierungsverfahren wird allerdings oftmals
ein Kompromiss zwischen breiter Anwendbarkeit und Spezialisierung ge-
macht. Hochspezialisierte Lösungsstrategien funktionieren in gewissen Situa-
tionen zwar besser, machen jedoch Abstriche im Hinblick auf Robustheit.
Aus dieser Beobachtung heraus ergibt sich die in dieser Arbeit verfolgte Vi-
sion eines adaptiven Entscheidungs-Unterstützungssystems für dynamische
Tourenplanungsumgebungen mit sich ändernden Problemcharakteristiken.

Eine laufende Anpassung der Lösungsstrategien erfordert die Verlagerung
der Algorithmenentwicklung auf eine höhere Abstraktionsebene. Eine Meta-
Betrachtungsweise von Algorithmen erlaubt eine semi-automatische Generie-
rung von spezialisierten Lösungsstrategien als auch eine adaptive Algorith-
menauswahl auf Basis von Problemcharakteristiken. Auf diese Weise werden
die Stärken von verschiedenen spezialisierten Algorithmen in sich ändernden
Problemumgebungen kombiniert.

Aufbauend auf diesen Konzepten wird ein algorithmisches Rahmenwerk
vorgestellt, welches aus drei grundlegenden Bausteinen besteht. Die simula-
tionsbasierte Optimierung erlaubt die Erstellung von praxisnahen Modellen
mit stochastischen Einflussgrößen und komplexen dynamischen Interaktio-
nen. Auf Basis dieser Modelle werden unter Anwendung von Evolutionären
Algorithmen und bestärkendem Lernen spezialisierte Lösungsstrategien ge-
sucht. Diese werden zu Algorithmenportfolios kombiniert, welche eine situa-
tive Auswahl anhand der Problemcharakteristiken ermöglichen.

Die bedeutendste Leistung dieser Arbeit ist die semi-automatische Gene-
rierung und Adaption von algorithmischen Strategien, was durch die Verlage-
rung der Algorithmenentwicklung auf eine höhere Abstraktionsebene erreicht
wird. Zukünftige Entwicklungen, wie die Integration von maschinellem Ler-
nen oder die Erforschung der Lösungsraumcharakteristiken, stehen vor allem
im Kontext von autonom agierenden adaptiven Tourenplanungssystemen.
Das vorgestellte algorithmische Rahmenwerk bietet hierfür eine Grundlage.





Abstract

Dynamic vehicle routing is an active field of research due to the practical
relevance as well as the advances in operations research and telematics. Ad-
vanced algorithmic approaches are being developed and at the same time,
more and more realistic problem formulations are being investigated enabling
to transfer the findings into practice.

The main vision pursued in this thesis is a decision support system for
dynamic vehicle routing problems that is adaptive in terms of problem char-
acteristics and automatically changes its algorithmic strategies based on the
environment. The motivation for such a system stems from the fact that
there is a tradeoff between generalization and specialization in algorithm de-
sign. On the one hand, research on algorithms for dynamic vehicle routing
problems focused mainly on robust behavior over a large range of problem
instances. On the other hand, it has been identified that highly special-
ized policies have the potential to outperform these general strategies while
non-robust behavior was observed for them as a trade-off.

The methodological developments presented in this thesis aim to solve
this dilemma by raising the abstraction level of algorithm design for dynamic
vehicle routing problems to a meta-level to pursue the goal of self-adaptive
algorithmic strategies. On the meta-level a semi-automatic generation as well
as an adaptive selection of policies based on the problem characteristics is
performed combining the strengths of several specialized policies in changing
environments.

Three essential building blocks of an adaptive algorithmic framework
for dynamic vehicle routing are identified. Simulation optimization allows
modeling practical variants with rich side constraints. Three practical case-
studies from production and logistics are investigated while highlighting the
transfer of findings into practice. Based on a simulation model, specialized
routing policies are generated by means of direct policy search and rein-
forcement learning. Routing policies for three different variants are evolved.
Human-designed as well as generated routing policies are combined to an
algorithm portfolio allowing a dynamic situational policy selection. A case-
study is presented illustrating the potential of the methodology.

The main achievement of this thesis is raising the abstraction level for
algorithm design in the context of dynamic vehicle routing by means of the
proposed algorithmic framework. While the semi-automated adaption of the
algorithmic strategies has been reached, future research should focus on a
fully autonomous system that learns in a changing environment. Such a
system requires the incorporation of machine learning and a fundamental
understanding of problem characteristics linked to algorithm performance.
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Chapter 1

Introduction

The vehicle routing problem (VRP) is an important problem class in opera-
tions research (OR) because it can be used to model various types of trans-
portation problems. Since its original formulation by Dantzig and Ramser
(1959) many variants have emerged and have been successfully applied in
practice (Golden et al., 2008, Laporte, 2009).

In many markets, customers are demanding a flexible and timely fulfill-
ment of their requests and transport logistics companies are faced with in-
creasingly competitive environments with global players. At the same time,
more and more real-time information is available during the planning pro-
cess. To address these challenges, advances in the fields of telematics and
operations research have enabled the application of rich and dynamic VRP
variants.

1.1 Motivation and Research Questions

Challenges in contemporary vehicle routing research are rich models that
include many practical side constraints (Hartl et al., 2006) as well as dynamic
and stochastic information (Pillac et al., 2012a).

There is a growing body of literature on dynamic variants of the vehicle
routing problem while it still remains a challenging combinatorial optimiza-
tion problem and is a subject of active research. These developments have
led to many different variants since the seminal work of Psaraftis (1988).
Successful practical applications include the distribution of heating oil, taxi
cab services, on-demand transportation of elderly people or courier services
(Pillac et al., 2012a).

The algorithmic developments proposed in this thesis have been triggered
by research directions given in surveys on dynamic vehicle routing such as
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Ichoua et al. (2007), Larsen et al. (2008), and Pillac et al. (2012a) while the
main inspiration were the statements of Larsen et al. (2008) which are still
highly relevant in the context of recent developments.

As pointed out by Larsen et al. (2008), while surveying future research
directions, they

[...] believe a new generation of DVRP algorithms will blend
the effectiveness of advanced methods, tailored to take advan-
tage of special problem structures and advanced knowl-
edge, with the efficiency of parallel implementations, and the
ever growing computing power of workstations to solve increas-
ingly larger and more realistic problems.

In this statement the need for specialized approaches is highlighted that
take advantage of the problem structure and knowledge about the charac-
teristics of the problem environment. The need for heuristics tailored to the
problem characteristics corresponds to the well-known no free lunch theo-
rem (Wolpert and Macready, 1997). The development and parametrization
of specialized heuristics for different variants of dynamic VRPs has been
mainly done manually in the past while it remains a research challenge to al-
gorithmically generate specialized policies. In this context, the modeling and
optimization of more realistic problem formulations is an important research
topic.

Detailing their vision of a new generation of dynamic VRP (DVRP) al-
gorithms, Larsen et al. (2008) state the following:

The overnight courier mail service provider environment rep-
resents a good model for the use of such new hybrid approaches.
The morning subproblem is often weakly dynamic while the af-
ternoon one is moderately dynamic. Therefore, a reoptimization
algorithm could first plan a set of morning delivery routes. In
case of urgent call-in requests, the algorithm could insert the
new requests into the predetermined delivery routes. In turn,
the afternoon pickup problem, would use fast algorithms for on-
line routing that would take advantage of a priori information on
future requests.

Most existing work in the field of dynamic VRPs considers environments
where the characteristics such as spatial and temporal properties of the ap-
pearing requests do not change over time. As a result, solution methods
have been developed that are parameterized and tailored to certain charac-
teristics. An extensive methodological framework for dealing with changing
environments is not available.
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1.2 Synopsis

The main research goal of this thesis is to propose adaptive heuristic ap-
proaches for dynamic vehicle routing problems with special emphasis on prac-
tical applicability. The main vision is a decision support system that learns
from previous observations and constantly adapts its algorithmic strategies
to changing problem characteristics.

Several contributions are made to reach this goal based on current research-
challenges in the area of dynamic vehicle routing. In particular, this work
makes three contributions beyond the current state-of-the-art by propos-
ing a modeling approach for the simulation-based optimization of pro-
duction and logistic scenarios as well as algorithmic frameworks for the
generation of specialized routing policies and a situational selection
of solution techniques. The developed techniques are essential building
blocks for adaptive decision support systems. The three main innovative
aspects of this thesis are highlighted in the following.

Firstly, a generic simulation and optimization environment that can be
adapted to model rich practical variants is presented. To ensure the prac-
tical applicability, case-studies are performed using real-world data and the
results are validated together with domain experts and transfered into prac-
tice. Concerning the modeling of more realistic problem formulations in
production and logistics, the main contributions are:

• A generic modeling, simulation and optimization environment for dif-
ferent variants of real-world dynamic vehicle routing problems is pre-
sented. Two concrete realizations for pickup and delivery and inventory
routing problems are outlined.

• Based on the generic simulation optimization model, three practical
case-studies are presented that are based on real-world data and have
been validated together with domain experts to demonstrate the prac-
tical applicability of the modeling as well as algorithmic approaches:

An optimization of transport activities in the cold-charge steel pro-
duction process is presented and bottlenecks are analyzed (based on
Vonolfen et al. (2013b)).

An integrated optimization of warehousing and transport activities
in the production of firefighting vehicles has been considered analyzing
the interrelations between the sub-activities (based on Vonolfen et al.
(2012b)).

A vendor-managed inventory for the distribution of groceries is
investigated (based on Vonolfen et al. (2013a)). The study considers
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mixed scenarios where only a part of the customers is switched to a
vendor managed inventory to perform a sensitivity analysis in terms of
endogenous and exogenous influence factors.

Secondly, an algorithmic framework is proposed for semi-automatically
generating specialized policies that are adapted to the problem environment.
The main contributions are:

• Proposal of a framework for the algorithmic generation of specialized
policies based on a black-box simulation model by means of evolution-
ary direct policy search and reinforcement learning. The applicability
of this framework is shown for several variants of dynamic vehicle rout-
ing problems.

• Evolution of replenishment rules for inventory routing problems (based
on Vonolfen et al. (2013a)). The evolved rules are utilized for the
evaluation of various strategic scenarios in the context of a sensitivity
analysis based on real-world data from a company dealing with multi-
channel retailing.

• Generation of dispatching rules for dial-a-ride problems within an agent
environment (based on Vonolfen et al. (2013c)). The performance of
the evolved rules is compared with a planning algorithm in terms of
solution quality and runtime on a set of test instances. It is shown, that
the rules are suitable for highly dynamic environments where planning
ahead might not be feasible.

• Automatic evolution of waiting strategies for pickup and delivery prob-
lems based on historical data. The generated waiting heuristics out-
perform existing approaches on a set of standard benchmark instances.
The influence of spatial and temporal problem properties is investigated
to evaluate the potential of anticipatory waiting.

Thirdly, the algorithmic approach proposed in this work to deal with
changing problem environments is to combine several specialized heuristics
and situationally select an appropriate solution method. The contributions
in the context of this emerging research direction are:

• Proposal of a generic methodological framework for algorithmic selec-
tion of solution techniques based on a portfolio of specialized heuristics
with different strengths and weaknesses. Resulting from the methodol-
ogy, several research questions arrive such as problem feature extraction
and algorithm selection.
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• Discussion of possible approaches for problem feature extraction which
include fitness landscape analysis or the usage of problem-specific fea-
tures.

• Algorithm selection and performance prediction based on knowledge
about previous performance. Links are presented to existing literature
dealing with algorithm selection.

• Application of the method to practically relevant case-studies. Several
possible applications to scenarios with changing characteristics, such as
data quality, request intensity, or seasonal fluctuations, are given. The
methodology is applied to a scenario with changing data quality where
several solution methods are combined.

The three research topics are closely connected to each other in the con-
text of a self-adapting decision support system. The situational selection
builds on specialized algorithms that are generated automatically. The al-
gorithmic approaches rely on a realistic simulation and optimization model
of the system. The general aim is, that these algorithmic developments will
lead to decision support systems that learn and adapt within changing prob-
lem environments by utilizing knowledge about the problem structure and
the implications on the solution quality.

1.3 Chapter Overview

In Chapter 2, the theoretical foundations and a literature survey are provided
linking the findings to related work. Chapter 3 deals with the simulation-
based optimization approach to model practical variants. The simulation of
data is detailed as well as the optimization framework. Three practical case-
studies from production and logistics are presented. Chapter 4 and Chapter 5
outline the methodological aspects of the two algorithmic research topics. In
Chapter 4, a framework for automatically generating specialized policies that
are adapted to the problem environment is proposed. Dealing with changing
problem characteristics during the planning process by situational selection
of a suitable solution method is the main topic of Chapter 5. Computational
results are presented in Chapter 6. The main achievements are summarized
in Chapter 7 and an outlook is given on future research directions.
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Chapter 2

Dynamic Vehicle Routing

This chapter provides theoretical, methodological and practical foundations
of the field of dynamic vehicle routing. Section 2.1 gives a brief overview
of the extensive research that has been conducted in the context of vehicle
routing problems, provides basic models and theoretical as well as practical
considerations about dynamic variants. Section 2.2 surveys solution methods
and highlights important success factors such as the consideration of future
requests or parallelization. In Section 2.3 the technical requirements are
discussed for implementing a decision support system for dynamic vehicle
routing in practice. In Section 2.4 current research directions are surveyed.

2.1 Foundations

The dynamic vehicle routing problem has some important aspects compared
to the static variant that impose additional challenges and require specialized
algorithmic strategies. In the following, the archetypical variant of the static
vehicle routing problem will be introduced and the extensive work conducted
in this area will be outlined. The step from static to dynamic vehicle routing
is detailed as well as the main characteristics of dynamic variants and the
resulting challenges.

2.1.1 The Vehicle Routing Problem

The first paper on vehicle routing was published by Dantzig and Ramser
(1959) and since then there have been over 50 years of extensive research
and constantly growing literature (Laporte, 2009). Numerous practical ap-
plications resulted and a tool industry has emerged - a recent survey of
commercial vehicle routing software lists 15 different vendors (Hall, 2012).
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Books and survey articles within the extensive scientific literature, to name
but a few, include Toth and Vigo (2002), Golden et al. (2008), Gendreau
et al. (2008), Laporte (2009), and Baldacci et al. (2012).

The vehicle routing problem (VRP) is not a single problem but rather
a class of problems since in many practical applications variants are re-
quired that have different operational constraints and objectives (cf. Laporte
(2009)). This stems from the diverse application areas, such as the distri-
bution of goods or transportation of people, and operating rules, such as
capacity constraints or time windows. In general, the VRP can be defined
as the design of a set of routes for a fleet of vehicles to service geographically
scattered customer demands while considering operational constraints and
objectives (cf. Toth and Vigo (2002)).

Basic Models

As pointed out by Laporte (2009), methodological developments usually work
with archetypal versions of the problem. The most basic variant is the capac-
itated vehicle routing problem (CVRP) which is also denoted as the classical
VRP. The CVRP is known to be NP-hard and generalizes the traveling sales-
man problem (TSP). Even the most basic variant is thus generally considered
as an intractable problem.

The graph theoretic notation of the CVRP used in this work follows Toth
and Vigo (2002): The complete graph G = (V,A) is defined by the vertex
set V = {0, ..., n} and the arc set A = {(i, j) : i, j ∈ V, i 6= j}. Vertex i = 0
corresponds to the depot and vertices i = 1, ..., n correspond to the customers.
For each arc (i, j) ∈ A a nonnegative value is given which corresponds to the
travel cost from vertex i to j. The customers (i = 1, ..., n) are each associated
with a nonnegative demand di and are served by a fleet of K homogeneous
vehicles with capacity C. Each vehicle performs at most one route starting
and ending at the depot that does not exceed the capacity restrictions and
each customer is served by exactly one vehicle. The aim is to minimize the
total travel costs while satisfying all demands.

There are several mathematical programming formulations that are used
to model the CVRP. Here a short overview of the main modeling approaches
is given, for details the reader is referred to Toth and Vigo (2002) which is
the basis for this brief summary. The three main approaches are vehicle flow,
commodity flow and set partitioning formulations.

In models using vehicle flow formulations the focus is on transitions of
vehicles between customers. Models of this type are thus especially suitable
when the main constraints concern the traversal of arcs. The problem model
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stems from the work of Laporte and Nobert (1983) and can be stated as1:

minimize
∑

i∈V

∑

j∈V

cijxij (2.1)

subject to
∑

i∈V

xij = 1 ∀j ∈ V \ {0}, (2.2)

∑

j∈V

xij = 1 ∀i ∈ V \ {0}, (2.3)

∑

i∈V

xi0 = K, (2.4)

∑

j∈V

x0j = K, (2.5)

∑

i 6∈S

∑

j∈S

xij ≥ r(S) ∀S ⊆ V \ {0} , S 6= ∅, (2.6)

xij ∈ {0, 1} ∀i, j ∈ V . (2.7)

The model stated here is a two-index vehicle flow formulation. The binary
decision variable xij states if a vehicle traverses a certain arc and takes the
value xij = 1 if the arc belongs to the optimal solution and xij = 0 otherwise.
Three index flow formulations also contain an index for the vehicle that
traverses the arc while the model presented here assumes that all vehicles
are homogeneous and it is not significant what vehicle is assigned to which
route. The variable cij gives the costs for traversing arc (i, j). The objective
is minimizing the sum of all traversed arcs while following the constraints
(2.1). The indegree constraint (2.2) makes sure that exactly one arc enters
while the outdegree constraint (2.3) ensures that one arc leaves each vertex.
The depot vertex is entered and left by exactly K arcs which is the number
of vehicles (2.4, 2.5). The connectivity of the solution as well as the vehicle
capacity restrictions are ensured by the capacity-cut constraints (2.6). In
that definition, r(s) is defined as the minimum number of vehicles needed to
serve a nonempty subset of all customers(S). The number of vertices entering
each subset must be greater or equal the capacity requirements. This ensures
subtour elimination as well as the capacity limitations.

Models using commodity flow formulations focus on the flow of com-
modities along the arcs traversed by the vehicles and were first introduced
by Garvin et al. (1957). For each arc, a vehicle load carried on that arc
is defined. These formulations can be used to model additional constraints
compared to vehicle flow models such as vehicle assignment to a route.

1Toth and Vigo (2002)

9



Models formulated as set partitioning problems view a VRP solution as
a set of feasible routes. Instead of selecting arcs, as in the other two for-
mulations, the routes are selected that are part of the final solution. This
formulation was first provided by Balinski and Quandt (1964). As pointed
out by Laporte (2009) a direct application of this formulation is usually not
possible since the exponential growth of potential routes and the computa-
tional effort of computing the associated costs.

Problem Variants

Real-life vehicle routing applications generally have complex characteristics
that are very diverse depending on the application area. This has led to
extended problem variants that include several domain-specific extensions
in terms of side constraints and objectives. As a result, several taxonomies
of the large amount of problem variants have been presented including the
work of Bodin (1975), Desrochers et al. (1990), Laporte and Osman (1995),
Eksioglu et al. (2009) and Drexl (2012). In the context of real-world problem
variants, the term rich vehicle routing problem has been coined (Hartl et al.,
2006). These formulations consider the complex aspects of practical applica-
tions. In practice, rich side constraints exist such as driving time regulations,
time-dependent travel times, or consistency considerations.

The basis for practical problem variants are often idealized formulations
that are usually extensions of the archetypical VRP. As a result, several
idealized problem variants have been developed and investigated separately
in the literature. Typical extensions to the classical VRP include (cf. Drexl
(2012)):

• time windows (Kallehauge et al., 2005),

• pickups and deliveries (Parragh et al., 2008),

• inventory routing (Moin and Salhi, 2006),

• multiple depots (Gulczynski et al., 2011),

• split-deliveries (Archetti and Speranza, 2008),

• heterogeneous fleets (Choi and Tcha, 2007), and

• periodic routing (Francis et al., 2008)

Time windows are a commonly used extension of basic vehicle routing
formulations. An overview book with an emphasis to exact methods is pre-
sented by Kallehauge et al. (2005), Bräysy and Gendreau (2005a) survey
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construction and local search methods while Bräysy and Gendreau (2005b)
give an overview of metaheuristic approaches.

Many different variants of vehicle routing problems include time windows.
For illustrative purposes the capacitated vehicle routing problem with time
windows (CVRPTW) is presented here by adding time windows to the stan-
dard CVRP. The CVRPTW can be defined as an extension of the vehicle
flow model presented in the previous section2:

minimize
∑

i∈V

∑

j∈V

cijxij (2.8)

subject to
∑

i∈V

xij = 1 ∀j ∈ V \ {0}, (2.9)

∑

j∈V

xij = 1 ∀i ∈ V \ {0}, (2.10)

∑

i∈V

xi0 = K, (2.11)

∑

j∈V

x0j = K, (2.12)

xij(ωi + si + tij − ωj) ≤ 0 ∀i, j ∈ V , (2.13)

ai ≤ ωi ≤ bi ∀i ∈ V , (2.14)

xij(Qi + qj −Qj) ≤ 0 ∀i, j ∈ V , (2.15)

Qi ≤ Q ∀i ∈ V , (2.16)

xij ∈ {0, 1} ∀i, j ∈ V . (2.17)

In addition to the basic CVRP formulation, for each location i ∈ V a
time window [ai, bi] is given which indicates that service has to start not
earlier than ai and not later than bi. Additionally a service time si is given
and a transition time tij between two locations. In the case of the depot,
a0 = b0 = s0 = 0. The temporal feasibility is ensured by constraints (2.26)
and (2.27). Constraint (2.26) specifies the relationship between the time wi

the service starts at location i and the time wj the service starts at location
j. Constraint (2.27) ensures that the time windows are followed. The time
window constraints prevent sub-tours implicitly. New constraints have been
introduced to state capacity restrictions. After serving a customer the ca-
pacity is reduced by its demand qi which is stated in equation (2.28). The
remaining capacity Qi of the vehicle leaving customer i cannot exceed the
capacity C as stated in equation (2.29).

2adapted from Cordeau et al. (2002)
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Models based on the archetypical CVRP formulation consider the dis-
tribution of goods from a depot to a set of customers. In contrast, pickup
and delivery problems (PDP) involve pickups in addition to deliveries. There
are various practical applications such as courier-services, automated guided
vehicles, crane scheduling, or transportation services.

Different variants of pickup and delivery problems are surveyed by Par-
ragh et al. (2008). It can be distinguished between two problem classes:
vehicle routing problems with back-hauls and pickup and delivery vehicle
routing problems. The former deals with back-hauls from customers to the
depot while the latter considers transportation between locations. In their
work, a detailed taxonomy is presented and fourteen variants are covered.

Two classical variants of PDP that are relevant for further investiga-
tions in this thesis are the classical pickup and delivery problem (PDP) and
the dial-a-ride problem (DARP). These two variants deal with paired trans-
portation requests between locations. In the case of the PDP, the objective
is to transport goods between paired locations with minimum costs while the
DARP deals with passenger transportation and especially considers service
quality. The pickup and delivery problem with time windows (PDPTW) is
a commonly used variant. It can be formulated as a vehicle flow model3:

minimize
∑

i∈V

∑

j∈V

cijxij (2.18)

subject to
∑

i∈V

xij = 1 ∀j ∈ V \ {0}, (2.19)

∑

j∈V

xij = 1 ∀i ∈ V \ {0}, (2.20)

∑

i∈V

xi0 = K, (2.21)

∑

j∈V

x0j = K, (2.22)

xij(ωi + si + tij − ωj) ≤ 0 ∀i, j ∈ V , (2.23)

ai ≤ ωi ≤ bi ∀i ∈ V , (2.24)

xij(Qi + qj −Qj) ≤ 0 ∀i, j ∈ V , (2.25)

max {0, qi} ≤ Qi ≤ min {Q,Q+ qi} ∀i ∈ V , (2.26)
∑

i∈V

∑

j∈V

xij ≤ |S| − 2 ∀S ∈ P, (2.27)

xij ∈ {0, 1} ∀(i, j) ∈ A. (2.28)

3adapted from Ropke et al. (2007)
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There are many similarities to the previously presented CVRPTWmodel.
The aim is minimization of the total costs (2.31) while constraints (2.32) and
(2.33) ensure that each customer is visited exactly once and constraints (2.34)
and (2.35) that each tour starts and ends at the depot. Constraints (2.36)
and (2.37) specify the time window restrictions. The capacity constraints
(2.38) and (2.39) are different in this model, since the demand qi of a delivery
customer is negative while the demand of a pickup customer is positive.

The use of precedence constraints ensure that each delivery customer is
visited after the pickup customer by the same vehicle which have been intro-
duced by Ruland and Rodin (1997). For that purpose, the set P is defined as
a set of all node subsets S ∈ V that represent a path from and to the depot
and at least one precedence constraint is violated (e.g., a delivery location is
visited in a path without visiting the corresponding pickup location first). If
such a path is selected, constraint (2.40) would be violated.

As pointed out by Parragh et al. (2008), dial-a-ride problems usually
either differ by considering passenger inconvenience in terms of a different
objective function or in terms of additional constraints. For instance, the
total throughput time can be limited by an operational constraint or can be
minimized directly as a main objective.

Inventory routing problems (IRP) are quite different to the other pre-
sented formulations. Not demands, but consumption rates are given for each
customer. At each customer, a certain storage capacity is given for the goods.
The planning is performed over a certain multi-period horizon and each pe-
riod the vendor is responsible for delivering a sufficient amount of products
such that no stock-outs occur. The aim is to minimize distribution costs
while maintaining a certain service level and considering storage capacities.

Bell et al. (1983) were the first to formulate an IRP in connection with the
distribution of industrial gases. Since then, diverse variants and applications
have been presented. Moin and Salhi (2007) give a logistical overview while
Andersson et al. (2010) focus on industrial aspects and survey different ap-
proaches with respect to classification criteria depending on the considered
variant. The different modeling criteria include time, demand, topology,
routing, inventory and fleet aspects (cf. Andersson et al. (2010)).

One possibility to model an IRP is to divide the decisions into a planning
phase and a routing phase. In the planning phase, it is decided what amount
should be delivered to each customer on what day. After that decision has
been made, a detailed route plan has to be derived for each day. Models fre-
quently used for the routing and scheduling phase are standard VRP variants
such as the CVRPTW (cf. Campbell and Savelsbergh (2004)).

A basic model for the planning phase of the inventory routing problem
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can be formulated as following4:

minimize
∑

t

∑

r

crx
t
r, (2.29)

subject to LLt
i ≤

∑

1≤s≤t

∑

i∈r

dsir ≤ ULt
i ∀i, ∀t, (2.30)

∑

i∈r

dtir ≤ Qxt
r ∀r ∈ R, ∀t, (2.31)

∑

r∈R

Trx
t
r ≤M ∀t, (2.32)

xt
r ∈ {0, 1} . (2.33)

The general aim of this basic model is to minimize the total distribution
costs over all routes that are executed on each day t of the total planning
horizon t = {1, .., h} (2.42). The variable cr indicates the costs of executing a
certain route and xt

r is a binary variable that selects route r to be executed on
day t. In terms of delivered amounts, LLt

i specifies a lower bound and ULt
i an

upper bound on the volume that has to be delivered to customer i by day t.
The accumulated delivered amount must match at least than the lower bound
to prevent stock-outs and not exceed the upper bound to consider storage
capacities (2.43). Each of the routes cannot exceed the vehicle capacity Q
which is ensured in constraint (2.44). The toal required time on a certain day
cannot exceed the fleet size M as specified in equation (2.45). Each vehicle
can perform multiple tour each day t while the length of the tour is given as
a fraction of the maximum daily operation time (Tr ∈ [0, 1]).

Exact and Heuristic Algorithms

Both exact and heuristic methods have been successfully applied in practice
and are constantly improved on well-known benchmark instances of different
VRP variants. An overview of exact and heuristic algorithms is given in
the following. This overview is mainly based the surveys of Laporte (2009),
Doerner and Schmid (2010), and Baldacci et al. (2012).

As pointed out by Laporte (2009), exact methods have evolved to highly
sophisticated methods based on mathematical programming in the last 40
years. Early approaches such as Christofides and Eilon (1969) mainly devel-
oped basic branch-and-bound algorithms. Also dynamic programming has
been applied based on the formulation of Eilon et al. (1971), however this
research direction has not received much attention since.

4Campbell and Savelsbergh (2004)
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The currently most successful techniques are based on a set-partitioning
formulation and advanced column generation algorithms (cf. Baldacci et al.
(2012)). Fukasawa et al. (2006) apply a branch-and-cup-and-price algorithm
to a set-partitioning formulation that has been augmented with various ad-
ditional valid inequalities. The algorithm proposed by Baldacci et al. (2008)
is also based on an augmented set-partitioning formulation and incorporates
lower bounds calculated by three different heuristics into a branch-and-cut
approach.

Due to recent advances, benchmark instances with up to about 100 cus-
tomers have been solved to optimality using exact algorithms. For example,
the last two instances of the well-known 56 VRPTW benchmark instances
defined by Solomon (1987) that consist of 100 customers have been solved
recently (cf. Baldacci et al. (2011) and Ropke (2012)).

Even though much progress has been made in the field of exact methods,
Laporte (2009) points out that VRP variants remain difficult to solve in
practice, especially when considering large problem sizes and when complex
side-constraints are involved. As a result, a multitude of heuristic algorithms
have been developed which provide a compromise between solution quality
and runtime. Laporte (2009) distinguishes between classical heuristics and
metaheuristics.

Classical heuristics are mostly based on solution construction that is often
combined with a simple improvement phase. The most important classical
heuristics are the savings, cluster-first route-second and intraroute/interroute
improvement heuristics (cf. Laporte (2009)).

One prominent example that is still frequently referenced today is the
savings heuristic developed by Clarke and Wright (1964). It starts with a
set of tours where a single customer is assigned to each vehicle. Then it
iteratively merges the tours starting with the ones that result in the largest
saving. Improvements to this basic scheme include the work of Altinkemer
and Gavish (1991) and Wark and Holt (1994).

Cluster-first, route-second heuristics first assign the locations to vehi-
cles and then, for each vehicle, build an associated route. One approach is
assembling a set of vehicle routes to a feasible solution by means of a set-
partitioning model. For instance, the sweep algorithm proposed by Gillett
and Miller (1974) generates non-overlapping routes by iteratively adding lo-
cations in a circular manner as long as the constraints are satisfied. A con-
struction heuristics hybridizing the sweep heuristic with other insertion pro-
cedures is the push forward insertion heuristic proposed by Solomon (1987).
Another approach is the generation of initial seed points and then build-
ing the clusters by solving a generalized assignment problem as proposed
by Fisher and Jaikumar (1981). An interesting aspect of cluster-first route-
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second heuristics is the decomposition into sub-problems as also generally
applied by human dispatchers.

Intraroute and interroute improvement heuristics rely on local search and
neighborhood operations. They are often used as a second stage after a
construction heuristic has been applied to generate an initial solution. Com-
monly used intraroute operations are adapted from the TSP literature such as
the 2-opt or the OR-opt operation. Interroute operations usually involve the
relocation of customers between routes. An example is the transfer scheme
of Thompson and Psaraftis (1993).

On the contrary to specialized problem-specific heuristics, metaheuristics
are general search-strategies that guide problem-dependent operations. They
are based on an efficient interplay between diversification and intensification.
There is an ever-growing body of literature applying metaheuristics to diverse
VRP variants. Reviewing successful search strategies, Cordeau et al. (2002)
conclude that the metaheuristics available are highly accurate. However,
there is a tendency to over-engineered and over-specialized methods pointing
out the need for flexible and simple heuristics.

There are some general success factors that can be identified within the
wide range of metaheuristics that are useful for solving large-scale vehicle
routing problems. In general, a distinction can be made between local search
based methods and population based methods.

Local search based methods iteratively explore the solution space by mov-
ing from the current solution to a neighboring solution at each step. An es-
sential challenge is not getting stuck in a locally optimal solution and there
are various metaheuristic search strategies to avoid that issue. In the context
of vehicle routing, especially tabu search (Glover, 1989), variable neighbor-
hood search (Mladenović and Hansen, 1997), and large neighborhood search
(Pisinger and Ropke, 2010) have received extensive attention (cf. Laporte
(2009)).

A prominent tabu search variant that has been applied to diverse variants
of the VRP is the unified tabu search initially proposed by Cordeau et al.
(2001). It is based on a relocate neighborhood where a single customer is
relocated to another route. An important success factor of this algorithm
is the adaptive penalty relaxation to allow infeasible solutions. Whenever
a constraint is violated, the penalty is increased otherwise it is decreased.
Additionally, a long-term memory is applied for diversification to penalize
similar solutions. Other successful tabu search variants include the work of
Taillard (1993), Gendreau et al. (1994), and Toth and Vigo (2003). A general
success factor of tabu search implementation is the use of the search history
in terms of short-term, mid-term and long-term memory.

Variable neighborhood search contains a shaking and improvement phase.
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In the shaking phase, a switch is performed to increasingly large neighbor-
hoods. Within this neighborhood a local optimum is obtained in the improve-
ment phase. This concept allows visiting different locally optimal solutions.
Applications to VRP variants include the work of Polacek et al. (2004) and
Kytöjoki et al. (2007). A successful concept is changing the assignment of
customers to vehicles during the shaking phase and improving the routes dur-
ing the improvement phase leading to an interplay between clustering and
routing.

Large neighborhood search is based on destroy and repair operations.
These operations range from very small changes such as the removal of a
customer to very large one such as the removal of whole tours. Also heuristic
destroy procedures are used such as cluster or time-oriented removal. Re-
construction can occur using insertion heuristics or local improvement pro-
cedures. An adaptive variant was proposed and applied to a VRP by Ropke
and Pisinger (2006) where the neighborhoods are chosen with a probability
proportional to their success. In general, a key success factor of large neigh-
borhood search is the exploration of potentially large neighborhoods allowing
an efficient interplay of diversification and intensification.

Population based methods work with a set of solutions at the same time
as opposed to local search methods who consider the improvement of a sin-
gle incumbent solution. The most prominent method of this paradigm are
genetic algorithms (Holland, 1975) that apply the principles of natural evo-
lution to optimization. However, as pointed out by Vidal et al. (2012), most
successful search strategies for the VRP involve local search. As a result,
genetic algorithms have been mainly applied in combination with a local im-
provement procedure leading to memetic algorithms. Recently, Vidal et al.
(2012) proposed a memetic algorithm with diversity control that outperforms
existing approaches on several VRP variants. In general, diversity manage-
ment in combination with local search seems to be an important success
factor for genetic search.

The combination of heuristic and exact methods has led to Matheuristics
that combine mathematical programming techniques with heuristic search
strategies. A survey on matheuristics for VRP variants is given by Doerner
and Schmid (2010). They can be basically categorized into set-covering, local
branching and decomposition based approaches.

Integrative set-covering approaches (e.g, Archetti and Speranza (2008))
combine heuristic route generation with the exact solution of the covering
problem while in collaborative set-covering approaches (e.g, Schmid et al.
(2009)) information between the heuristic and the exact method is exchanged.
Local branching procedures (e.g, Schmid et al. (2010)) use metaheuristics for
branching decisions at a strategic level in an exact solver by fixing certain de-
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cision variables. Decomposition approaches are based on decomposing a large
problem into smaller sub-problems that can be solved exactly. Examples are
a hierarchical decomposition through heuristic ruin and exact recreate op-
erations (De Franceschi et al., 2006) or the solution of certain sub-problems
such as the exact determination of timing a route (Hashimoto et al., 2008).

Summarizing, there is a large body of research on static vehicle routing
problems. Advanced methods are available for practically relevant variants.
The methodology is still improved and larger and more complex problems
can be solved using hybrid algorithms combining several successful solution
methods.

2.1.2 From Static to Dynamic Vehicle Routing

Practical applications where the evolution and quality of information is an
important aspect in combination with advances in the fields of operations
research and telematics have led to an increasing interest on dynamic vehicle
routing problem variants. Dynamic vehicle routing deals with environments,
where the information available to the decision maker evolves during the
planning process. Psaraftis (1988) gives a definition on the dynamic vehicle
routing problem:

[...] in a “dynamic” vehicle routing problem, inputs may (and,
generally, will) change (or be updated) during the execution of
the algorithms and the eventual execution of the route. Actu-
ally, algorithm execution and route execution are processes that
evolve concurrently in a dynamic situation, in contrast to a static
situation in which the former process clearly precedes (and has
no overlap with) the latter.

Even though the field can build on the extensive research on static VRP
variants, there are fundamental differences concerning modeling and opti-
mization approaches. This mainly stems from the fact, that not all informa-
tion is available at the beginning of the planning process and the resulting
uncertainty about future events. As a result, newly arriving information
might require plan changes or render previously made decisions sub-optimal.

Psaraftis (1988) outlined the main differences between static and dynamic
vehicle routing as following:

1. Time dimension is essential: Since new information arrives during the
planning process, scheduling is always an important aspect of dynamic
vehicle routing. In contrast, static variants such as the CVRP that do
not contain time restrictions do not involve scheduling.
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2. The problem may be open-ended: In a dynamic situation the planning
horizon can be unbounded which leads to the planning of open paths
for the vehicles rather than closed tours.

3. Imprecise or unknown information: Information about future events
may be imprecise or unknown. Probabilistic information might be
available, however in some cases knowledge about future events does
not exist.

4. Importance of near-term events: Due to the uncertainties associated
with future events, long-term commitments are likely to become sub-
optimal due to newly arriving information in the meantime. This is
not the case in static vehicle routing problems where near-term and
long-term events have the same weight.

5. Information update mechanisms are required: Problem inputs need to
be changed as new information appears and consequent decisions have
to be made efficiently.

6. Re-sequencing and re-assignment decisions: Previously made assign-
ment or sequencing decisions can be rendered sub-optimal as new in-
formation arrives. As a result, as the input changes, the assignment
of requests to vehicles or the sequencing of requests might have to be
changed in order to consider the new situation.

7. The need for faster computation times: In static routing environments
the aim is to obtain a best as possible, in the best case optimal, solution
within reasonable computational time which in many cases can be even
a couple of hours. In contrast, in dynamic environments it might not
be worth solving a current situation close to optimality since the arrival
of new information might render the current solution sub-optimal. Ad-
ditionally, in dynamic environments faster response times are needed
since decisions have to be made while the routes are executed and new
information is arriving.

8. Indefinite deferment mechanisms: Due to the focus on the optimiza-
tion of near-term actions and the possible open-ended planning hori-
zon, serving unfavorable requests might be deferred indefinitely. This
phenomenon is called “starving”. This might be caused by simplistic
heuristics such as always serving the nearest customer. A customer in
a distant geographic location might never be served. Measures must
be added to mitigate that issue in that case.
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9. Different objective functions: For static vehicle routing problems, the
objective is usually the minimization of total costs. This might not
be feasible in the dynamic case since the planning horizon might be
unbounded or not all information is known at a given time or stochastic
information is available. In some cases, the objective function has to be
extended to avoid undesirable behavior. For instance, a penalty could
be added for indefinite deferment of requests.

10. Different time constraints: Due to the possibility that newly arriving
information can lead to a situation where a hard deadline of a customer
cannot be met, violating time constraints may be regarded a better
alternative then denying the service to the customer. In that sense, time
constraints are often considered softer then in static vehicle routing
variants.

11. Lower flexibility to vary fleet size: When solving a static routing prob-
lem, there is usually some time span before the routes are executed.
This allows more flexibility to add an additional vehicle in order to
meet the customer demands. In a dynamic setting there is usually less
flexibility to add more capacity in real-time.

12. Importance of queuing considerations: If the customer demand ex-
ceeds the capacities over a longer time span, the system will become
congested. At such a state, it becomes impossible to achieve a good
service quality by using typical routing strategies. Psaraftis (1988) sug-
gested the application of queuing theory, however according to Larsen
et al. (2007) the applications are still scarce.

2.1.3 Dynamically Arriving Information

As stated in the previous section, the main challenge in dynamic vehicle
routing environments is the uncertainty associated with dynamically evolving
information. Several input values can be subject to changes over time in a
dynamic vehicle routing setting.

As summarized by Richter (2005) and Larsen et al. (2007), the following
input values are typical examples of dynamically evolving information:

• Arrival of new requests: The appearance of new requests during the
planning period is an extensively researched variant of dynamic VRPs.
At the beginning of the planning process not all customer locations are
known yet. The algorithmic strategies have to account for the fact that
the routes must be flexible to incorporate newly arriving requests. In
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the best case they can be scheduled efficiently in the existing routes, in
the worst case a complete re-planning might be necessary.

• Service cancellations: Customers might cancel their request. One ex-
ample would be the cancellation when deadlines are missed or the cus-
tomer is waiting too long to be serviced.

• Update of demands: In some cases the customer location might be
already known, but an uncertainty might be associated according to
the exact amount of demand. For instance, the exact demand might
be revealed when the vehicle arrives at the location in the context of
heating oil distribution.

• Change of time windows: In some application areas, the time windows
the vehicle is allowed to arrive can be changed. An example are pickup
or delivery operations that are dependent on good availability.

• Change of capacities: Due to unforeseen events such as vehicle break-
downs the available capacity might decrease during the planning pro-
cess.

• Dynamic travel times: Sudden traffic disturbances such as traffic jams
caused by accidents can occur and might require a change of the vehicle
routes.

Psaraftis (1995) provides a taxonomy for the characterization of the in-
puts of dynamic vehicle routing problems. Four important concepts are
highlighted: the evolution of information, the quality of information, the
availability of information and the processing of information.

In terms of the evolution of information Psaraftis (1995) distinguishes be-
tween static and dynamic inputs. Static inputs are known already before the
planning process and are not updated over time while dynamic information
is revealed or updated. It is important not to confuse dynamically evolving
information with time-dependent inputs. One example are time-dependent
travel times which are fixed from the beginning and are thus considered a
static input. On the contrary, real-time traffic information would be consid-
ered as a dynamic input.

Regarding the quality of information Psaraftis (1995) categorizes the in-
puts of a dynamic VRP as known-deterministic / forecast / probabilistic and
unknown. These attributes are defined for a given time in the planning pro-
cess. For instance, once a customer request appears, its information quality
changes from unknown to known-deterministic. As pointed out by Larsen
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et al. (2007), in many applications the information quality is higher for near-
term than for distant events. Deterministic inputs are known with certainty
and do not change over time. Other inputs may only exist as forecasts and
become updated over time. If they follow certain probability distributions,
they are considered as probabilistic. Other inputs may be completely un-
known at given times.

The availability and the processing of information influence are important
factors in the design of decision support systems. The fact that certain
information is only available locally requires a decentralized processing. If
the relevant information is available globally to a central decision making
unit, a centralized system can be created. In general, due to advances in the
field of telematics, more and more information is available globally as noted
by Larsen et al. (2007). It could be also by design that certain decisions such
as selecting alternative routes in the case of a traffic jam are delegated from
the central dispatcher to the drivers.

Based on these considerations two important topics are highlighted. The
degree of dynamism measure characterizes dynamic vehicle routing environ-
ments in terms of the evolution of information. The use of probabilistic and
forecast data is incorporated in dynamic and stochastic models.

Degree of Dynamism

For the performance evaluation of dynamic vehicle routing systems, the char-
acterization in terms of dynamically arriving information is an important
aspect. For this purpose, Larsen (2000) motivated the degree of dynamism
as a single performance measure that is based on the ratio of dynamically ar-
riving in relation to static information and also on the time this information
is revealed.

It should be noted that the measure focuses solely on dynamically arriv-
ing requests. As pointed out by Zaepfel and Vogl (2010) this is a common
approach to characterize the dynamism of the system but there are other
influence factors that should be considered which are summarized by Richter
(2005). The author is not aware of approaches that have adapted the degree
of dynamism measures to consider additional aspects.

Originally the degree of dynamism (dod) measure for dynamic systems
was introduced by Lund et al. (1996). They define the ratio between total
(ntot) and dynamic (nimm) requests as:

dod =
nimm

ntot

(2.34)

For instance, if a-posteriori ntot = 100 requests were placed during the
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planning process and nimm = 10 arrived dynamically while 90 were known
in advance the degree of dynamism is dod = 10%.

The dod measure has, however some limitations because it does not con-
sider when the dynamic requests actually arrive. It has been extended by
Larsen (2000) to include the information about the arrival time of the imme-
diate requests. This measure is defined as the effective degree of dynamism
(edod) which considers the arrival time of each dynamic request (ti) in rela-
tion to the planning horizon (T ):

edod =

∑nimm

i=1
ti
T

ntot

(2.35)

This implies, that the later the dynamic requests arrive the higher the
edod measure will get. In a pure static problem environment, all requests
are known at time ti = 0 which means the measure will be edod = 0. Highly
dynamic environments are characterized by many late-arriving requests. The
edod measure thus reflects the temporal distribution (cf Larsen et al. (2007)).

Extending this concept, Larsen (2000) defined the edodtw measure that
also includes time windows. It takes into account the reaction time available
to the planner in terms of due dates specified by the customers. The definition
is based on the reaction time ri that is available between the appearance of
the request at time ti and the closing of the time window at time bi:

edodtw =
1

ntot

nimm∑

i=1

(
T − (bi − ti)

T
) =

1

ntot

nimm∑

i=1

(1−
ri
T
) (2.36)

The average available reaction time is inversely proportional to the value
of the edodtw measure. As Larsen et al. (2007) note, a long reaction time is
generally desirable because more computation time is available for processing
this new request.

Stochastic Information

Dynamic vehicle routing problems are characterized by incomplete informa-
tion that is revealed gradually during the planning process. As identified
by Psaraftis (1995), this information can be known with some uncertainty
however. In many practical applications stochastic information about future
requests is available or can be obtained by means of historical data or by
creating probabilistic models (cf. Bent and Van Hentenryck (2004b)). As
pointed out by Zaepfel and Vogl (2010), in the past approaches for dynamic
VRPs did not incorporate stochastic information, however recently there is
an increased interest in dynamic and stochastic models.
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Pillac et al. (2012a) pointed out the significance of the quality of infor-
mation for the classification of vehicle routing problems by distinguishing
between deterministic and stochastic input. Combined with the evolution of
information, distinguishing between static and dynamic input, a taxonomy
of four different classes of vehicle routing problem results.

Static and deterministic routing problems correspond to classical static
variants. All information is known beforehand with certainty and does not
change over time. As noted by Pillac et al. (2012a) and many other authors,
in many practical applications this simplifications are not valid assumptions.

Static and stochastic problem formulations incorporate random variables
which realizations are revealed before the execution of the routes. Reviews
on the field of stochastic vehicle routing have been provided for instance by
Gendreau et al. (1996) and Cordeau et al. (2007). The three most commonly
studied cases are stochastic customers, stochastic demands and stochastic
times (cf. Cordeau et al. (2007)). The planning occurs by means of a two-
stage process. In a first stage, a plan is created that accounts for the stochas-
tic variables. Then the realizations of the variables are revealed and small
changes to the plan are made in terms of recourse actions such as skipping
the customers that did not place orders.

In dynamic and deterministic vehicle routing problems, inputs are con-
sidered to be completely unknown and to appear over time while the routes
are executed. As Zaepfel and Vogl (2010) note, the fields of stochastic vehi-
cle routing and dynamic vehicle routing have evolved separately in past. A
combination of the two fields leads to dynamic and stochastic vehicle rout-
ing problems that consider stochastic information which is available about
unknown inputs. A main difference to static stochastic problems is the fact
that the plan is updated as the routes are executed while in static models
they are created a-priori.For some scenarios it might make sense to create
an a-priori plan (e.g., in recurrent situations) while for other applications a
real-time optimization might be beneficial.

2.1.4 Objectives and Performance Evaluation

For classical variants of static vehicle routing problems, the most commonly
used objective is the minimization of total distribution costs which consist
of fixed costs for the required fleet as well as variable costs for the driven
distance. There are different objectives for evaluating the performance of
dynamic vehicle routing systems depending on the application area.

Larsen et al. (2007) pointed out the three most important elements: mini-
mization of distribution costs, maximization of the service level, and through-
put optimization. These are conflicting objectives since raising the service
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level usually implies an increase in costs. Also throughput optimization and
reducing the wait time can conflict since the focus on a fast response time
for some customers may decrease the ability to serve as many customers as
possible and lead to starvation of other customers.

An additional aspect that comes into play for dynamic VRPs is missing
information. When evaluating a given situation, possible future information
has to be considered. A solution that is optimal at a given situation might
be rendered sub-optimal by additional arriving information.

Considering all different aspects of dynamic vehicle routing systems, the
objective of a dynamic VRP is usually a combination of several factors includ-
ing distribution costs, service level, throughput and flexibility with regard to
newly arriving information (cf Zaepfel and Vogl (2010)).

For the evaluation of the performance in a dynamic vehicle routing envi-
ronment, there are basically two different approaches as outlined by Ghiani
et al. (2003). Dispatching and routing algorithms can be cosidered analyt-
ically if certain simplifying hypothesis can be assumed such as Poisson dis-
tribution of the dynamic variables or uniform distribution of the appearing
customers. In cases where these assumptions are not suitable, an empirical
evaluation has to be performed by means of discrete-event simulation.

For the analytical investigation of routing and dispatching policies, the
competitive analysis framework is commonly applied which was initially de-
fined by Sleator and Tarjan (1985) for production planning. In a competitive
analysis, the worst-case performance of an online algorithm is compared with
an optimal algorithm that has access to all relevant information beforehand.
In that context, the concept of the competitive ratio is important:

CA(i) ≤ c ∗ COpt(i), ∀i ∈ I (2.37)

An online algorithm A is denoted c-competitive if its performance is max-
imal c times worse than an optimal offline algorithm COpt on all possible
problem instances i ∈ I.

A survey is provided by Jaillet and Wagner (2008). Early work includes
Bertsimas and Van Ryzin (1993) where they analyzed worst-case bounds for
single- and mutli-vehicle cases of the traveling repairman problem and derived
optimal policies for light and heavy traffic situations. More recent work
includes Jaillet and Wagner (2006) who studied competitive ratios for online
traveling salesman as well as traveling repairman problem and Angelelli et al.
(2007) who considered multi-period problems.

As Larsen et al. (2007) note, the inclusion of practically relevant con-
straints such as time-windows is usually to complex for a consideration using
competitive analysis. An alternative are empirical studies using discrete-
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event simulations. When considering practically relevant variants with com-
plex side constraints this is a commonly used approach. The concept of the
competitive ratio has been adapted by Mitrović-Minić et al. (2004) to an
empirical analysis on both a dynamic and static variant of the problem by
comparing the average observed algorithm performance. That way, conclu-
sions can be drawn on the value of information.

2.1.5 Categorization and Application Areas

Based on the degree of dynamism definition and the primary optimization ob-
jective, Larsen et al. (2002) presented a classification framework for dynamic
vehicle routing problems. In that scheme, different application areas can be
categorized. This is especially important, since the developed methods differ
dramatically depending on the characteristics of the problem environment.

The first dimension of categorization is the degree of dynamism. Weakly
dynamic systems are characterized by a low number of dynamically appearing
information that is usually not more than 20%. Moderately dynamic systems
already contain a significant amount of immediately arriving information.
Strongly dynamic system typically have a degree of dynamism of 80% and
greater.

The second dimension of this categorization is the main system objective
of the application area. Larsen et al. (2007) note, that the applications are
located around the diagonal of these two dimensions. In weakly dynamic sys-
tems the main objective is close to the one of a static routing problem which
is usually the minimization of transport costs. In strongly dynamic systems
the main goal is typically the minimization of response time. However, as
pointed out by Zaepfel and Vogl (2010) in terms of revenue maximization,
focusing on a single target is not a way to success. As an example, when
minimizing the response time, also costs have to be considered while the
main target remains the service quality.

An overview of different application areas and their classification accord-
ing to the presented scheme is given in Figure 2.1 based on the work of Larsen
et al. (2007). Additional applications such as city logistics, home deliveries,
or air taxis can be found in a recent survey given by Pillac et al. (2012a).

The distribution of goods such as groceries, heating oil or liquid gas to
a large number of households is usually characterized by a low frequency
of changes and a relatively large reaction time. There is usually a fixed
set of routes that are carried out daily derived from customer subscriptions.
However, a small percentage of customers may require additional deliver-
ies or cancel their order due to exceptional situations. Another example of
a weakly dynamic system is the transportation of elderly and handicapped
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Figure 2.1: Classsification of dynamic vehicle routing problems according the
degree of dynamism and primary objective (cf. Larsen et al. (2007))

persons who generally book their trips a few days ahead. A possible approach
in the context of weakly dynamic systems is to model the problem either as
a stochastic vehicle routing problem with recourse actions or by means of
re-optimization leading to a dynamic model. The main optimization target
is the minimization of transportation costs since only few immediate infor-
mation arrives during the plan execution.

In moderately dynamic systems there is already a significant amount of
dynamically arriving information, however the routing algorithm should still
take the static information into account sufficiently. As a result, there is
often a conflict between transport cost and response time minimization in
that context. Examples for moderately dynamic systems are non-urgent
traveling-repairman problems such as repairing appliances or long-distance
couriers. Solution procedures must be characterized by a fast response time
since an adaption of the plan will occur quite often as new information arrives.

For strongly dynamic systems the focus is laid on a fast response time.
A typical example are emergency services where no information is known in
advance and the main objective is a minimization of waiting time. Another
example are taxi cab services or dial-a-ride tele-buses where little or no re-
quests are known in advance. Urgent repairs such as car breakdown services
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also fall in this category. Previous work has shown, that considering future
requests can improve the solution quality significantly in this context. Ex-
amples are the relocation of vehicles in central areas or waiting where new
requests are likely to occur.

As Larsen et al. (2007) conclude, the system objective and the degree
of dynamism should be considered when creating algorithmic approaches for
dynamic vehicle routing problems. Obviously, optimizing emergency service
operations is quite different than optimizing the distribution of groceries. As
a result, several specialized solution methods exist which will be discussed
in the following considering the characteristics of dynamic problem environ-
ments.

2.2 Solution Methods

Dynamic vehicle routing problems require specialized solution methods due
to the challenges that are inherent to dynamically changing environments.
As noted by Pillac et al. (2012a), these aspects increase the complexity of
decision making compared to static routing problems. Additional degrees
of freedom have to be considered as well as finding a compromise between
the reaction time and the decision quality. As a consequence, the methods
applied in the field of dynamic vehicle routing have to deal with the inerent
dynamism and resulting uncertainty of the problem environment.

Several developments have accelerated the evolution of solution methods
for dynamic vehicle routing problems. Ghiani et al. (2003) identified the in-
crease in computational power, accurate metaheuristics and the advances in
the field of parallel computation as main driving factors of methodological
developments. At the same time, advances in information and communi-
cation technologies enabled real-time fleet management in more and more
application areas which lead to an increasing interest in solving the underly-
ing dynamic routing problems. Pillac et al. (2012a) state, that especially in
the last decade a growing body of research can be observed.

Surveys led to an organization and categorization of the approaches pre-
sented in the literature. Recently Pillac et al. (2012a) categorized solution
methods according to the evolution and quality of information. Zaepfel and
Vogl (2010) focused on the adaption to changes and distinguishing between
event-based adaption and a-priori planning with dynamic adaption. A broad
view on advances and research challenges was provided by Larsen et al.
(2008). Ichoua et al. (2007) focused on the design of planned routes in prob-
lem environments with dynamically arriving customers. Jaillet and Wagner
(2008) outlined several analytical studies based on queuing theory. Parallel

28



computation strategies were investigated by Ghiani et al. (2003).
Based on these surveys, several solution methods will be outlined focusing

on four important aspects:

• By combining queing theory and dynamic routing, methods based on
dynamic policies reactively dispatch vehicles as new information arrives

• Building on the extensive research on static VRPs, several solution
methods have been derived by the adaption of static algorithms

• Methods for considering future events account for dynamically arriving
information

• Parallelization strategies play an important role because of the limited
reaction time in dynamic environments

2.2.1 Dynamic Policies

Dynamic routing policies do not focus on planned routes but rather view the
vehicle as a mobile server and decide what request to serve next among a
queue of pending requests (cf. Ichoua et al. (2007)). Using queuing theory,
several policies have been investigated analytically under simplifying assump-
tions such as unlimited capacity or uniformly distributed requests. On the
other hand, policies have been derived and tested empirically for complex
real-world situations.

Several policies for the dynamic traveling repairman problem (D-TRP)
have been investigated analytically using queuing theory by Bertsimas and
Van Ryzin (1991). Underlying assumptions are independently Poisson dis-
tributed arrival rates, service times of customers that are uniformly dis-
tributed in an Euclidean plane, and a server with unlimited capacity. The
aim is to derive a strategy that minimizes the total system time.

The following basic policies have been investigated:

• First come first serve (FCFS): Requests are serviced in the order they
arrive which corresponds to a first in first out principle (FIFO). If there
are no unserviced demands, the vehicle waits at the current location.

• Stochastic queue media (SQM): The customers are serviced in a FCFS
manner, however the vehicle returns to the geographic median after
completing each service.

• Partitioning (PART): The geographic area is divided intom sub-regions,
where m is a parameter of the strategy. Within a region, the FCFS
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principle is applied while there are still requests left. Then the vehicle
moves to an adjacent region where requests are queued. This principle
is repeated until all requests have been served.

• Space filling curve (SFC): Requests are served as they appear in re-
peated clockwise sweeps while the depot is visited once per each sweep.

• Nearest neighbor (NN): Whenever the vehicle finished serving a request,
it continues to the geographically nearest queued request.

• Traveling salesman (TSP): A batching of requests occurs and after
a certain number has been reached, the resulting TSP is solved to
optimality. Strictly speaking, this is not a pure dispatching policy but
involves planning of routes.

An analytical study was performed by Bertsimas and Van Ryzin (1991)
both for light and heavy traffic situations by deriving worst-case performance
bounds in terms of competitive ratios as well as simulation. In the case of
light traffic, the SQM policy has been shown to be optimal. However, the
FCFS policies become unstable for increasing traffic intensities. Papastavrou
(1996) has later defined the generation (GEN) policy, that basically combines
the SQM and TSP strategies and behaves well in low-traffic as well as in
heavy-traffic situations.

The work of Bertsimas and Van Ryzin (1991) has been extended to a
multi-vehicle case by Bertsimas and Van Ryzin (1993) and to a single-vehicle
pickp and delivery problem by Swihart and Papastavrou (1999). Larsen
et al. (2002) have empirically compared the strategies for D-TRP instances
with varying degrees of dynamism that consist of both static and dynamic
requests. The main finding was, that the routing costs increase linearly with
the degree of dynamism and the nearest-neighbor policy performed best for
distance minimization. Ausiello et al. (2001) have considered the traveling
salesman problem on the metric space and derived an optimal policy.

Recently, some approaches have derived dispatching policies empirically
by means of simulation optimization. Beham et al. (2009b) have evolved com-
plex dispatching rules for the dynamic dial-a-ride problem (D-DARP) using
a linear combination of different dispatching information and by tuning the
parameters by means of simulation optimization. van Lon et al. (2012) and
Vonolfen et al. (2013c) have evolved complex policies for D-DARP instances
by means of genetic programming. These policies are adapted to certain sce-
narios and combine several simple policies such as NN or FCFS to decision
trees.
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2.2.2 Adaption of Static Algorithms

Building on the extensive research on solving static vehicle routing problems,
a commonly used approach to solve dynamic variants is to adapt static algo-
rithms. In that sense, the dynamic vehicle routing problem is regarded as a
sequence of static problems and the algorithm is applied to the current situ-
ation. This procedure is carried out each time new information is revealed or
within fixed time slices (frequently also called decision epochs). Successful
concepts are to transfer information between the optimization of the individ-
ual situations (cf. Pillac et al. (2012a)) and the focus on short-term events
in a rolling horizon manner while postponing long-term events (cf. Ichoua
et al. (2007)).

In terms of the adaption of static algorithms, Ichoua et al. (2007) distin-
guish between local update and re-optimization procedures. Local update
methods build a set of a-priori routes from the information that is known
at the beginning of the planning process and newly arriving information is
incorporated using fast local update procedures. In contrast, re-optimization
methods solve each situation from scratch. The ability to completely recon-
sider decisions where no commitment was made yet such rescheduling the
pending requests allows utilizing a larger optimization potential but gener-
ally leads to a longer reaction time. Hybrid approaches combine the strength
by using local update procedures for making fast decisions and applying re-
optimization when computation time is available.

Local update procedures usually apply simple insertion heuristics to in-
corporate dynamically arriving requests into the current planned routes. For
instance, Madsen et al. (1995) have proposed an insertion heuristic for the
dispatching of repairmen in a highly dynamic environment. Insertion heuris-
tics are also used in hybrid approaches to quickly determine if a request can
be incorporated in the current set of routes and, after making the decision
whether to accept the request, running an re-optimization procedure.

Both exact and heuristic methods have been applied within re-optimization
approaches, however most re-optimization approaches are based on heuristics
as Pillac et al. (2012a) and also other authors noted. This stems from the
fact that the response time is a critical factor in dynamic routing environ-
ments. In many cases it might not be worth the computational effort to solve
a given situation to optimality since newly arriving information can render
the previously made decisions sub-optimal. As a result, a balance must be
achieved between the computational effort and the solution quality.

A broad range of literature has focused on the application of metaheuris-
tics for re-optimization. Among others, genetic algorithms (GA), ant colony
optimization (ACO), and tabu search (TS) have been applied. Common
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among successful approaches is an incorporated methodology for maintaining
information about good solutions. This observation has been generalized to
the multiple plan approach (MPA). Most presented approaches are not pure
re-optimization approaches but hybridized with local update procedures.

When applying GAs to dynamic routing problems, the population is usu-
ally kept for the whole optimization process and updated as new informa-
tion arrives (cf Pillac et al. (2012a)). Information update mechanisms are
provided to transfer information throughout the plan revisions such as in-
serting new customers into the solutions of the population or deleting served
customers. For instance, a GA combining local update procedures with re-
optimization has been applied to dynamic PDPTW instances by Pankratz
(2005). In a similar manner, Haghani and Jung (2005) and Cheung et al.
(2008) applied GAs to dynamic PDP. van Hemert and La Poutré (2004)
extended this concept with relocation strategies for fruitful regions.

As pointed out by Ichoua et al. (2007), ACO algorithms applied to dy-
namic vehicle routing achieve the transfer of information between the re-
optimization steps by preservation of the pheromone matrix. Similar to
GAs, an update mechanism is provided to adapt the pheromone matrix to
newly arriving information. This pheromone conservation strategy has been
applied by Gambardella et al. (2003) and Montemanni et al. (2005) to a
dynamic VRP without time windows. A matheuristic for the VRP with dy-
namic travel time combining ACO and dynamic programming was proposed
by Chitty and Hernandez (2004).

Being a successful strategy for static formulations, several TS variants
have been presented for dynamic vehicle routing problems. Gendreau et al.
(1999) have applied the parallel TS with adaptive memory proposed by Tail-
lard et al. (1997) to a dynamic VRPTW problem. The adaptive memory
is used to store good partial solutions (routes) that are found during the
search. New starting solutions are generated from the memory and from
them, several tabu search threads are started in parallel. An information
update mechanism is provided to update the adaptive memory as new infor-
mation arrives. A two-stage approach combining insertion and improvement
phases was followed by Attanasio et al. (2004), who adapted a parallel vari-
ant of the method proposed by Cordeau and Laporte (2003) to the dynamic
DARP. The incumbent solution of each search thread is updated and the
search is then continued. A similar approach is applied by Beaudry et al.
(2010) to optimize patient transportation.

Generalizing from the underlying re-optimization algorithm and identify-
ing the importance of information transfer between the optimization steps,
Bent and Van Hentenryck (2004b) have presented the multiple plan approach
(MPA). Multiple plans are held that are consistent with the current situation.
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At each time step, the plans in the pool are updated to be compatible with
the executed plan. Incompatible plans are deleted. An important aspect is
the selection of the distinguished plan that is executed by the vehicles.

2.2.3 Considering Future Events

A main challenge in dynamic vehicle routing is the evolution and quality of
information that influences the planning process. Decisions that are opti-
mal at a given time might be rendered sub-optimal by arriving events such
as new requests, vehicle breakdowns or service cancellations. Ichoua et al.
(2007) note that human dispatchers usually consider advance knowledge such
as demand patterns in the planning process. From the algorithmic perspec-
tive, solution approaches have been developed that take into account possible
future events and increase the flexibility in terms of newly arriving informa-
tion.

It can be distinguished between methods that are based on stochastic
information about future events and methods that are based on general as-
sumptions. Stochastic information is often derived from historical data and
is incorporated in dynamic and stochastic routing problems. Pillac et al.
(2012a) point out several approaches how this probabilistic knowledge about
future events can be utilized in solution methods. It can be either incorpo-
rated analytically, by scenario sampling or in other specially designed strate-
gies.

Methods based on stochastic modeling incorporate probabilistic knowl-
edge analytically (cf. Pillac et al. (2012a)). One stream of research is to
model dynamic and stochastic vehicle routing problems as Markov Deci-
sion Processes (MDP) and apply dynamic programming to maximize the
expected profit. Powell et al. (1988) have solved a PDP with demand uncer-
tainty while Kim et al. (2005) consider a VRP with dynamic travel times.
To increase the scalability for larger problem sizes, Approximate Dynamic
Programming uses approximation schemes to avoid full value function eval-
uations (cf Powell (2007)). For instance, Novoa and Storer (2009) have pre-
sented a re-optimization approach using ADP for a VRP with stochastic de-
mands. Another stream of literature focuses on the application of methods
from stochastic linear programming such as the work of Yang et al. (2004).

Sampling approaches generate scenarios which are realizations of the
probability distributions. These scenarios are then solved independently and
conclusions are drawn from the scenario pool. The multiple scenario ap-
proach (MSA) is an extension of the MPA that has been presented before.
It has been proposed by Hentenryck and Bent (2009) as a general frame-
work for solving online stochastic combinatorial optimization problems with
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dynamic vehicle routing as one application area. Several scenarios are sam-
pled from probability distributions of possible future demands that include
both actual and forecasted requests. Bent and Van Hentenryck (2004b) ap-
plied the MSA to a VRP with stochastic customers. The executed plan has
been chosen using a consensus function which selects the plan that is most
similar to the others and thus represents some kind of least-commitment.
Subsequent work has investigated different approaches for choosing the dis-
tinguished plan (Bent and Van Hentenryck, 2004a) and the incorporation of
waiting and relocation (Bent and Van Hentenryck, 2007). A similar approach
to the MSA has been presented by Hvattum et al. (2006). Sampling has also
been incorporated in local search techniques such as TS (Attanasio et al.,
2007) and adaptive large neighborhood search (Azi et al., 2012).

Besides these two general frameworks, several strategies have been devel-
oped that focus on certain aspects such as waiting, relocation, or increasing
the flexibility to incorporate future requests.

Waiting strategies are suitable for vehicle routing problem that involve
time windows. The aim is to distribute the slack time over a route to keep
the vehicle waiting in promising locations where new requests are likely to
appear. The focus is on the scheduling aspect by determining the arrival
and departure time for each stop at a planned route. Mitrovic-Minic and La-
porte (2004) have proposed waiting strategies for PDPTW instances. They
proposed two general heuristics that are based on partitioning of the route.
Branke et al. (2005) have formulated the waiting drivers problem and ana-
lytically derived an optimal waiting strategy for the single vehicle case and
empirically tested various strategies for the multiple vehicle case. The first
approach to utilize probabilistic knowledge in waiting strategies was proposed
by Ichoua et al. (2006).

Relocation strategies aim at proactively positioning a vehicle in promis-
ing high-intensity regions. van Hemert and La Poutré (2004) derive fruitful
regions from probabilistic knowledge and perform relocations of vehicles to
anticipated requests. They have shown that the number of accepted requests
can be maximized on PDP benchmark instances. Also in the area of emer-
gency services relocation plays an important role as Pillac et al. (2012a)
note. Work on the Emergency Vehicle Dispatching problem includes Gen-
dreau et al. (2001) and Haghani and Yang (2007).

There are also some general strategies that aim at increasing the flexibility
in terms of incorporating future requests. Batching strategies use request
buffering to delay the assignment of non-urgent requests which has been
investigated by Pureza and Laporte (2008). That way, the reaction time
for urgent requests can be reduced. The double horizon approach proposed
by Mitrović-Minić et al. (2004) is based on a modification of the evaluation
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function. The objective for planning long-term requests is modified in such a
way, that large slack times are favored to account for possible future requests.
Diversion allows plan changes while the vehicle is moving to a location leading
to an increased flexibility. It has been investigated by Ichoua et al. (2000).

2.2.4 Parallelization

The need for a fast reaction time in combination with the availability of multi-
core processors and graphics processing units motivate the development of
parallel metaheuristics for dynamic vehicle routing problems. Additionally,
robustness is an important criterion and evolving multiple compatible plans
/ scenarios has shown to be beneficial leading to computationally intensive
approaches that require the solution of multiple scenarios concurrently.

There are several strategies for the parallelization depending on the prob-
lem structure and the hardware architecture. Ghiani et al. (2003) have iden-
tified that important factors that have to be taken into account in the con-
text of dynamic vehicle routing are the computational effort to generate a
feasible and near-optimal solution as the situation changes, the available
computational power, and the average inter-arrival time of dynamic infor-
mation. In terms of hardware architecture, parallel architectures are now
generally available by means of multi-core processors on desktop computers
while coarse-grained architectures result by connecting general purpose PCs
and workstations as mentioned by Ghiani et al. (2003).

Based on these considerations, a suitable parallelization strategy has to
be derived. Since most of the research on solution strategies for dynamic
vehicle routing focuses on heuristic approaches, the emphasis will be laid
on parallelization strategies for metaheuristics. Crainic and Toulouse (2003)
distinguished between three types in the case of metaheuristics:

• Type 1: This parallelization strategy is based on low-level parallism.
The emphasis is on speedup while the behavior of the algorithm is not
changed.

• Type 2: The search space is partitioned leading to a reduction in size.
Multiple explorations can be performed to cover multiple parts.

• Type 3: There are multiple concurrent explorations of the complete
search space.

A refined taxonomy that was initially presented by Crainic et al. (1997)
refines this categorization and also takes control and communication strate-
gies into account (cf. Crainic and Toulouse (2003)). A categorization is
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made according to three dimensions. The control cardinality indicates if the
search is steered by a single master process or by several processes. The
search control type is characterized according to information exchange and
synchronization. In terms of search differentiation, the individual processes
can start from the same or different solutions and can be based on the same
or different search strategies.

In the following, two parallel tabu search algorithms will be presented as
well as the parallel execution of the MSA/MPA framework in terms of the
different parallelization strategies. As noted by Pillac et al. (2012a), little
work has been carried out on parallel solution methods for dynamic vehicle
routing problems despite the importance of the topic.

A parallel tabu search for dynamic VRP has been presented by Gendreau
et al. (1999) which is based on the adaptive memory concept. First an
initial set of solutions is created using a construction heuristc. Then, several
independent tabu search threads improve a single solution and store the
resulting route in an adaptive memory. Within a tabu search process a
decomposition of the solution to a disjoint set of routes is performed which
are optimized in parallel. After a fixed number of iterations, the optimized
routes are stored in the adaptive memory. Then, each process constructs
a new initial solution from the adaptive memory and repeats the process.
Crainic and Toulouse (2003) classified this algorithm as a Type 3 cooperative
parallelization strategy that additionally applies decomposition within each
process.

A different parallel tabu search was proposed by Attanasio et al. (2004)
for the dynamic DARP. It can also be categorized as a Type 3 paralleliza-
tion, however a different communication and control strategy is used. Multi-
ple tabu search processes with different parametrizations are applied on the
same search space. Some are parameterized for intensification while others
are for diversification. Whenver a new global best solution is found, it is
communicated among all search processes which are restarted with that so-
lution. The algorithm has been tested with different number of threads and
the benefits of parallelization in terms of solution quality have been shown.

An obvious low-level (Type 1) parallelization strategy for the MPA /
MPS approach (Hentenryck and Bent, 2009) is to optimize the individual
plans / scenarios on a parallel computing infrastructure. This is especially
suited for parallelization, since they are optimized independently and the
optimization of many different plans / scneario leads to a computationally
expensive method.
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2.3 Technical Requirements and Practical Im-

plementation

The previous chapter focused on the algorithmic strategies for dynamic ve-
hicle routing. In the following, a brief overview will be provided how these
methods can be implemented for pratical applications. The necessary tech-
nical components will be outlined and decision support systems that have
been implemented will be surveyed.

2.3.1 Technical Components

There are several essential technologies to provide operative decision support
in dynamic vehicle routing environments which are linked together to pro-
vide real-time information processing. In that context, telematics systems
combine telecommunications and informatics and integrate data acquisition,
transmission, storage, and processing (cf. Richter (2005)).

A general architecture for real-time vehicle management systems is pro-
posed by Giaglis et al. (2004). It consists of a back-end system for the
dispatching center and a front-end system for the vehicles and drivers which
are linked together by a communication element. In the dispatching cen-
ter, route plans are created according to dynamically arriving information
and communicated to the vehicles and drivers which in turn report back
their state. This basic information flow can be implemented utilizing various
technologies combined in an integrated telematics solution.

Larsen et al. (2008) note that the essential technologies required for imple-
menting a dynamic vehicle routing system are positioning equipment, com-
munication equipment and geographical information systems.

The positioning of vehicles in combination with frequent transmission
of their location provides the dispatching center with valuable information
about the current vehicle status. Different technologies can be utilized such as
the Global Positioning System (GPS), triangulation by means of the mobile
phone network, or manual determination by the driver.

The communication equipment links the dispatching centers with the ve-
hicles. In that context, mobile communication systems can be used as well
as radio-based and satellite-based systems. Larsen et al. (2008) point out
that mobile communication systems are characterized by a high flexibility,
low installation costs, and high operational costs. Alternatively, radio-based
systems have higher setup costs but lower operational costs. Satellite-based
systems can be integrated with other inter-modal communication systems
(cf. Zaepfel and Vogl (2010)). In terms of communication with the driver,
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on-vehicle board computers as well as integration with navigation devices
can be used.

Geographic information systems (GIS) provide data about road-networks.
In combination with real-time traffic information, they can be used to dynam-
ically calculate shortest paths for the vehicles. Additionally, the visualization
of the current situation within decision support systems can be achieved by
means of digital maps to keep track of vehicle positions and status.

2.3.2 Decision Support Systems

A decision support system (DSS) in the area of transportation is “an inter-
active, computer-based system the supports the decision maker in solving a
complex, usually unstructured (or poorly structured) transportation decision
problem” (Zak, 2010). In the context of dynamic vehicle routing, the DSS
is embedded in a changing environment receiving both static and dynamic
data. The integration with other systems such as enterprise resource plan-
ning (ERP), GIS, communication, or traffic systems is crucial to receive data
about the current state and communicate decisions to the drivers as well as
customers (cf. Giaglis et al. (2004)).

Frequent monitoring of the current state such as newly arriving orders,
vehicle positions, or traffic information is required as well as the incorporation
of real-time routing and scheduling algorithms and the communication with
drivers and customers. From these requirements, Pillac et al. (2012b) derive
practical requirements for DSS. It should be event-driven to periodically
update the state, parallelized to account for a short reaction time, and flexible
due to the large number of variants.

Pillac et al. (2012b) surveyed several DSS for dynamic vehicle routing.
Especially city logistics is a frequent application area. Attanasio et al. (2007)
as well as Fleischmann et al. (2004) considered DSS for local area courier
services. Barceló et al. (2007) and Zeimpekis et al. (2007) considered the
distribution of goods in urban areas. Bieding et al. (2009) presented a DSS for
the delivery of newspapers while Li et al. (2007) considered waste collection.

Summarizing, Pillac et al. (2012b) note that there is a growing body of
research on dynamic vehicle routing which led to innovative DSS, however
also pointing out that maturity has not been reached and important research
challenges remain. Also, there is a gap between available optimization tech-
niques and those incorporated in actual DSS available on the market calling
for flexible optimization approaches.
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2.4 Research Directions

Research on dynamic vehicle routing problems has reached a certain matu-
rity level and has been implemented in larger and medium size business as
Larsen et al. (2008) note. In a recent survey Pillac et al. (2012a) point out,
that in the last decade there has been a growing interest on the underlying
models of dynamic routing environments and the research has focused on de-
veloping methodologies that address the inherent dynamism and uncertainty.
However, important research questions remain open which are summarized
in the following from surveys of Pillac et al. (2012a), Larsen et al. (2008),
Jaillet and Wagner (2008), and Ichoua et al. (2007).

In general, there is a lack of a taxonomy of dynamic VRP variants and
there are no reference benchmarks that are widely used as both Pillac et al.
(2012a) and Ichoua et al. (2007) observed. A taxonomy of different vari-
ants, as several exist for static VRP, would stimulate the development of
specialized methodologies. A general classification based on the objective
and degree of dynamism has been proposed by Larsen et al. (2002) but a
detailed taxonomy still has to be derived. From a theoretic perspective Jail-
let and Wagner (2008) highlight the need for measures for the evaluation
of algorithms that allow rejecting requests, the investigation of the value of
varying degrees of information as well as the combination of online routing
with game theory.

In terms of algorithmic approaches, Pillac et al. (2012a) as well as Ichoua
et al. (2007) have identified that the literature on parallel algorithms is still
scarce pointing out the relevancy of that topic. The need for parallel methods
is triggered by the availability of parallel architectures in combination with
the need of fast reaction time and robust algorithms.

The anticipation of future events has been identified as an important
research direction but is still not fully investigated. Although several surveys
such as Ghiani et al. (2003) and Ichoua et al. (2007) have already pointed out
the significance of advanced knowledge, Pillac et al. (2012a) note that most
approaches still do not incorporate stochastic information. In that context,
Ichoua et al. (2007) have identified that methodology has to be developed
to analyze data and filter meaningful patterns combined with decentralized
data processing. Larsen et al. (2008) as well as Ichoua et al. (2007) note
that robustness concerning events such as vehicle breakdowns that are less
predictable is still an open research question.

In terms of modeling, in many application areas there is a need for rich
models that capture the specific characteristics of the problem environment.
Larsen et al. (2008) state that the integration of industry practices such as
the use of bikes in congested areas is an important modeling aspect. Pillac
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et al. (2012a) highlights the need for models that go beyond focusing on
efficient routing. An example they mentioned was the definition of flexible
time windows.

Summarizing, research has mainly focused on specialized methods that
are adapted to a problem environment whose characteristics do not fun-
damentally change over time. The goal of this thesis is to overcome this
limitation. The basis for the considerations is a generic modeling approach
based on simulation optimization that allows the creation of rich models tak-
ing into account parallelization and the anticipation of future events. Two
main research directions are followed in this thesis to create novel adaptive
heuristic approaches for dynamic vehicle routing investigating algorithmic
and practical aspects.

As already pointed out in several surveys such as Larsen et al. (2008) or
Ichoua et al. (2007), there is a need for specialized solution methods that
are tailored to consider the specific characteristics of the problem environ-
ment. In this context, the focus is on specialized policies that are generated
automatically based on simulation models. The aim is to create a solution
methodology that can be adapted constantly to the problem environment.

Ghiani et al. (2003) as well as Larsen et al. (2008) have highlighted that
hybrid variants should be investigated. Ghiani et al. (2003) mentioned en-
vironments with changing degree of dynamism while Larsen et al. (2008)
presented overnight courier mail services as a suitable application area. As a
response to this research question, a new hybrid approach is presented that
is based on the adaptive selection of an appropriate solution methodology
as the problem environment is changing. The selection is made utilizing a
portfolio of several specialized algorithms.

Ultimately, combining the automatic generation and adaption of special-
ized policies based on simulation models and a situational selection of a
suitable solution method forms the methodological basis for decision support
systems in the area of dynamic vehicle routing that are adaptive in terms of
changing problem environment characteristics.
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Chapter 3

Simulation-Based Optimization
of Production and Logistic
Scenarios

In this chapter, a generic simulation and optimization environment for con-
sidering archetypical as well as practical variants of dynamic vehicle routing
problems is motivated and introduced based on a generic modeling frame-
work. It is the basis for the consideration of algorithmic as well as practical
aspects and the methodological developments within this thesis. To illus-
trate its applicability for practical applications, three concrete scenarios in
the area of production and logistics are presented.

The remainder of this chapter is structured as following. In Section 3.1
the simulation and optimization environment is presented. Based on that
environment, practical case studies are presented in the fields of steel pro-
duction (Section 3.2), the production of firefighting vehicles (Section 3.3),
and the distribution of groceries (Section 3.4).

3.1 Simulation Optimization Environment

For considering dynamic vehicle routing problems that include complex side
constraints, applying discrete event simulation coupled with metaheuristic
optimization algorithms is a commonly used approach (cf. Ghiani et al.
(2003)). Practical problem formulations typically involve dynamic interac-
tions as well as stochastic influence factors that are too complex to be treated
analytically. Simulation optimization is a viable alternative to be applied for
large-scale stochastic and dynamic systems (Fu et al., 2005).

In the context of dynamic vehicle routing, a simulator provides dynamic

41



updates in the form of events such as appearance of new orders or vehicle
movements. It is coupled with an optimization algorithm that reacts to the
changes and returns decisions that are executed by simulated vehicles. This
corresponds to a control (dynamic) optimization approach where the opti-
mization is an integrative part of the simulation environment as opposed to
a parameter (static) optimization where certain parameters of the simulation
are optimized (cf. Gosavi (2003)).

A simulation optimization approach is especially useful for developing
and testing algorithms since it would be difficult to evaluate the algorithm
performance in a real system on a large number of cases (cf. Fleischmann
et al. (2004)). Additionally, a simulation environment can be used for a
sensitivity analysis to provide decision support for tactical or strategical de-
cisions by considering different (possibly fictional) scenarios and evaluating
their optimization potential.

A generic and extensible modeling infrastructure is an important basis
for the developments presented in this thesis. In terms of problem model-
ing, several different problem variants are investigated. Pillac et al. (2012b)
motivates the importance of flexibility in that context due to the different
application areas of dynamic vehicle routing. In terms of the proposed algo-
rithmic strategies, it is required to evaluate and combine different methods
within a single modeling infrastructure and apply them to different problem
variants.

Few generic approaches have been investigated and research has mainly
focused on specialized decision support systems tailored to a particular ap-
plication areas such as city logistics (Barceló et al., 2007). One of the few
approaches to create a generic simulation and optimization framework for
dynamic vehicle routing was presented by Pillac et al. (2012b). While that
framework is generic in terms of application area it is not in terms of method-
ology since it focuses on the multiple scenario solution approach.

In the context of this thesis, a framework for the simulation and optimiza-
tion environment is required that is both generic in terms of problem variant
as well as solution methodology. It should be easily extensible by means of
modules to support additional problem variants and algorithmic strategies.

Considering these requirements, a modeling framework for the simula-
tion and optimization of dynamic vehicle routing problems is proposed. The
framework is integrated in the optimization environment HeuristicLab (Wag-
ner et al., 2014) which is a suitable basis for the implementation since it is
flexible and extensible by means of plugins and provides different algorithms
and models for vehicle routing.

HeuristicLab has already been coupled with simulation environments in
various simulation optimization approaches. Beham et al. (2008) as well as
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Beham et al. (2012) outlined the coupling of HeuristicLab with simulation
environments based on generic interfaces and Beham et al. (2009a) studied
the application and behavior of evolutionary algorithms. Practical case stud-
ies include solving buffer allocation (Can et al., 2008), facility layout (Beham
et al., 2009c), scheduling (Pitzer et al., 2011), and transportation (Vonolfen
et al., 2013a) problems.

The integration in HeuristicLab allows a flexible interfacing between the
simulation and optimization components. For instance, algorithms available
in HeuristicLab can be integrated in simulations to dynamically make deci-
sions (control optimization) while optimization algorithms can be applied to
parametrize simulations (parameter optimization).

3.1.1 Generic Simulation Optimization Core

The basis of the modeling approach is a generic core from which specialized
models for different problem variants are derived. Two concrete specializa-
tions for dynamic pickup and delivery problems as well as inventory routing
problems are presented which are the basis for the further considerations in
this thesis. The core consists of a modeling framework for deriving specialized
simulation and optimization environments. It defines basic interactions and
interrelations between abstract elements that are concretized for particular
application areas.

The modeling approach has evolved over time and preliminary results
have been published previously. In Vonolfen et al. (2010), a generic sys-
tem architecture was presented coupling an external simulation environment
with HeuristicLab. Later, the simulation environment has been integrated in
HeuristicLab directly to allow a more flexible interfacing. The decoupling of
simulation and optimization by means of an event mechanism with a special
emphasis on the incorporation of static algorithms was presented by Vonolfen
et al. (2012a). In the following, a generic modeling approach is derived based
on these previous developments.

Simulation Optimization

Event Queue

Decision Queue
Problem Instance

Events Events

Decisions Decisions

Problem 

Data

Figure 3.1: Basic architecture and information flow of the simulation opti-
mization approach

The basic architecture and information flow is depicted in Figure 3.1.
The simulation and optimization component exchange information by means
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of events that represent changes in the simulation model and decisions that
are derived from the current state. The simulation model has access to
problem data such as predefined events or probability distributions in the
form of a predefined problem instance to be able to reproduce a particular
simulation run and test various optimization approaches. The simulation and
optimization model are decoupled by an event queue and a decision queue.

The simulation progresses in discrete time steps. A time step can repre-
sent an arbitrary time span such as a second or a minute allowing to control
the simulation speed in relation to the real-world. At each step, external
events are triggered as well as events resulting from executed decisions. Ex-
ternal events such as appearance of new orders or time-dependent travel times
are retrieved from an external problem instance. The decisions are retrieved
from the optimization component and trigger resulting events when they are
executed such as vehicles moving or orders being served.

The simulation and optimization component are decoupled by a clearly
defined communication protocol to ease the integration of the optimization
approach in a real decision-support system. The decoupling by means of
queues allows both synchronous and asynchronous communication to be re-
alized. While real decision support systems are intrinsically asynchronous, in
testing environments often synchronous communication between the simula-
tion and optimization component is used. This eases implementation and is a
feasible assumption in cases where reaction time is not of crucial importance
or the computation time of the optimization algorithm is set to a fixed time
slice.

The simulation and optimization core is designed in a flexible way to
allow both synchronous and asynchronous communication. This is achieved
by creating separate execution threads for the simulation and optimization
component. In the case of synchronous communication, the simulation waits
for processing the next time step until the optimization algorithm has finished
calculations for the current step. In contrast, the simulation time progresses
without considering the state of the optimization component while filling the
event queue when asynchronous communication is used.

The basic modeling concept revolves around the two communication el-
ements. In the simulation, events are triggered and decisions are executed
while the optimization reacts to events and provides decisions for the current
situation. This scheme is provided as a basic template by means of abstract
elements that are specialized for particular application areas. In Figure 3.2,
the basic template is illustrated and the abstract elements are depicted in
italic style while the concrete elements are in bold.

For each application area, specialized events such as the occurrence of
a new request or a vehicle movement as well as specialized decisions such
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Figure 3.2: Template of the generic simulation and optimization core

as serving a customer or relocating a vehicle to a certain location are mod-
eled. The proposed template revolves around these two basic communication
elements.

The simulation component consists of multiple ExternalEventGenerator
as well as DecisionInterpreter elements. External events are generated by
ExternalEventGenerator elements that may access problem data such as pre-
defined events or probability distributions. DecisionInterpreter elements ex-
ecute decisions within the simulation by triggering resulting events such as
vehicle movements or served orders.

In the optimization component, changes in the forms of events are han-
dled by EventProcessor elements. For each specialized event, an associated
processor must exist. The event processors update the WorldState which
captures the current state of all relevant DomainObject elements such as ve-
hicles or orders. A DecisionAlgorithm accesses the current state and makes
decisions that are in turn executed by the simulation.

Due to the large variety of different solution methods for dynamic vehicle
routing problems, a special emphasis is on providing a generic template for
decision algorithms which is depicted in Figure 3.3.

Both event-based dispatching policies as well as static algorithms can be
incorporated in the framework. Dispatching policies can access the world
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Figure 3.3: Template for decision algorithms in the optimization component

state directly and make decisions accordingly. For the application of static
routing algorithms (VRPAlgorithm), the world state is transformed in a static
VRP instance (VRPInstance) by a wrapper element (Converter).

The static instance can be solved by one of the various routing algo-
rithms available in HeuristicLab. The underlying flexible operatior model of
HeuristicLab (cf. Wagner et al. (2014)) allows a re-use of algorithmic build-
ing blocks for different VRP variants by connection problem properties with
operator capabilities. Details can be found in Vonolfen et al. (2012a). A
special emphasis on evaluating the integration of different static algorithms
using HeuristicLab was laid in the work of Vonolfen et al. (2010) as well as
Vonolfen et al. (2012a).

Summarizing, a flexible core framework is provided within HeuristicLab
for modeling different VRP variants. Static routing algorithms available
in HeuristicLab can be incorporated by transforming the world state into
a static problem instances. Other solution strategies such as dispatching
policies can be integrated directly.

3.1.2 Specializations

In order to create a simulation and optimization environment to investigate
certain dynamic VRP variants, the presented abstract template is special-
ized. This is achieved by deriving concrete realizations from the abstract
elements. In particular, the following elements are defined that are specific
to the application area:

• Events: Changes in the world state are triggered by events. In the
simulation model, corresponding event generators are implemented in
in the simulation and event processors in the optimization component.

• Domain objects: The domain objects represent the current world state
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held by the optimization component that is updated as new events are
observed.

• Decisions: Actions taken during the planning process are represented
by decisions. In the optimization component, specialized decision algo-
rithms are implemented while in the simulation they are executed by
corresponding decision interpreters.

• Decision Algorithm: Specialized solution methods can be implemented
for each application area. In the case of the adaption of static algo-
rithms, a converter is defined that transforms the current world state
into a static VRP instance. Also specialized methods such as dispatch-
ing policies can be realized, that access the world state directly.

In the following, two concrete specializations of the simulation optimiza-
tion environment will be presented. In particular, pickup and delivery prob-
lems as well as inventory routing problems will be considered. These two
problem variants are investigated both from the algorithmic and the practi-
cal perspective based on the presented simulation optimization environment.

Pickup and delivery problems

Pickup and delivery problems (PDP) involve transport requests between ge-
ographic locations that are executed by a fleet of vehicles. Consequently,
requests and vehicles are the two domain objects in this model. The events
related to requests are the appearance of new requests and state changes of
requests such as cancellations or service completions. In terms of vehicles,
considered events are changes in their state such as movements, services, or
breakdowns. Decisions in PDP involve planning the sequence the vehicles
should service the requests or relocating them to / waiting at strategically
good positions. The simulation optimization environment for PDP modeling
these interactions is illustrated in Figure 3.4.

In terms of the decision algorithm, there are several solution strategies
that can be considered. On the one hand, specialized dispatching policies
can be derived and on the other hand static routing algorithms for PDP
can be adapted. The latter requires a special converter that maps the world
state to a multi-depot PDP instance. Each vehicle is modeled as a separate
depot whose location is changed as the vehicle is moving. That way, standard
algorithms for static PDP variants can be used. The static algorithm works
with operators designed for PDP.

The simulation optimization environment for PDP variants will be used
in several sections of the thesis. In Section 3.2, a PDP model for the op-
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Figure 3.4: Specialized simulation optimization environment for pickup and
delivery problems

timization of transport activities in the context of steel production will be
considered. The standard PDP model is enrichted with specific constraints
of that domain. In a similar manner, transport activities are optimized in the
context of the production of firefighting vehicles in Section 3.3. Especially
the integration with warehousing is investigated. Standard variants are con-
sidered for algorithm development. In Section 4.3 dispatching policies are
generated for dial-a-ride benchmark instances, while in Section 4.4 waiting
strategies are generated for PDP benchmark instances with time windows.

Inventory routing problems

Inventory routing problems combine inventory management with routing.
The specialized simulation optimization environment is illustrated in Figure
3.5. The central domain objects are customers having a stock of goods. For
each good a consumption rate, the current stock situation, and a storage
capacity is given. The simulation uses a certain degree of abstraction not
simulating the exact operation of the vehicles but using a whole planning
period, which is usually a whole day of operation, as a time step.

In each planning period it is decided what goods to replenish and the
route that determines the sequence in which the vehicles visit the customer.
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The considered events are stock updates triggered by consumption of goods
as well as replenishments. Since it is assumed that the exact consumption
rate is unknown in advance the problem is considered dynamic.
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Figure 3.5: Specialized simulation optimization environment for inventory
routing problems

In terms of decision algorithm, a two-stage approach is applied. In the
first stage, a dispatching policy is applied to decide what goods to replenish
and in the second stage the routing problem is solved. In this example, a
CVRP model is used to represent the routing problem of a single day created
by the replenishment decisions.

Consequently, after the planning phase concerning the replenished goods
has been completed, a CVRP instance is derived which can be solved by
a standard CVRP algorithm to derive the visiting sequence. Also other
algorithmic strategies can be incorporated in that algorithmic framework.
The two-stage approach has the obvious advantage that standard routing
algorithms can be utilized.

The simulation optimization model for inventory routing problems will
be used for considering benchmark instances derived from real-world data
that involve stochastic consumption rates which are revealed after each day
of operation. In particular, the distribution of goods in retailing will be
considered. In Section 3.4 the modeling aspects of this practical variant will
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be examined while in Section 4.2 the focus is on the algorithmic aspects in
terms of simulation-based generation of replenishment policies.

In the following, three practical case-studies will be presented that are
based on the simulation optimization environment and have been imple-
mented in HeuristicLab.

3.2 Optimization of Transport Activities in

Steel Production

In the steel production process, material handling in general and scheduling
transport activities in particular are challenging tasks due to interdepen-
dencies with upstream and downstream processes and specific handling con-
straints. There are several operational constraints and dynamic interactions
that would be difficult to represent by a purely static model.

The aim of the presented work is to algorithmically schedule and route
transport activities within cold charge steel production using a rich prob-
lem formulation. A case study using data from an Austrian steel factory is
presented that is based on a simulation model coupled with an optimization
algorithm. The resulting schedules are compared with the original solutions
created by human experts to evaluate optimization potentials and bottle-
necks. Using a realistic model, the drawn conclusions can be transferred
back into practice to improve the material handling process of steel slabs.

This section is based on a case-study dealing with a static problem for-
mulation previously published by Vonolfen et al. (2013b). Paraphrased parts
include the simulation model, optimization algorithm, and results of opti-
mizing the static model. The main contribution within the scope of this
thesis is the consideration of a dynamic problem variant and an extended
interpretation and analysis of the optimization potentials.

3.2.1 Context and Motivation

The focus of this work is the optimization of scheduling and routing transport
activities within the cold charge process to identify optimization potentials
and bottlenecks. The case study is based on the scenario and data from an
Austrian steel plant. A detailed simulation model is presented to capture
important dynamic characteristics of the process. The simulation model is
coupled with a routing algorithm to derive an optimized transport schedule.
The optimized schedules are analyzed to draw conclusions about bottlenecks
and optimization potentials in the material handling process of steel slabs in
cold charge.
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The process of steel production is generally complex, multistage, geo-
graphically distributed and energy as well as capital intensive. As a result,
the involved material handling activities have to be managed as efficiently as
possible. Starting with raw materials such as iron ore and coal, the melted
steel produced in the furnace is transformed into slabs at the continuous
casting machine.

An important activity is the transport and storage of these slabs which
are intermediates in steel production and are later transformed by the rolling
mill into products such as plates or coils. The material handling is an energy-
intensive activity since slabs weigh approximately 25 tons and are around five
to twelve meters long.

A general distinction can be made between the cold charge and hot charge
process. In the hot charge rolling process, slabs are transported from con-
tinuous casting to the rolling mill without any additional storage. Since it is
very energy consuming to reheat cooled down slabs, the aim is to preserve as
much energy as possible and keeping the slabs at a high temperature. As a
result, casting and rolling are strongly coupled and synchronized in the hot
charge.

On the contrary, casting and rolling are decoupled by an intermediate
storage in the cold charge process. The slabs are stored in a slab-yard after
casting and picked and transported to the rolling mill afterward. An obvious
disadvantage of the cold charge is, that the slabs cool down at the storage and
have to be re-heated afterward. However, due to technical limitations, mod-
ern steel factory have a hot charge ratio of about 60% making it important
to manage the overall material handling process as efficiently as possible.

There are several studies dealing with scheduling of the main production
activities, which are steel making, continuous casting, and rolling as surveyed
by Tang et al. (2001a). A main research challenge is the integration and co-
ordination of the different activities. Relatively few studies have investigated
material handling activities, which are the storage and transportation of steel
slabs.

In terms of storage, both the storage assignment and efficient retrieval of
slabs have been investigated. The assignment of storage spaces for slabs in
the cold charge process has been investigated by Kofler et al. (2012) using a
storage assignment model and local search. A general model for the stacking
of slabs has been proposed by König et al. (2007) and tests have been carried
out on real-world instances. The slab stack shuffling problem, which has been
defined by Tang et al. (2001b), deals with selecting steel slabs for creating a
rolling schedule in such a way that the number of shuffles required to retrieve
them is minimized. Dynamic programming (Tang and Ren, 2010) as well as
genetic algorithms (Tang et al., 2002) have been applied.
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The transportation of slabs using cranes and the generation of schedules
using a two-stage heuristic approach was considered by Dohn and Clausen
(2010). The results have been verified using simulation. In a larger context,
Zäpfel and Wasner (2006) studied the storage and transport of steel coils.
Related problems occur especially in the area of container terminals, since
there the handling of bulky items is also an important aspect. The routing
of straddle carriers was investigated by Kim and Kim (1999), modeled as a
carrier routing problem and solved using beam search. A dynamic routing
approach for yard trailers was investigated by Nishimura et al. (2005) where
they could achieve container handling cost savings.

In this work, the focus is on routing and scheduling the transport activities
in the cold charge process. The typical life-cycle of a slab in cold charge is
illustrated in Figure 3.6. After the slab is created at the continuous caster, it
is stored in a slab yard. Some slabs have to be post-processed at aggregates
such as scarfing or cutting for quality assurance reasons. In the case of the
cold charge process, casting and rolling are decoupled via the slab yard. Some
slabs are stored there for a long period of time before they are scheduled for
rolling.

Continous Caster Rolling MillSlab Yard

Processing 
Aggregates

Storage Rolling

Post-processing

R
ollin

g

Figure 3.6: Typical life-cycle of a slab in the cold charge steel production
process (cf. Vonolfen et al. (2013b))

Straddle carriers transport the slabs between the continuous caster, the
slab yard, the processing aggregates and the rolling mill. They also maneuver
in the slab yards and store and pick the slabs there. They can carry up to
105 tons which are usually around 4 slabs. At the continuous caster, the
processing aggregates, and the rolling mill special handover zones exist where
the slabs can be picked up by the straddle carriers.

The outside slab yard is organized in several fields which contain several
rows of slab stacks. The storage position is determined by an external storage
assignment procedure which has been investigated by Kofler et al. (2012).
Some slabs are stored for a duration of several weeks until they are further
processed. When a slab has to be retrieved in the slab yard that is stored
beneath other slabs, shuffling operations have to be performed.
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It is a challenging task to sequence the transport activities in an efficient
way which is mainly carried out by a human expert. Many operational con-
straints have to be considered since the transport links all related activities
together. To evaluate the optimization potential concerning the material
handling of the cold charge slabs a simulation optimization approach is fol-
lowed. The goal is to minimize the total lead time and thus increasing the
throughput by efficient routing and scheduling.

The operational constraints make it necessary to consider dynamic effects
and inter-dependencies between the individual straddle carriers and also be-
tween transport and other activities. As a result, the system is modeled
using discrete-event simulation to achieve as accurate results as possible.
Simulation-based optimization is applied to sequence the transport activities
in such a way that the throughput is increased.

3.2.2 Simulation Model

A detailed simulation model is created to capture all important charac-
teristics of the process that would be hard to model using a closed form.
Consequently, a model of the system is needed that captures the important
characteristics of the operations to achieve practically comparable and im-
plementable results. The transport activities basically involve pickup and
delivery operations. As a result, the simulation model is based on the pickup
and delivery model presented in Section 3.1.2 and extended with the specific
constraints.

There are three different kinds of transport activities. After being cast
slabs have to be transported from the continuous caster to the slab yard
for storage. Directly after casting or during storage, some slabs have to be
transported to processing aggregates for quality assurance reasons. Finally,
slabs are transported from the slab yard to the rolling mill for being processed
in a rolling schedule. The rolling schedule is known at the beginning of a
shift while the other transport requests arrive dynamically.

The simulation is carried out in discrete time steps each representing one
minute in real time. Three different types of events are carried out where
the simulation state is updated:

• The straddle carriers perform actions which are picking up, transport-
ing and delivering slabs according to a given schedule. The original
schedule was created by a human expert and can be compared with
schedules created by an optimization algorithm.

• The handover places are updated by simulated crane movements which
are performed exactly as in the original shift.
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• The rolling mill state is updated according to the rolling schedule which
is known beforehand.

The transport requests have to be routed and scheduled according to
several operational constraints which are be categorized into shuffling, rolling,
temporal and capacity constraints.

The shuffling constraints concern pickup and delivery operations origi-
nating from slab stacks at handover places or at the slab yard:

S1 No shuffling can be performed at handover places. The slabs have to be
transported in the exact sequence they are stacked. In the slab yard
shuffling is possible by relocating slabs to other stacks.

S2 Only one straddle carrier can operate on an individual handover place or
in a lane at a slab yard at the same time due to security reasons.

A stock model consisting of all handover places and the outside slab yard
is the basis for checking the shuffling constraints. It holds the current storage
position of each slab and is updated whenever a slab is moved by a straddle
carrier or cranes. The crane movements are considered to be fixed and lie
outside the system scope while the straddle carrier movements are subject
to optimization. Only slabs located on top of stacks can be retrieved on
handover places while in the slab yard shuffling operations can be performed
(S1). For security reasons, only a single straddle carrier can operate at once
in a given lane in the slab yard or at a given handover place which is ensured
by locking (S2).

The correct transport of slabs to the rolling mill is ensured by rolling
constraints considering the rolling mill schedule:

R1 A certain security buffer of slabs cannot be under-run at the rolling
mill. A certain number of slabs that are due to be rolled next have to
be available at the rolling mill at any time resulting in implicit time
windows where slabs have to arrive at the rolling mill.

R2 The sequence the slabs arrive at the rolling mill has to follow the sched-
uled rolling sequence to some degree. Cranes at the rolling mill can still
re-shuffle incorrectly delivered slabs, however these shuffling operations
are limited.

To check to buffer (R1) and shuffling constraints (R2) at the rolling mill,
its rolling schedule is simulated by removing the slabs from the buffer the
time they have been processed and considering the slabs that have been
delivered.

The availability and due times of slabs and straddle carriers is determined
by temporal constraints:
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T1 There are scheduled maintenance tasks and driver breaks during shifts
which have to be considered.

T2 For slabs that have to be processed, time windows exist at which the
have to arrive at the processing facility the latest. For slabs at handover
places, the time they are on top of a stack is implicitly determined by
the predefined crane movements.

Straddle carriers can carry multiple slabs. However there are capacity
constraints derived from their physical properties:

C1 Each straddle carrier can carry up to 105 tons.

C2 The difference in the dimension and size of slabs that are transported
together cannot exceed certain limits.

The temporal (T1, T2) and capacity (C1, C2) constraints are checked for
each action performed in the schedule of a straddle carrier.

All constraint violations are recorded during a simulation run as well as
the travel and service effort of each straddle carrier. These results of the
simulation run are used to compare transport routes and schedules created
by human experts and optimization approaches.

3.2.3 Optimization Approach

The optimization algorithm aims routing and scheduling the transport ac-
tivities of the straddle carriers in such a way, that the throughput of the
transport system is increased while considering all operational constraints.
During a simulation run, different key values are collected which are com-
bined to a single quality value to evaluate a given plan. The evaluation
function is given in Equation 3.1 (cf. Vonolfen et al. (2013b)).

min(travelT ime+ serviceT ime

+ α ∗ shufflingV iolations

+ β ∗ rollingV iolations

+ γ ∗ temporalV iolations

+ δ ∗ capacityV iolations

(3.1)

The main objective is the minimization of the travelTime and serviceTime
of the straddle carriers and thus increasing the throughput. While the travel
effort is the time the vehicles are moving between different locations, the
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service effort is the time required for picking up and delivering slabs. In
the case of handover places no shuffling is possible so the service effort of
retrieving and delivering slabs consists only of the time required for a single
lift. When retrieving slabs from the outside yard, shuffling operations are
required if the slabs are located beneath other slabs in a stack. Furthermore,
the creation of temporary stacks is required when slabs are retrieved from
multiple rows of a single yard or from multiple yards. In that case, the slabs
picked up at a given row are put on a temporary stack which is moved to
each row where slabs are picked up.

The operational constraints are considered by adding a penalty to the
quality of a solution if any constraints are violated. The penalty weights
α, β, γ and δ are adapted during the search process. If the current solution
is feasible, the penalty is decreased while it is increased if the constraint is
violated. This methodology is detailed by Cordeau et al. (2001) who propose
an exponential adaption of the penalty weights.

For optimization of the transport schedule, a tabu search heuristic is
applied that works on an extended pickup and delivery problem formulation.
As a starting solution the schedule that has been created by the domain
expert is used. The algorithm then iteratively improves this schedule. The
unified tabu search algorithm was proposed by Cordeau et al. (2001) and
adapted to the pickup and delivery problem by Cordeau and Laporte (2003).
It is based on iteratively exploring the neighborhood while preventing cycling
by using a tabu list.

In the context of this case study, the neighborhood structure is based
on the removal of an activity from the schedule of a straddle carrier. After
removal, the activity is inserted in the schedule of another carrier at the best
position. Moving back the activity to the original carrier is made tabu for t
iterations. During an iteration, all possible insertion operations that are not
tabu are evaluated and the best is applied.

Evaluating different insertion positions is a runtime intensive operation if
a full simulation has to be performed each time. As a result, a more efficient
procedure is needed for neighborhood exploration. A compromise has to be
found between runtime and accuracy. For that purpose, a mixed evaluation is
proposed that combines a static with simulation evaluation. For evaluating a
given insertion position, a static evaluation is applied that does not consider
all constraints but serves as a lower bound. Promising insertion positions are
evaluated with a full simulation run.

The static evaluation is a lower bound for the quality since it is a relaxed
formulation of the full simulation model. In the static evaluation, the detailed
stacking operations and the interactions between the carriers and cranes are
not considered. These include the exact service times, the locking of fields

56



and handover places and the crane movements. These aspects result from
dynamic behavior that is validated in the full simulation. A full simulation is
then only applied to the i insertion positions with the best evaluation where
the one with the best quality value after the full simulation is chosen.

To determine the number i of insertion positions that should be evaluated
by simulation during the neighborhood exploration, preliminary experiments
have been carried out on exported shifts. More details about the experimen-
tal setup can be found in Section 6.1.

Static Speedup Static Gap
(factor) (delta)

Shift A 18.34 33.40%
Shift B 10.65 11.49%
Shift C 13.25 19.13%
Shift D 13.36 14.94%
Shift E 13.45 14.99%
Shift F 13.55 14.86%
Shift G 13.25 15.35%
Shift H 31.81 17.97%
Shift I 14.05 14.86%
Average 14.17 17.44%

Table 3.1: Comparison of the static with the simulation evaluation (cf.
Vonolfen et al. (2013b))

A comparison between the simulation and static evaluation in terms of
accuracy and runtime is provided in Table 3.1. The runtime and accuracy of
the static and simulation evaluation has been performed on the initial sched-
ule created by the human expert to gain insight about the parametrization.
On average, the runtime of the simulation is about 14 times longer than
the runtime of the static evaluation. The loss of accuracy is about 17% on
average and varies from shift to shift.

Since there is a loss of accuracy in the static evaluation, a compromise
has to be found between the chosen sample size i and the required runtime.
For determining the value of parameter i preliminary experiments have been
carried out with different parameter settings which are summarized in Table
3.2. A single optimization run has been carried out on Shift A with a fixed
runtime of 20 hours.

The results show, that setting i = 10 provides the best tradeoff between
accuracy and evaluations that can be performed. It allows to compute about
67,000 simulations, about 1,000,000 static evaluations and executing 25 iter-
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Iterations Simulations Static Eval. Quality
(count) (count) (count) (delta)

1 Sample 35 9,380 2,186,433 +2.24%
10 Samples 25 67,000 1,130,067 (reference)
20 Samples 17 91,120 722,885 +1.30%

Table 3.2: Comparison of different sample sizes by performing an optimiza-
tion run on a shift (cf. Vonolfen et al. (2013b))

ations during the fixed runtime which achieves the best solution quality.
After the initial experiments and based on the parametrization proposed

by Cordeau et al. (2001), the parameters of the tabu search have been set.
The number of iterations n are set to 25 and for each insertion operation,
the i = 10 best positions are evaluated with a detailed simulation. The tabu
tenure t is set to 5 ∗ log10 ∗ |A|, where |A| is the number of requests.

Optimization runs are carried out both on static and dynamic problem
formations to analyze the influence of the degree of dynamism. In the static
problem variant, all information is known beforehand and at the beginning
of the shift a schedule is created. In the dynamic problem variant it is as-
sumed that the rolling schedule is known in advance while the other requests
arrive one hour before they have been carried out in the original schedule.
A re-optimization of the current schedule occurs each hour considering the
newly arrived requests. Apart from the dynamically arriving storage and pro-
cessing transport requests all other information is considered to be known
beforehand.

3.2.4 Conclusions

Based on the experimental results presented in Section 6.1 several conclusions
can be drawn about bottlenecks and optimization potentials in material han-
dling within the cold charge steel production process. The optimized schedule
is compared to the original schedule created by the human expert during the
shift.

In total, the optimized schedule increases the throughput of the transport
system by reducing the travel effort by 3.33% and the service effort by 6.01%
leading to a total saving of 4.48%.

In terms of travel effort, even though the total number of trips is increased
by 4.17% in the optimized schedule, the savings in terms of travel effort
results from reducing the time the vehicles travel empty by 10.68%. This
indicates, that the long term planning horizon of the algorithmic approach
leads to a better trip sequence compared to the original schedule.
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The main potential for reducing the service effort lies in the stacking and
shuffling operations performed in the slab yard. In the optimized schedule,
the shuffling effort is reduced by 5.44% which is achieved by scheduling the
transport activities in such a way that slabs that are on top of stacks are
transported before slabs that are at the bottom reducing the number of
shuffles required. However, it must be noted that for some shifts this effort
is not reduced due to the long period of time slabs are stored at the yard
which means that some shuffles cannot be avoided during a single shift. On
the other hand, the effort for creating temporary stacks when collecting slabs
from multiple stacks can be reduced significantly for all shifts. In total it is
reduced by 30.65% which mainly results from performing more trips to the
storage and as a result avoiding the creation of temporary stacks.

The shuffling and stacking activities performed in the slab yard represent
a large part of the total service effort. The algorithmic solution uses a quite
creative way of working around this problem. By performing more trips to the
storage area, stacking and shuffling operations are avoided. This reduction of
capacity utilization is compensated by minimizing the time traveled empty
by sequencing the individual trips more efficiently.

For a fair comparison between the original and the optimized it must be
noted that the optimized schedule is created a-posteriori while the original
schedule was created online during the shift by the human expert. When con-
sidering a scenario with dynamically arriving information, the trips are not
sequenced as efficiently by the algorithm as in the case when all information
is known in advance. The service effort can still be reduced by 3.59%, how-
ever the travel effort is not. In total, no statistically significant reduction in
total effort can be detected in the case of the dynamic problem formulation.

The effects of dynamically arriving information on the solution quality
should be still investigated in more detail in future work by exporting ad-
ditional shifts. For some shifts, even an increase in the total effort can be
observed in the optimized schedule compared to the original schedule. This
indicates, that the human expert had more information than was available
to the optimization algorithm. To mitigate this fact, an online stochastic
model should be investigated that includes a forecast about future events.

In general, the main bottleneck lies in the stacking and shuffling opera-
tions in the slab yard. To reduce this effort, an efficient storage assignment
is needed that considers the rolling schedule. A first effort to optimize the
storage assignment in the slab yard was done by Kofler et al. (2012). A main
challenge in this context is that storage and rolling are decoupled which could
be mitigated using a forecast model for the rolling schedule. In the long
term, an integrated model should be created that combines the optimization
of casting, transport, storage, and rolling considering the inter-dependencies.
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3.3 Integrated Warehousing and In-House

Transport

In manufacturing environments, material handling is a crucial activity that
accounts for up to 20% - 50% of the total costs as noted by Tompkins (2010).
Material handling typically consists of several sub-activities such as storing
and picking in the warehouse as well as in-house transport to the worksta-
tions. These activities are interconnected and their interrelations have to be
considered when optimizing the overall material handling process.

In this work, the in-house transport is modeled as a dynamic pickup and
delivery problem and integrated with warehouse picking and storing to an
overall model. The dynamic routing model is not considered individually but
linked to the down-stream warehouse activities to account for the dynamic
interactions between warehousing and in-house transport. By coupling the
dynamic routing model with warehousing optimization and simulation mod-
els, the interactions between these activities are investigated.

This section is based on a previously published study of Vonolfen et al.
(2012b) from which several parts are paraphrased. The main contribution in
the scope of this thesis is the creation of a simulation and optimization model
for the in-house transport and its coupling with a warehousing simulation
and a storage assignment optimization model. The warehousing simulation
model was investigated by Kofler et al. (2010) which was implemented in
the simulation software AnyLogic c©. The storage assignment optimization
approach was previously published by Kofler et al. (2011) as well as Kofler
et al. (2014).

3.3.1 Context and Motivation

Typical production processes incorporate several interrelated activities that
influence each other. This observation motivates the investigation of inte-
grated problem formulations that combine several models and algorithms
that deal with different aspects of the production process. In the context of
this thesis, especially the integration of dynamic vehicle routing with other
down- and upstream activities in production processes is relevant.

To illustrate the potential of a holistic approach, a study is carried out
that is based on data from a practical scenario at a production site of one of
the largest suppliers of firefighting vehicles and equipment in the world. In
the context of the overall material handling process, the focus is on the in-
vestigation of interconnections and interrelations between warehouse picking
and forklift routing.
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A schematic illustration of the considered production site is depicted in
Figure 3.7. The considered scenario includes a high-rack storage area which
is decoupled from the production line by means of an intermediate handover
zone. More than 10.000 parts are stored in the high-rack storage which are
commissioned to the handover zone by six workers and two forklifts. They are
then further transported to the workstations by four smaller forklifts which
are operated at the workstation area. Additionally, work-in process parts are
also transported between the workstations and back to the handover zone to
be stored in the warehouse.

High-Rack 

Storage Area

Handover Zone

Workstations

PickingIn-house 

Transport

Figure 3.7: Schematic illustration of the production site layout showing an
exemplary picking of materials from multiple storage spaces to the handover
zone and a subsequent transport to workstations. The required parts are
picked from the high-rack storage area (the storage spaces are illustrated as
rectangles) and commissioned to the handover zone. From there they are
transported to the workstations (illustrated as circles).

According to Kofler et al. (2010), the high-rack warehouse has been iden-
tified as a particular bottleneck in the material handling process and this
effect is amplified by an increasing growth of production volume. In addi-
tion to throughput considerations maximizing the number of parts that can
be commissioned during a day in the warehouse, it is also relevant to syn-
chronize the picking with the upstream in-house transport and production
processes. The inter-dependencies of warehousing with the other activities
do not allow an isolated optimization of storage assignment and picking and
requires a holistic approach (Vonolfen et al., 2012b).
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3.3.2 Integrated Simulation and Optimization

The aim of this work is to investigate interrelations between storage assign-
ment, picking and in-house transport. For that purpose, individual models
dealing with these different aspects of the system are integrated as illustrated
in Figure 3.8. An advantage of this integrative approach is, that previously
developed simulation and optimization models can be re-used an integrated.

Storage Optimization

Picking Simulation

Transport Simulation

Storage Assignment

Release Times 

(at handover place)

Dynamic PDP Optimization

RequestsRoutes

Figure 3.8: Information flow between the simulation and optimization models
for warehousing and in-house transport (cf. Vonolfen et al. (2012b))

The storage optimization model creates a storage assignment on the ba-
sis of historical order data. This storage assignment is provided to a picking
simulation model which is used to investigate the dynamic interactions be-
tween the pickers in the warehouse and to determine the exact time the
commissioned materials arrive at the handover zone. These release time are
provided to a transport simulation model which simulates the dynamic ar-
rivals of these items. The in-house transport of the dynamically arriving
items from the handover zone to the workstations is optimized using an on-
line routing algorithm.

The main system objective is to minimize the total makespan which is
the time until all items have been picked from the warehouse and delivered
to the workstations. It is not only required to optimize the storage assign-
ment, picking, and transport activities individually but to consider their
inter-dependencies to reach an overall increased throughput from the ware-
house until the items arrive at the production line. In the following, the
individual system components will be examined. The storage optimization
and picking simulation were investigated by Kofler et al. (2010) as well as
Kofler et al. (2011) while the transport simulation and optimization were the
main contribution in the context of this thesis.
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Storage Optimization

Storage location assignment problems (SLAP) focus on slotting which is the
assignment of storage spaces to products. When minimizing the effort of
picking individual products, the travel time is an important factor and ac-
counts for the largest part of the total effort.

Two measures for an evaluation of a storage assignment according to
picking effort are pick frequency (PF) and party affinity (PA) of products
were considered as proposed by Kofler et al. (2010). The evaluation is based
on historical picking order data and the current storage assignment.

On that basis, the total PF score considers the number of times a prod-
uct pi was retrieved (represented by the function orders(pi)) weighted by
the average distance to the origin where the parts are commissioned. The
distance function dist(s1, s2) is calculated according to the warehouse layout
for all storage locations. The average distance required to pick a product is
calculated by considering all locations s in the set L(pi) where pi is stored.
The formula can be stated as following (Kofler et al., 2010):

PF =
n∑

i=0

orders(pi) ·

∑
s∈L(pi)

dist(s, origin)

|L(pi)|

Assuming that multiple products are usually picked together, the PA
score considers the average distance between parts that were picked together.
The number of times two products pi and pj have been picked together is
represented by the affinity function based on the historical order data. The
affinity is weighted by the average distance of all storage locations sk where
pi and sl where pj is stored (Kofler et al., 2010):

PA =
n∑

i=0

n∑

j=0

affinity(pi, pj) ·

∑
sk∈L(pi)

∑
sl∈L(pj)

dist(sk, sl)

|L(pi)| · |L(pj)|

To evaluate the quality of a storage assignment based on historical picking
order data, the total PF and PA scores are combined to a total weighted
quality (Kofler et al., 2010):

quality = α ∗ PF + β ∗ PA

The value of α and β determines the strength the turnover and affinity
influence the storage assignment evaluation. This evaluation function has
been investigated by Kofler et al. (2011) and the storage optimization algo-
rithm is based on that. It is a simulated annealing (SA) algorithm where the
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neighborhood is defined as swapping the contents of two storage locations.
Appropriate parameter settings were determined as well as convergence and
runtime behavior.

Picking Simulation

After the storage assignment has been optimized, the release times of the
picked items are determined by a picking simulation model considering the
dynamic interactions between the pickers in the warehouse. The simulation
model was presented by Kofler et al. (2010) and was implemented in the
simulation software AnyLogic c©.

The model is based on the warehouse layout including the high rack
storage area organized into aisles and the paths leading to the handover zone.
In total, there is a pool of four human workers and two forklifts picking the
items. The two bottom floors of the high-rack are served by the human
workers while the forklifts serve all upper rows. The time required to pick
an item from the high-rack storage is based on real-world observations.

The considered dynamic interactions between the pickers concern the
blocking of aisles. Two forklifts cannot be in the same aisle at the same
time. Additionally, a forklift cannot move past a human worker in an aisle.
The blocking times influence the total picking times and thus the arrival time
at the handover zone.

A fixed set of picking orders is simulated and the products of the orders
are retrieved according to a certain picking schedule and commissioned at the
handover zone. Two different picking schedules are investigated in terms how
they influence the subsequent transport. In the clustered schedule, orders are
grouped by their target manufacturing area leading to potential benefits for
the subsequent in-house transport because pallets can be grouped by their
target area. In the balanced schedule, orders are shuffled randomly reducing
the chance for congestion in the aisles.

Transport Simulation and Optimization

After the items have been picked in the warehouse and commissioned at
the handover zone, they are transported to the workstations. The in-house
transport is modeled as a dynamic pickup and delivery problem.

There are two different types of transport requests. It is assumed that
the items to be delivered to the workstations arrive dynamically at the han-
dover zone after they have been commissioned. These arrival times have
been determined in the picking simulation. Additionally, there are backhaul
transports which are items that are delivered from the workstations back to
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the warehouse. These requests are assumed to be known in advance and
assumed to be distributed uniformly during the day.

The transport simulation optimization model is based on the generic
pickup and delivery (PDP) model presented in Section 3.1.2. A standard
PDP formulation is used with a distance matrix that was calculated based
on the factory layout. Time windows are not considered and fixed service
times are used. The transport requests are revealed dynamically according
to the item arrival times. The objective is to sequence the transport requests
in such a way, that the total travel time is reduced.

In terms of route optimization, an online genetic algorithm (GA) is ap-
plied. The applied GA uses mutation and crossover operators proposed by
Potvin and Bengio (1996); i.e. the one-level exchange mutator, two-level ex-
change mutator, route-based crossover and sequence-based crossover. They
are implemented using a route-based encoding which is examined and com-
pared with other encodings by Vonolfen et al. (2011b). The initial generation
is obtained by using a push forward insertion heuristic (Li and Lim, 2001).

An online optimization approach is applied which means that whenever
a new transport request arrives (i.e., an item has been commissioned in the
picking simulation and is ready for transport from the handover zone to the
workstation), the population is updated and the new request is inserted into
each individual.

In terms of algorithm parameters, a population size of 50 is used with
a tournament selection and a mutation probability of 5%. Whenever a new
request arrives it is inserted into each individual of the population using the
best insertion heuristic and 50 generations are performed to compute a new
route plan.

3.3.3 Conclusions

Based on the total lead time of the picking and in-house transport processes,
two main influence factors have been investigated. The results presented
in Section 6.2 indicate, that especially the picking schedule influences the
downstream in-house transport process as well as the efficiency of the storage-
assignment strategy in terms of congestion issues.

By considering only the warehousing process the results indicate, that
using a balanced picking schedule together with combined PF and PA slotting
would lead to the lowest average picking duration in the warehouse.

However the picture changes when also considering the down-stream in-
house transport process. The average picking durations significantly increase
in the warehouse when using a clustered compared to a balanced schedule.
However, the average transport durations significantly decrease and the sav-
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ings in transport lead to a better overall material process. This can be
explained by the fact that clustering the picking orders by target worksta-
tions offers a higher potential for consolidation in the in-house transport.
Especially in combination with PF/PA storage assignment, the likelihood
for congestion increases.

A significant reduction in total makespan can be observed for all but
the PF and PA strategies. When using solely turnover (PF) or affinity (PA)
strategies, congestion becomes a major issue which is mitigated by combining
the two factors to combined strategies or by using random slotting.

In general it can be concluded, that especially the picking schedule has
a potentially large influence on the subsequent in-house transport activ-
ity. When changing the picking schedule, an appropriate storage assignment
strategy has to be chosen in order to avoid congestion issues and consider
turnover as well as affinity of parts.

Two interesting future extensions of the integrated model can be identi-
fied. Firstly, a production scheduling model could be integrated determining
the time the items have to be delivered to the workstations. Currently, no
time windows for the in-house transport have been considered. Secondly,
the picking sequence could be optimized separately. So far only random and
clustered picking sequences have been tested. In general, the combination
and integration of several simulation and optimization models is a potentially
fruitful research direction since the results indicate that an independent op-
timization of individual processes might lead to globally sub-optimal results.

3.4 Vendor-managed Inventory for the Dis-

tribution of Groceries

Vendor-managed inventory combines inventory management and routing and
offers various degrees of freedom to the vendor which has access to the in-
ventory information and makes decisions about the replenishment of goods.
When considering large-scale stochastic and dynamic problem variants, effi-
cient algorithmic strategies are required to deal with the problem complexity.

A simulation-based evaluation and optimization approach for modeling
and optimizing stochastic and dynamic inventory routing problems with a
large number of customers and products is presented. The methodology
is validated with real-world scenarios generated from data provided by an
Austrian retailer who delivers fast moving consumer goods to supermarkets
from a central depot. Different scenarios are evaluated and a sensitivity
analysis on different exogenous and endogenous impact factors is performed.
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It is an example of applying simulation optimization as a scenario technique.
This section is based on a previously published study of Vonolfen et al.

(2013a) where the methodology and results were first presented and from
which several parts are paraphrased in the following. In the context of this
thesis, the main contributions are the development of the two-stage simula-
tion optimization approach as well as the generation of replenishment policies
which will be examined in Section 4.2.

3.4.1 Context and Motivation

Vendor-managed inventory (VMI) is a well-known concept in supply chain
optimization and has been applied successfully by various companies espe-
cially since the popularization by Wallmart in the 80ies (cf. Waller et al.
(1999)). The mathematical formulation as an optimization model captur-
ing this integration of inventory replenishment and routing is the inventory
routing problem (IRP) which was first formulated by Bell et al. (1983).

Despite the various successful applications of this concept in practice, it
remains an algorithmic challenge to solve high-dimensional inventory routing
problems. The IRP can be seen as a generalization of vehicle routing prob-
lems. In addition to making routing decisions and minimizing distribution
costs, the vendor also has to decide about replenishment while considering
storage costs as well as service quality. This integration of routing and inven-
tory replenishment leads to a high problem complexity and usually a longer
planning horizon is considered.

When modeling and optimizing real-world problem formulations, usu-
ally several specific side-constraints have to be considered which led to a
large number of different variants; a logistical overview is provided by Moin
and Salhi (2007) and a survey about models and algorithms is provided by
Bertazzi et al. (2007).

Especially the consideration of stochastic demand patterns is an active
research topic while it could be stated that it is an important aspect of
many real-world scenarios. The literature is still relatively scarce in terms
of models and algorithms for stochastic IRPs. It remains an open research
issue to consider large-scale instances with many customers and products.

Several heuristics are integrated in a methodological framework to model
and optimize large-scale stochastic IRPs with a focus on the application in
retailing. Specific to retailing is the fact, that a large number of fast moving
consumer goods have to be considered while the availability of each single
good influences the service quality and the product usage is uncertain. A sim-
ulation model is presented to account for the stochastic and dynamic aspects
regarding product usage and is coupled with the optimization approach.
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The methodology is applied to large-scale instances that are based on
real-world data provided by an Austrian retailer that delivers fast moving
consumer goods to supermarkets. The simulation optimization approach al-
lows the investigation of several scenarios to perform a sensitivity analysis of
endogenous and exogenous influence factors. A novel aspect in this context
is the fact that mixed scenarios are considered where only part of the cus-
tomers are transitioned to VMI while the remaining customers keep ordering
themselves.

3.4.2 Problem Formulation

The model used in this work is based on the real-world case study in the area
of retailing as an example of a high-dimensional IRP with stochastic product
usages (cf. Vonolfen et al. (2013a)). In the classification scheme of Bertazzi
et al. (2007), the model can be characterized as following:

• The inventory holding costs are not considered since the available stor-
age in the supermarkets is limited to the sales area

• The product consumption rates are stochastic and follow given distri-
butions which have been determined based on historical order data

• The product consumption takes place at discrete time steps t = 0, 1, ...
A time step in the simulation represents a day of operation. In each
step, the daily product consumption is sampled from the probability
distributions

• The product consumption varies over time. Concretely, weekly fluctu-
ations have been considered based on the historical data

A novel aspect is, that the problem formulation allows mixed models
that contain both VMI (N) as well as order-based (O) customers that are
served by a homogeneous fleet of vehicles (V ), each with a capacity Cv. The
products P are distributed from a central depot and for each product p ∈ P
a storage capacity Snp is given for each VMI customer n ∈ N .

For the VMI-customers (n ∈ N), the product consumption rates are
given separately for each weekday w ∈ [1, 7] and product p resulting in a
joint probability distribution Uw

np for the product consumption rates. The
consumption rates do not change over time leading to a fixed weekly pattern.
The vendor can measure the inventory level xt

np and decides the amount dtnp
to replenish for each product and VMI customer every day. The number of
out of stock situations s is the number of products over time where xt

np = 0.
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The order-based customers (o ∈ O) place a set of fixed orders F t which
contain the ordered quantities of the individual products dtop. These orders
cannot be influenced by the vendor and have to be served. The orders are
placed according to a classical threshold-based ordering strategy that con-
siders a certain safety-stock.

The sets of the fixed orders (dtop) as well as the VMI replenishment (dtnp)
are combined into vehicle routes Rt whose length Lr can be calculated using
a distance matrix based on the road network.

The objective function can be stated as following which aims at minimiz-
ing distribution costs while maintaining a certain service quality over a given
planning horizon:

min α ∗ |V |+ β ∗
∑

Lr + γ ∗ s

s.t. xt
np + dtnp ≤ Snp,∑

dtnp∈r

dtnp +
∑

dtop∈r

dtop ≤ Cv,

s < smax

(3.2)

It consists of a weighted sum of the fleet size |V |, the total driven distance
(
∑

Lr) and the out of stock situations s. The weights were set as α = 3000,
β = 2, and γ = 100 after discussion with the domain experts. Feasible
solutions fulfill the inventory capacity constraints regarding the storage at the
VMI customers Snp as well as the vehicle capacity constraints Cv regarding
the deliveries.The number of out of stock situations s cannot exceed a certain
predefined limit smax which determines the required service quality.

3.4.3 Simulation Optimization as Scenario Technique

In the context of this study, simulation optimization is applied for optimizing
operative decisions as well as to support tactical decision making by evalu-
ating several different scenarios. Therefore, the motivation to apply a sim-
ulation optimization approach to the stochastic inventory routing problem
variant is twofold.

On the one hand, the proposed methodology allows the investigation
of high-dimensional scenarios by coupling a simulation model with several
heuristics. The IRP can be considered to be much more complex than the
VRP. In addition to routing also resupply decisions have to be made and
the planning horizon is longer. The optimization of long-term effects is com-
plicated by the uncertainty coming from stochastic demand distributions.
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Discrete-event simulation, especially in combination with metaheuristics, is
a powerful methodology to model high-dimensional dynamic stochastic rout-
ing problems that would be hard to treat in an analytical way.

On the other hand, the motivation to apply simulation optimization stems
from the fact that several scenarios can be investigated to evaluate the influ-
ence of exogenous and endogenous factors in the context of tactical decision
making. The simulation environment allows the consideration of what-if sce-
narios and performing a sensitivity analysis to support the decision making
process.

The simulation optimization model is based on the generic template for
inventory routing problems presented in Section 3.1.2. A difference from
the standard IRP formulation is the fact that mixed scenarios are possible
including both customers that are served using VMI as well as customers
that place orders themselves.

Regarding the optimization process, the decision making is split in two
stages. In the first stage, the replenishment decisions are made. Based on
the replenishment and also on the orders from the order-based customers,
the tours are created. These decisions are made in each time step of the
simulation which represent days of operation.

CustomerSelectionPolicy

RefillPolicy

RoutingAlgorithm

Served Customers

Replenishments

Vehicle
Decisions

Customer

VMICustomer

OrderCustomer

Stock

Orders
Replenishments

Optimization Simulation

Figure 3.9: Schematic illustration of the information flow between the entities
in the simulation optimization approach

Several heuristics are combined in the optimization approach as illus-
trated in Figure 3.9. The replenishment decisions are made using two policies.
The first policy selects the customers to be served while the second policy
determines the amounts of products to be refilled at the selected customers.
The generation of these policies by means of simulation-based evolutionary
policy search will be detailed in Section 4.2.

At each step of the simulation, after the replenishment has been deter-
mined, a standard CVRP problem instance is created based on the VMI
replenishments as well as the placed orders. Concretely, the tours are calcu-
lated using a push forward insertion heuristic (Solomon, 1987). In principle,
however, every routing algorithms capable of solving a CVRP can be applied.
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The separation of these decisions potentially reduces the optimization
potential since decisions made in the first stage determine the constraints for
the routing. However, by dividing the decisions the problem complexity is
reduced. To mitigate the loss of optimization potential, heuristic information
about how the decisions influence the routing is added to the replenishment
decision which will be detailed in the description of the replenishment policies
in Section 4.2.

The two-stage decision process allows a separation of the problem to
handle the complexity. While the evolution of the policies is computationally
complex, they can be applied efficiently to make decisions once evolved. In
combination with a routing heuristic, the proposed approach scales to large
problem sizes with many customers and products.

3.4.4 Conclusions

Different endogenous and exogenous factors have been evaluated by applying
a simulation-based scenario analysis using the presented methodology. Using
a simulation optimization approach, a sensitivity analysis can be performed
and different scenarios can be evaluated to aid in tactical decisions by eval-
uating optimization potentials. The conclusions are based on the detailed
results which are listed in Section 6.3.

The most significant savings potential that was identified is the balancing
of the resource utilization in cases of fluctuating demand patterns. This phe-
nomena is illustrated in Figure 3.10. Without applying VMI, the fluctuation
in the demand is transferred directly to the resource utilization. Even when
only half of the customers are transitioned to a VMI, this fluctuation can
be smoothed leading to a lower peak resource utilization by distributing the
replenishment more equally. In the scenario with 100% VMI customers, the
demand is nearly equally distributed over the week.

As an endogenous influence factor, the service quality was investigated.
In the presented case-study, the service quality has a large influence factor
on the distribution costs. When demanding 95% instead of 99% product
availability, the fleet size can be reduced by 40.82%.

In terms of exogenous factors, the size of the product portfolio of a super-
market and as a result of the product demand had the greatest impact on the
total costs. The results indicate, that switching supermarkets with the high-
est demand brings the largest benefit. Clustering customers geographically
only showed limited benefits while creating a single large cluster was bet-
ter than creating multiple smaller clusters. In the considered scenario, the
largest optimization potential is the mitigation of the demand fluctuation
explaining the large influence of the supermarket size.
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Figure 3.10: Resource utilization for the different scenarios. The fluctua-
tion in resource utilization results from the weekly demand pattern and is
smoothed in the VMI scenarios (cf. Vonolfen et al. (2013a)

Summarizing, the evaluation of different scenarios and the analysis of
their optimization potential was performed by applying a simulation opti-
mization approach. A sensitivity analysis of diverse influence factors can
help understand the characteristics of a problem environment and aid in tac-
tical decision processes. The optimization algorithm is used to evaluate the
optimization potential of different scenarios in that case. For the considered
case-study, the routing algorithm in combination with simulation-based gen-
eration of replenishment policies that are specialized to each scenario offers a
heuristic approach do deal with high-dimensional scenarios based on realistic
models.

The potential for future work is mainly in the practical application of
the presented methodology. Different case-studies can be considered in the
context of inventory routing. For instance, Vonolfen et al. (2011a) considered
a fictional scenario for the collection of waste using electric vehicles based on
the presented methodology. It would be interesting to consider increasingly
dynamic inventory routing environments where simulation optimization is a
feasible approach.
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Chapter 4

Algorithmic Generation of
Specialized Routing Policies

As outlined in Chapter 2, specialized solution methods are required depend-
ing on the problem properties of dynamic vehicle routing problems. For
instance, Bertsimas and Van Ryzin (1991) pointed out that for light and
heavy traffic situations completely different dispatching policies are required.
Generally, depending on the degree of dynamism and the system objective,
different solution methods are applied as Larsen et al. (2007) noted.

The aim of this chapter is to present an algorithmic framework to generate
specialized policies that are adapted to the problem environment and can be
combined and integrated with other solution methods. The main approach
followed is an evolutionary policy search based on a black-box simulation
model and an adaptable heuristic policy.

Apart from the case-studies of Beham et al. (2009b) and van Lon et al.
(2012) illustrating the potential, the generation of heuristic policies has not
received wide attention in the context of dynamic vehicle routing problems
so far. The aim of this work is to explore the generation of several heuris-
tic policies for different variants of dynamic vehicle routing problems with
practical applications.

Based on the algorithmic framework outlined in Section 4.1, three case-
studies are presented: the generation of replenishment rules for inventory
routing (Section 4.2), dispatching rules for dial-a-ride (Section 4.3), and wait-
ing strategies for pickup and delivery problems (Section 4.4).
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4.1 Simulation-Based Evolutionary Policy

Search

When solving dynamic vehicle routing problems, the general aim is to find
a routing policy specifying what action should be taken as a function of
the state of the system that evolves over time (cf. Psaraftis (1995)). In the
past, mostly human-designed heuristic policies have been applied to dynamic
vehicle routing problems focusing mainly on average-case performance. This
process usually requires extensive algorithm design and testing as well as
domain expertise.

Within the vision to create heuristic methods that are self-adaptive in
terms of problem characteristics, an automation of generating and adapting
heuristic policies is needed. Furthermore, heuristics that are specialized to
certain problem characteristics have the potential to perform better than
human-created heuristics which usually are designed to perform well on a
wide range of problem instances (cf. Burke et al. (2013)). For instance,
using HeuristicLab, the automatic generation of heuristics has been success-
fully applied in practical contexts for the evolution of priority policies for
production fine-planning (Pitzer et al., 2011), control policies for power flow
in smart grids (Hutterer et al., 2013) as well as dispatching policies for dial-
a-ride problems (Beham et al., 2009b). However, within the field of dynamic
vehicle routing, automated algorithm design has received only limited atten-
tion so far.

The presented methodology aims at a semi-automated generation of heuris-
tic routing policies based on evolutionary policy search and a simulation
model. The search space as well as the components for the generation and
adaption of the routing policies is defined by a human expert. As Burke
et al. (2013) points out, previous studies have shown that human experts are
able to provide good building blocks that can be assembled and adapted in
superior ways by algorithmic strategies.

The goal is to generate re-usable heuristics that can be successfully ap-
plied online to previously unseen problem instances. Since in dynamic envi-
ronments the computation time is usually limited, it makes sense to shift the
generation to an offline training phase. The heuristic policies are adapted
and generated on a set of representative training instances which have similar
characteristics as the targeted online environment by means of a reinforce-
ment learning mechanism.

The generated heuristics are applied within a pre-defined algorithmic
framework and tackle a part of the overall problem that needs to be adaptive
in terms of problem characteristics. For instance, specialized waiting policies
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can be applied within a generic dynamic routing framework. As Burke et al.
(2009) note, this combination of human domain knowledge and algorithmic
policy generation has proven fruitful and the automatically designed policies
complement human designed heuristics.

Intentions to automate the generation and adaption of heuristics are not
new and have been investigated from different perspectives in the past. As
Pappa et al. (2013) point out, it can be generally observed, that research
efforts in different fields including operations research, optimization, and
machine learning ultimately evolved from algorithm / parameter selection
and control to the automated generation of algorithms.

First approaches to automatically adapt and generate heuristics can be
dated back to seminal work of Fisher and Thompson (1963) who combined
several dispatching rules for production scheduling in a probabilistic learning
phase by a biased selection. Several studies to generate dispatching rules such
as the work of Hart and Ross (1998) followed in the 90ies.

Within research on evolutionary algorithms, especially parameter setting
and control strategies were investigated including self-adaption (Bäck and
Schwefel, 1993) and meta-optimization (Grefenstette, 1986). This lead to
the generation of full evolutionary algorithms (Oltean, 2005).

A rather recent stream of research, which is surveyed by Burke et al.
(2013), are hyper-heuristics which are based on high-level heuristics who
operate in the search space of heuristics based on low-level heuristics or
heuristic components. Initially hyper-heuristics were mainly concerned with
the selection of low-level heuristics but the definition was later extended to
the generation of new heuristics based on algorithm components. Within this
framework, the presented methodology can be categorized as a generative
hyper-heuristic since meta-heuristics are applied to search in the space of
routing policies within an offline learning phase.

Successful approaches for the automated generation and adaption of heuris-
tics usually combine several elements from machine learning, artificial intel-
ligence, and operations research.

4.1.1 Methodological Foundations

The presented methodology is based on direct policy search using evolu-
tionary computation and reinforcement learning. The generated heuristic
policies are integrated in heuristic frameworks typically combining several
approximations to tackle the inherent problem complexity of dynamic ve-
hicle routing problems. Policy approximations, reinforcement learning, and
evolutionary computation are the theoretical foundations which are combined
to a methodology for the semi-automated generation of heuristic policies.

75



Policy Approximations

Due to the complexity of dynamic vehicle routing problems, approximate
policies are used for solving practical variants. A formal notation for defining
policies as a decision function of the system state is provided by the unified
modeling framework for dynamic decision problems proposed by Powell et al.
(2012) which is based on the following elements:

• The state variable captures the state of the system at each time step
t. It includes the resource state Rt which can be referred to as the
physical system state (e.g., vehicles), the information state It which
includes all other information required to make decisions (e.g., prices),
and the knowledge state Kt including beliefs about random variables
(e.g., forecasts):

St = (Rt, It, Kt) (4.1)

• The state evolves over time which is described by the state transition
function. It takes into account the current state St, the decision variable
xt and the newly arriving exogenous information Wt+1:

St+1 = SM(St, xt,Wt+1) (4.2)

• The decisions are made according to a decision function Xπ based on
a policy π, that maps the current state to decisions:

xt = Xπ(St) (4.3)

• The total expected costs are minimized over all time steps that incur
by making the decisions xt at state St. The aim is to find an optimal
policy π:

min
π∈Π

E

T∑

t=0

C(St, xt) (4.4)
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When solving large-scale dynamic decision problems, Powell (2007) points
out that there are three curses of dimensionality. This refers to a rapid, often
exponential, growth of problem complexity with increasing size which affects
the state variables (St), the random variables (Wt) and the decision variables
(xt). As a result, real-world problems become complex in terms of memory,
modeling and runtime requirements.

Dynamic vehicle routing problems fall into the category of problems that
rapidly grow in complexity requiring approximate methods such as heuris-
tics. As a result, approximations are applied to cope with the resulting
complexity. In fact, this offers a new viewpoint on the solution methods pre-
sented in Chapter 2 where most of them apply one or more of the following
approximations.

Powell et al. (2012) identified four fundamental types of policy approxi-
mations and characterizes solution methods for sequential decision problems
in general and dynamic vehicle routing in particular accordingly:

• Myopic cost function approximations consider the decisions xt to be
taken given the current state St and minimize the immediate costs
C(St, xt) while not regarding long-term effects caused by these actions.

• Lookahead policies optimize a finite horizon into the future with the
aim of considering long-term effects in a rolling-horizon manner. Future
events can be either approximated deterministically or accounted for
explicitly by means of a stochastic model.

• Value function approximations are based on estimations of the value
of being at a current state St which consists of the immediate costs
Ct(St, xt) and the expected future costs when following a certain policy.
This avoids evaluating all possible future states.

• Policy function approximations are based on analytic functions map-
ping actions xt to a given state St directly without solving an under-
lying optimization problem. This is especially suitable in cases where
Xπ(St) has a structure that can be derived for example from domain
knowledge.

Usually multiple approximations are combined in solution methods tack-
ling real-world problem formulations as Powell et al. (2012) notes. For in-
stance, a policy function approximation can be used within a lookahead pol-
icy. Such an example would be a waiting policy incorporated in a rolling-
horizon reoptimization approach as proposed by Ichoua et al. (2006).
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Reinforcement Learning

Apart from the algorithmic challenges that arise from the complexity of real-
world applications, the modeling of large dynamic and stochastic systems is
far from trivial. This is known as the curse of modeling (cf. Gosavi (2003)). A
closed-form model often does not exist or would be too difficult to obtain due
to the complexity or incomplete knowledge for many practical applications.
As a result, rich dynamic vehicle routing problems are usually studied by
means of simulation models.

In situations where no closed-form is available but trial and error inter-
actions with a simulation model can be made, reinforcement learning is a
feasible method to solve sequential decision tasks in general because it does
not require an analytical model (cf. Grefenstette et al. (1990)). The basic
principle is, that a reward is received for actions taken in the environment.
The rewards can be given after each action or sparsely after several actions
have been performed. The policy is adapted according to the feedback.

An advantage of reinforcement learning is that no analytical (theoretical)
model is required. Instead, the governing variables are simulated which is
a feasible approach if no tractable model of the system is available since
sufficient domain knowledge would be too costly to obtain due to the high
complexity or is not accessible (Gosavi, 2003). The system state is implicitly
represented in the simulation without requiring an analytical model.

For a deep introduction investigating the links between reinforcement
learning and dynamic programming, the reader is referred to Busoniu et al.
(2010). In particular, reinforcement learning techniques are applied in the
field of approximate dynamic programming to solve large-scale sequential
decision problems by learning approximate value functions; Powell (2012)
outlines the links as well as the historical development.

Well-known classical approaches in the area of reinforcement learning
include algorithms such as Q-learning (Watkins and Dayan, 1992) that rely
on the expected future reward (i.e. the value) of actions performed in certain
states (state-action pairs) and iteratively build up an action-selection policy
by exploration of the state-action space.

An alternative approach is direct policy search where optimization tech-
niques are applied to find a policy maximizing the expected reward. While
Q-Learning works in the state-action space, direct policy search works in the
policy space. An advantage is, that compact representations can be used for
policy functions and their structure can be derived from domain-knowledge
(Whiteson, 2012). Alternatively, the structure of the policy itself can be
optimized based on a fixed grammar.

In terms of computational complexity, several empirical studies confirmed
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that direct policy search successfully scales to large state spaces as Whiteson
(2012) point out. Important success factors are rooted in the policy repre-
sentation. A direct policy representation allows a higher level of abstraction
by grouping several states. In combination with a selective representation,
that only stores successful policies, the complexity of the state space can be
reduced significantly (Moriarty et al., 1999).

However, efficient and robust search techniques are required for policy
spaces which can get potentially very large. Applying evolutionary com-
putation to reinforcement learning has proven fruitful for solving sequential
decision tasks, as Moriarty et al. (1999) and recently Whiteson (2012) pointed
out.

Evolutionary Computation

Evolutionary algorithms are a class of metaheuristics that applies the princi-
ple of natural evolution to optimization, or more generally to study adaptive
systems. A population of candidate solutions (individuals) is evolved iter-
atively by generating offspring from selected parent solutions. The main
driving factors is evolutionary selection which steers the process towards a
defined system objective and follows the Darwinian principle of “survival of
the fittest”. There are several variants of evolutionary algorithms that fo-
cus on different application areas. For a detailed overview on evolutionary
computation the reader is referred to Eiben and Smith (2010) as well as
Affenzeller et al. (2009).

Being a generally applicable search technique, evolutionary algorithms
consist of problem independent and problem specific parts. The problem
specific parts are based on a representation of the individuals which is called
genotype. The genotype defines the search space in which the evolutionary
process takes place (cf. Eiben and Smith (2010)). For instance, there exist
multiple possible representations for vehicle routing problems and selected
ones been examined by Vonolfen et al. (2011b).

The main steps of an evolutionary algorithm are illustrated in Figure
4.1. Problem dependent steps are the evaluation, crossover and mutation
which have to be defined according to the representation. All other steps are
problem independent and only rely on the evaluation (fitness) value of an
individual.

Evolutionary algorithms are a population-based methods and evolve a set
of solutions (population of individuals) simultaneously. The first step is an
initialization of the population either randomly or by means of a construction
heuristic. For the vehicle routing problem several construction heuristics
exist such as the savings heuristic (Clarke and Wright, 1964) or the push-

79



Initialization

0.34 0.94 0.60 ...

0.73 0.86 0.12 ...

0.24 0.18 0.87 ...
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0.34 0.94 0.60 ...

0.34 0.86 0.61 ...

Figure 4.1: Basic scheme of an evolutionary algorithm
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forward insertion heuristic (Solomon, 1987). Each individual is evaluated
and assigned a fitness.

After the initialization phase, an iterative process is performed that mim-
ics the principles of natural evolution. Each iteration, parent individuals are
selected to produce offspring individuals. The offspring is produced by using
problem-specific crossover and mutation operators. Crossover operators com-
bine the genetic information of two or more individuals while mutation makes
small, undirected changes. The newly created offspring individuals replace
individuals in the parent population. Then, another iteration is performed
by generating new offspring individuals.

The selection is solely based on the fitness value and is the main driv-
ing factor in the evolutionary process. There are several different selection
methods. When using proportional selection, individuals are selected with
a probability proportional to their fitness. In rank selection, the individuals
are ordered according to their fitness and assigned a fitness value according
to their rank. For instance, linear and non-linear fitness assignment can be
used. In tournament selection, a fixed number of individuals is selected and
the fittest among them is chosen. In general, the applied selection mechanism
as well as its parametrization has a strong impact on the selection pressure
and as a result on the dynamics of the evolutionary process (cf. Affenzeller
et al. (2009)).

From the selected parent individuals, a set of offspring individuals is cre-
ated by crossover and mutation which are specific to the representation of
the individuals. Crossover aims at combining genetic information of two or
more individuals while mutation performs small undirected variations.

After evaluating each offspring solution, the newly generated offspring
replaces individuals of the current population. Different replacement schemes
can be used. Eiben and Smith (2010) distinguish between age-based and
fitness-based replacement. An example of an age-based stagey would be
generational replacement where the whole parent population is replaced by
the offspring. Fitness-based replacement schemes consider both the parent
and child offspring and in that case the same selection operations as for parent
selection can be applied. An extension that can be used with all replacement
schemes is elitism which preserves a specified number of best individuals that
are excluded from replacement.

This basic scheme of evolutionary algorithms is followed by several vari-
ants that focus on different application areas or apply certain algorithmic
extensions. The most prominent variants are genetic algorithms, genetic
programming, and evolution strategies. The main differences and applica-
tion areas are outlined by Eiben and Smith (2010) which will be put in
context of the presented methodology.
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Genetic algorithms (GA) build on the efficient interplay of crossover and
mutation and were introduced by Holland (1975) to study adaptive sys-
tems. Mutation introduces new genetic information which is propagated by
crossover. The main theory behind genetic algorithms is the building block
hypothesis which is defined for a canonical GA with binary representation.
It proves, that short sequences with above average fitness (building blocks)
are assembled to longer sequences in the evolutionary process. This theorem
fails to hold for non-idealized GA variants, however should be considered
when designing a GA for a particular application area. Naturally, these con-
siderations rather have combinatorial than real-valued optimization in mind.

Genetic programming (GP) can be seen as a special variant or extension of
a GA that aims at evolving computer programs which are usually represented
as trees. There are some algorithmic differences compared to standard GAs
such as independent execution of crossover and mutation and the use of
large population sizes. GP has been successfully applied in various areas
such as machine learning and symbolic regression and has proven to be a
powerful automated problem-solving method. As a theoretical foundation,
the GA schema theorem of Holland (1975) has been transferred to GP by
Koza (1992).

Evolution Strategies (ES) are a different stream of EAs and have been
developed independently from GAs for a long time (cf. Affenzeller et al.
(2009)). ES have been designed explicitly for continuous optimization with
a strong emphasis on mutation. As Eiben and Smith (2010) notes, a core
concept is self-adaptivity introduced by Schwefel (1977) which means that
the mutation step size is adapted during an optimization run. Focusing
on real-valued representations, a main application area of ES is continuous
parameter optimization.

4.1.2 Methodology

The combination of reinforcement learning and evolutionary computation
allows the adaption and generation of heuristic policies by trial and error
interactions with a simulation model. The resulting heuristics are policy
function approximations which are embedded within a heuristic framework
which usually combines several approximations to tackle the problem com-
plexity.

The presented methodology is based on three main assumptions. Firstly,
approximations are necessary to cope with the complexity of real-world se-
quential decision problems. Policy function approximations are suitable
if their structure can be derived from domain knowledge. Secondly, real-
world dynamic vehicle routing problems are mainly investigated by means
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of discrete-event simulators since a closed-form analytic model is often not
available. Thirdly, solution methods that are specialized to the character-
istics of the problem environment are required for dynamic vehicle routing.
The main hypothesis is, that evolutionary policy search based on a simula-
tion model can overcome the curses of dimensionality when solving real-world
dynamic vehicle routing problems by generating specialized policies.

The policies are evolved offline in a training phase and are applied in
an online setting a-posteriori which has similar characteristics as the train-
ing instances. The assumption that the presented methodology can scale to
practically relevant dynamic vehicle routing problems stems from the com-
bination of simulation optimization and evolutionary reinforcement learning.
The main success factors are overcoming the complexity of modeling dynamic
vehicle routing problems as well as their computational complexity.

One measure to mitigate the complexity is a generalized policy represen-
tation which is based on a set of domain-specific features which can be viewed
as functions of the current state grouping together several states. The fea-
tures are derived from domain knowledge or alternatively, could be obtained
by applying automatic feature generation (Fawcett and Utgoff, 1992). Us-
ing abstract features as input variables for the policies aims at mitigating
the complexity of the considered problems as well as at evolving generalized
policies by abstracting several similar state and thus reducing the state space
complexity.

The adaption to the problem environment is performed by searching in
the space of possible policy functions. Direct policy search allows a compact
representation of the policies whose structure is either fixed and derived from
domain knowledge or is flexible and subject to optimization itself. The search
space thus can be defined either as a set of parameters for a policy with a fixed
structure or as a set of formulas with a fixed grammar for flexible policies.
Evolutionary algorithms are applied for searching in the space of policies,
since they are global search techniques that are known to work well in large
and multimodal search spaces (Affenzeller et al., 2009).

The found policies are combined with other approximate solution methods
and tackle a certain aspect of the problem environment that needs to be
flexible in terms of its characteristics. For instance, a specialized waiting
policy can be combined with a general rolling-horizon routing algorithm.
The waiting policy can be adapted in an offline training phase to different
temporal or spatial properties. For clustered problem instances a different
waiting policy is applied than for randomly distributed requests.

As Moriarty et al. (1999) note, there are important design considera-
tions for the application of evolutionary policy search concerning the policy
representation, the learning phase and the search algorithm.
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Policy Representation

The policy representation defines a basic data structure for mapping states
to actions. The representation of the policy strongly influences the learning
phase as well as the search algorithm. Moriarty et al. (1999) outlines several
options for representing policies in the context of evolutionary policy search.
A main aspect for choosing the representation is the level of generalization.

Policies mapping states directly to actions range from table-based to rule-
based and neural-network-based policies. Table-based policies explicitly map
states to actions requiring an action to be specified for each state. In contrast,
generalized mappings group together similar states avoiding an explicit con-
sideration of each state. Rule-based policies contain condition-action pairs
potentially allowing the creation of generalized rules. Neural network repre-
sentations implicitly model the mapping function by interconnected neurons.
In that context, especially the field of neuro-evolution has received consider-
able attention in the literature and is surveyed by Whiteson (2012).

In the proposed methodology, the policy functions are defined on a pre-
defined set of n domain-specific features which are functions of the current
system state (fi(St) ∈ F, i = 1..n) and represent it in a higher level of ab-
straction. The features are synthesized into complex policies representing a
mapping from features to actions. The evolved policy function approximation
Aπ(F ) returns an action xt for the feature set F .

The policy representation, which defines the search space for direct policy
search, can be either a fixed structure or a flexible structure. In terms of
fixed structure, for instance a linear combination of the feature values can be
considered. In that case, a vector with a fixed size is used where each element
represents a parameter of the policy. On the other hand, flexible policies are
based on a grammar without assuming a certain structure beforehand. The
features are combined by algebraic and logical terms allowing the evolution
of more complex policies. The relevant features are automatically selected
and nonlinear relationships can be identified.

Learning

The learning phase deals with searching for parameters in the case of policies
with a fixed structure and formula trees in the case of a flexible structure
based on the feedback on the performance in a simulated dynamic vehicle
routing environment. The learning is performed offline in a training phase
and credit is assigned to policies for their resulting decision sequences. The
aim is to find policies that are adapted to the characteristics of the problem
environment and work well in similar, but previously unseen situations.
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Reinforcement learning can be either performed offline or online. Online
learning means to learn the policies directly in an operational environment
while offline learning is performed in a simulation environment beforehand.
As noted by Moriarty et al. (1999), evolutionary reinforcement learning re-
quires the evaluation of hundreds or thousands of policies. Since experiments
in a real dynamic vehicle routing environment are costly, it makes sense to
perform offline training using a simulation model.

The offline learning process is performed on a set of training problem
instances. Each instance represents a planning horizon which could be for
example a day of operation. To draw conclusions about the performance
of the evolved policies on similar but previously unseen instances, a set of
test instances is used that are not used during the training phase. The set
of instances can be obtained either from collections of standard benchmark
instances or derived from historical data in practical case studies. The ad-
vantage is, that usually a large number of different instances can be obtained
or generated for the training phase to cover as many as possible situations
which is important in terms of robustness of the policies.

Robustness considerations are also an important aspect when it comes to
credit assignment. Evolutionary policy search usually assigns the credit to
a whole sequence of actions and implicitly distributes it among the individ-
ual actions by the evoloutionary process (cf. Moriarty et al. (1999)). In a
dynamic vehicle routing environment the actions taken in a given time step
strongly influence future decisions. As a result it is a difficult task to evaluate
the value of each individual action and the feedback is given for each problem
instance as a whole, implicitly assigning credit to the whole action sequence.

Resulting from offline training and implicit credit assignment, there are
challenges related to evolutionary policy search that need to be considered.
Moriarty et al. (1999) mentions the lack of explicitly considering knowledge
about bad decisions and the tendency of decisions that had a low impact
in the training phase to drift to random values. These issues mainly stem
from the selective representation of the policies in the evolutionary search
process. Only successful policies are kept and no explicit information about
bad decisions is stored.

Another important consideration in the learning phase is the danger of
over-adaption in the training-phase (see for instance (Hawkins, 2004)) which
means that the evolved policies are over-adapted to the set of training in-
stances and do not perform well on previously unseen instances.

Considering these aspects, it is important to cover a wide number of
situations and provide a sufficiently large and diverse set of training instances
as well as to explicitly mitigate these problems in the search algorithms to
generate robust policies that can be successfully applied in an online setting.
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Search Algorithm

The policies are generated by searching in the space of possible configurations
based on the underlying representation in an offline reinforcement learning
phase. Evolutionary algorithms (EA) have an empirical record of being a
suitable algorithm for direct policy search (cf. Whiteson (2012)). The spe-
cific aspects of evolutionary algorithms regarding direct policy search will
be outlined in the following including the evaluation of individuals, the used
representation, and the applied variants.

The evaluation of the individuals is performed by simulating a set of
training instances based on the simulation and optimization environment
presented in Section 3.1. This principle is illustrated in Figure 4.2. Each
individual represents a candidate policy either represented as a real-valued
vector or as a formula tree. As detailed in Section 4.1.2, the evolved policy
represents the flexible part of the solution method and is combined with
other approximations. For instance, the illustrated real-valued vector could
represent a parametrization of a waiting strategy. In that case, the goal
would be to evolve a strategy that is adapted to the problem characteristics
and yields to beneficial decisions in terms of scheduling the vehicle waiting
times within the simulation optimization environment.

Evaluation

Fitness

SimulationOptimization

Events

Decisions

Problem 

Data

Training Instances

...

0.73 0.86 0.12 ...
Policy

Figure 4.2: Simulation-based policy evaluation

In the context of direct policy search, two different representations will
be considered. For policies with a fixed structure a real-valued vector, while
for policies with a flexible structure a tree representation will be used. For
these representations, well known genetic operations exist which can be used
as a basis for the evolutionary policy search algorithm.

For real-valued vectors both discrete and arithmetic recombination is used
(cf. Eiben and Smith (2010)). Discrete recombination merges two real-valued
vectors by selecting a parent to inherit each position of the vector. On the
contrary, arithmetic recombination averages the values of the parents. Muta-
tion operations on real-valued vectors include one-position uniform mutation
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where a single position of the vector is replaced with a random value that
is sampled from a uniform position and all positions nonuniform mutation
where each position of the vector is manipulated with a small Gaussian value.

For tree representations specialized crossover operations exist that merge
the structure and values of several parent trees into an offspring tree (cf.
Affenzeller et al. (2009)). A commonly used variant is sub-tree crossover
which exchanges randomly chosen sub-trees of two parents creating two new
offspring trees. Mutation operators for tree representations include replacing
a randomly chosen node with a generated sub-tree or deleting sub-trees.

Based on these operations, two variants of evolutionary algorithms are
applied to direct policy search based on their success factors. Evolution
strategies are applied to the evolution of policies represented as real-valued
vectors while genetic programming is applied to evolve policies represented
as formula trees.

ES are known to work well in continuous parameter spaces. A main suc-
cess factor is the adaptive mutation step size which steers diversification and
intensification adaptively. On the contrary, simple greedy methods would
quickly get stuck in a local optimal. As pointed out by Eiben and Smith
(2010), empirical evidence shows that mutation step sizes should be larger
in the beginning to allow exploration and then get smaller to intensify the
search in promising regions. The adaption of the step size generally leads
to a faster convergence. These investigations have been proven theoretically
for certain idealized conditions as summarized by Bäck et al. (1991) and
shown empirically for more complex problems. With continuous parameter
optimization being a main application area, these aspects make ES a suit-
able strategy for searching parameters for policies represented as real-valued
vectors.

GP has a large empirical success story in evolving computer programs that
generate human-competitive solutions for various types of problems. The
theory behind the algorithmic principles was developed mainly building on
the schema theorem initially defined for GAs by Holland (1975). The schema
theorem for GP proposed by Koza (1992) defines so called S-expressions as
the basis for schemas which are basically a set of sub-trees. Applied to
evolutionary policy search, the GP process builds larger and more complex
policies from a set of building blocks which are sub-trees with a high fitness
value. This allows the identification of non-linear relationships between the
individual features and build up complex policies from these building blocks.

As stated in Section 4.1.2, algorithmic measures are taken to prevent an
over-adaption to the training instances while not performing well on previ-
ously unseen data. The aim is to generate robust policies that work well for
similar, but previously unseen problem instances.
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A commonly investigated danger in GP is the phenomenon of code bloat.
In the context of evolutionary policy search, it means that too complex poli-
cies would be evolved while simpler policies would also fulfill the task. This
bears the danger, that the policies are not intelligent abstractions of decision
making in the observed situations but are potentially over-adapted to the
training instances. To mitigate this issue, the tree size is limited to avoid
code bloat.

Another countermeasure to over-adaption that is applied both for ES and
GP is a dynamic separation of the training set. In each iteration, only a part
of the training set is used to evaluate the current individuals. However, the
whole training set is used to select the best found policy.

The described methodology will be applied to evolve policies that are
adapted to certain problem characteristics. These policies are incorporated
in approximate solution methods and applied to practically relevant variants
of dynamic vehicle routing problems.

4.2 Replenishment Policies for Inventory

Routing Problems

Dynamic and stochastic inventory routing problems are complex sequential
decision processes since inventory replenishment as well as routing decisions
have to be made which are dependent on each other. This combination
of routing and replenishment decisions while considering long-term effects
makes the problem highly intractable requiring heuristic solution approaches.
The scenario presented in Section 3.4 represents a high-dimensional inventory
routing problem with stochastic product usage and requires the combination
of several approximations to be tractable in terms of modeling effort and
computational complexity.

Based on the simulation optimization approach presented in Section 3.4,
a heuristic solution method applying several approximations is presented.
Core of the method are approximate inventory replenishment policies that
are generated using evolutionary policy search. This section is based on a
previously published study of Vonolfen et al. (2013a). The main contribution
in the scope of this thesis is the application of evolutionary policy search
to inventory routing scenarios based on real-world data in the context of
retailing.
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4.2.1 Two-Stage Decision Process

The inventory routing problem combines inventory replenishment as well as
routing decisions. As already discussed in Section 3.4.3, a two-stage algo-
rithm is applied. In the first stage, replenishment decisions are made which
means the amount of deliveries is determined for each product. In the second
stage, the deliveries are sequenced to routes which are executed by a fleet of
vehicles.

The presented heuristic approach combines several approximations in a
rolling horizon manner. The planning horizon is one day of operation while
future product consumption is accounted for by deterministic forecasts. At
each time step of the simulation, which represents a day of operation, an
approximate inventory and routing policy is executed which makes replen-
ishment and routing decisions for the current day.

The policy has a fixed structure which has been derived from domain
knowledge. It consists of several parameters which are set according to dif-
ferent scenarios by means of reinforcement learning. Core of the approach are
two approximate policies for customer selection and product replenishment
which are combined with a routing algorithm. The definitions are based on
the problem model presented in Section 3.4.2.

The top-level policy combines the different elements and is illustrated
in pseudocode in Algorithm 1. Input parameters are the set of VMI cus-
tomers N , the vehicle capacity Cv, and a set of fixed orders F t for non-VMI
customers. The other two parameters (CapacityUtlization and Priority −
Threshold) are set according to scenario properties in the reinforcement
learning process.

The policy basically works in a two-stage process which means that firstly
replenishment and secondly routing decisions are made. However, to consider
the effect on the routing in the first stage, the deliveries are inserted in a
preliminary set of routes R immediately by using an insertion heuristic. As
an insertion heuristic, the best possible insertion position in the preliminary
routes is chosen. The preliminary set of routes R is initialized by applying a
routing heuristic to the fixed set of orders F t. This links the replenishment
and routing decisions together within the two-stage process.

In the first stage, a fixed capacity c is determined that is available for
replenishment which is a fraction of the total available vehicle capacity and
is determined by the CapacityUtilization parameter. The aim is a constant
resource utilization during all days. Setting this threshold to a lower value
implies the use of less capacity balancing the resource utilization since the
parameter is a constant over the whole planning horizon.

While there is still capacity available, the customers to be replenished are
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Algorithm 1 Approximate inventory repelnishment and routing policy (cf.
Vonolfen et al. (2013a))

Require: N , Cv, F
t, CapacityUtilization, PriorityThreshold

1: D ← F t

2: R← RoutingAlgorithm(D)
3: c← (

∑
Cv) ∗ CapacityUtilization−

∑
dp∈F t dp

4: while N 6= ∅ AND c > 0 do
5: select n ∈ N according to CustomerSelectionPolicy
6: N ← N \ n
7: if λn >= PriorityThreshold then
8: select deliveries Dn for n according to RefillPolicy
9: D ← D ∪Dn

10: c← c−
∑

dp∈Dn
dp

11: R← InsertionHeuristic(Dn, R)
12: end if
13: end while
14: R← RoutingAlgorithm(D)

chosen according to a customer selection policy which chooses the customer
with the highest priority from a set of customers. The priority calculation
is a weighted average over a set of feature values. Each feature fni given
for a customer n is weighted with a fixed factor ai which is parametrized in
the reinforcement learning process. Since the parameters ai as well as the
features fni are normalized in the interval [−1, 1], the resulting priority value
also lies in that interval. The following features are considered (Vonolfen
et al., 2013a):

fn1 - Predicted number of days until the first product will run out of stock
for customer n

fn2 - Predicted average number of days for all products to run out of stock
in the inventory of customer n

fn3 - Number of days since the last delivery to customer n

fn4 - Total inventory capacity of customer n over all products (
∑

p Snp)

fn5 - The minimum required detour to integrate a delivery to customer n in
the set of preliminary routes R

fn6 - The geographical isolation of customer n which is defined as the average
distance to all other customers
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While features fn1 to fn4 mainly concern the service quality, features fn5
and fn6 take into account the subsequent routing process. The priority λn

for a given customer n is calculated according to the formula illustrated in
Equation 4.5.

λn = (
m∑

i=1

fni ∗ ai)/m (4.5)

If the priority λn lies above a certain limit specified by the Priority −
Threshold parameter, the products to be replenished at the chosen customer
are determined by a refill policy which is listed in Algorithm 2.

Algorithm 2 Refill policy for a given customer (cf. Vonolfen et al. (2013a))

Require: c, n, t, RefillThreshold, RefillBarrier, RefillFactor
1: b← c
2: while P 6= ∅ AND b > 0 do
3: select p ∈ P where minOOSP (p, n, t)
4: P ← P \ p
5: if OOSP (p, n, t) < RefillThreshold OR xt

np < RefillBarrier then
6: dp ← (Snp − xt

np) ∗RefillFactor
7: b← b− dp
8: end if
9: end while

The refill policy sorts the products p of the selected customer n by their
estimated out of stock prediction (OOSP) based on the stock available at
the current day t. While there is still capacity left, all products where the
OOSP is below a given RefillThreshold or the current item stock xt

np is
below a given RefillBarrier are refilled to a certain level determined by the
parameter RefillFactor. These three parameters are set in the reinforcement
learning phase.

After the replenishment decisions have been made, the deliveries are com-
bined in a set of roues by a routing algorithm. The preliminary roues are
discarded and a full re-optimization of these routes is performed to utilize
additional routing potential. As a routing algorithm, the push-forward inser-
tion heuristic is applied. In principle, every routing algorithm could be used
as outlined in Section 3.4.3.

4.2.2 Simulation-Based Parametrization

As described in the previous section, there are 11 parameters of the policy
that are set according to the scenario characteristics: CapacityUtilization,
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PriorityThreshold, ai for 1 ≤ i ≤ 6, RefillThreshold, RefillBarrier, and
RefillFactor. Direct policy search based on reinforcement learning and evo-
lutionary computation is applied to generate specialized policies for different
scenarios. The policy has a fixed structure and is represented as a vector
of parameters with length 11. Each element of the vector corresponds to a
parameter of the policy and has a value range in the interval [−1, 1].

For the optimization of the real-valued parameter vector a µ+σ evolution
strategy was applied with µ = 1 and σ = 3. A self-adaptive Gaussian
mutation was used with learning parameters τ = 0.4 and τ0 = 0.4. The
process was repeated for 100 generations.

The greedy settings of the algorithm stem from the relatively long com-
putation time of the simulation. Each individual has to be evaluated using
several simulation runs due to the stochastic product usage. Each candidate
parameter vector is evaluated on 3 test scenarios which have been specified
beforehand by using a fixed random seed. The quality of the individual is de-
termined as an average quality over all simulation runs. The quality function
consists of driven distance, fleet size, and out of stock situations as detailed
in Section 3.4.2.

This reinforcement learning process was carried out for different scenarios
leading to a diverse set of parameter settings. The aim was to analyze dif-
ferent exogenous and endogenous influence factors. Details on the scenarios
can be found in Section 6.3 as well as in Section 3.4.4. For each scenario, a
separate parameter setting was evolved leading to a policy that is adapted
to the characteristics.

The individual parameter settings are illustrated in Table 4.1. In terms
of interpretation of the parameters, it can be concluded that a replenish-
ment strategy with rather small deliveries is used based on a high Refill −
Threshold and RefillBarrier and a small RefillFactor over all scenarios.
In general, the interpretation of the evolved parameters is a difficult issue
since they seem to span over the whole value range of the parameters de-
pending on the scenario.

4.2.3 Investigation of the Parameter Landscape

To gain more insight about the characteristics of the parameter space, differ-
ent local optima are analyzed for the 100% VMI scenario in terms of solution
quality and Euclidean distance. For that purpose, a local search was exe-
cuted with a maximum of 20 iterations and multiple restarts to obtain locally
optimal parameter vectors. Seven different parameter vectors are presented
in Table 4.2 and compared to the best found solution listed in the previous
section (see Table 4.1).
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Parameters 50 % VMI 100 % VMI 95 % SQ 90 % SQ
CapacityUtilization 1 0.47 0.99 0.46
PriorityThreshold 0.07 0.33 0.02 0.08
a1 (MinOOS) -0.37 -0.76 -0.32 -0.95
a2 (AvgOOS) -0.05 -1 -0.83 -0.17
a3 (LastDelivery) 0.96 0.82 0.95 0.82
a4 (InventorySize) 0.32 0.4 0.94 0.57
a5 (Detour) -0.83 -1 -0.81 -0.99
a6 (Isolation) 0.54 0.08 0.26 0.14
RefillThreshold 0.49 0.61 0.51 0.64
RefillBarrier 0.79 1 0.98 0.44
RefillFactor 0.35 0.32 0.3 0.08
Parameters Products Demand Clusters Cluster
CapacityUtilization 0.87 0.99 0.99 1
PriorityThreshold 0.64 0.02 0.02 0
a1 (MinOOS) -0.03 -0.29 -0.32 -0.88
a2 (AvgOOS) -0.05 -0.71 -0.83 -0.26
a3 (LastDelivery) 0.09 0.55 0.95 0.24
a4 (InventorySize) 0.66 0.39 0.94 0
a5 (Detour) -0.26 0 -0.81 0
a6 (Isolation) 0.24 0.86 0.26 0.8
RefillThreshold 0.53 0.53 0.51 1
RefillBarrier 0.99 0.98 0.98 1
RefillFactor 0.01 0.29 0.3 0.29

Table 4.1: Evolved parameters for the different VMI scenarios (cf. Vonolfen
et al. (2013a))
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Parameters Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7
Cap.Util. 1.00 0.58 0.61 0.72 0.98 0.92 0.99
PriorityThr. 0.00 0.00 0.67 0.03 0.27 0.12 0.44
a1 -0.95 0.00 -0.17 -0.76 -0.91 -1.00 -1.00
a2 -0.46 -0.55 -0.92 -0.43 -0.16 -1.00 -0.36
a3 0.18 0.67 0.75 0.01 0.75 0.05 0.91
a4 0.28 0.12 0.76 0.00 1.00 1.00 0.49
a5 -0.02 0.00 -0.67 -0.35 -0.83 -0.31 -0.88
a6 0.00 0.00 0.67 0.16 0.63 0.00 0.42
RefillThr. 0.47 0.42 0.33 0.92 0.66 0.58 0.45
RefillBarrier 0.64 1.00 0.89 0.92 1.00 0.69 0.56
RefillFactor 0.71 0.22 0.27 0.23 0.17 0.49 0.44
Rel. Quality 6.37% 5.70% 10.60% 2.72% 8.96% 5.80% 6.98%
Distance 1.55 1.43 1.08 1.36 1.31 1.36 1.06

Table 4.2: Different local optima for the 100% VMI senario. The quality (in
the training phase) and the parameter vector (in terms of Euclidean distance)
are compared to the best found parametrization for this scenario (which has
been presented in Table 4.1).

The local optima have an average distance of 1.31 to the best found
parametrization. No positive correlation between the distance and the rela-
tive quality compared to the best solution can be observed. This observation
indicates a multi-modal fitness landscape with no globally convex structure.

Run1 Run2 Run3 Run4 Run5 Run6
Run 2 1.31 - - - - -
Run 3 1.77 1.40 - - - -
Run 4 0.94 1.22 1.69 - - -
Run 5 1.58 1.77 1.28 1.51 - -
Run 6 1.00 1.66 1.54 1.30 1.45 -
Run 7 1.34 1.67 1.25 1.45 0.85 1.44

Table 4.3: Euclidean distance between the different local optima for the 100%
VMI scenario which are listed in Table 4.2.

The distances between the individual local optima are listed in Table 4.3.
The average distance between them is 1.4 while the average difference in
solution quality is 2.99%. A weak positive linear correlation (0.28) exists
between their distance and their difference in solution quality. However,
parameter settings with similar solution quality that have a large distance
between each other exist (for example Run2 and Run6).
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4.2.4 Conclusions

Simulation-based evolutionary policy search was applied to a high-dimensional
stochastic inventory routing problem characterized by an inherent problem
complexity in terms of modeling and also in terms of computation time. Sev-
eral approximations were combined to a heuristic approach to solve instances
derived from real-world data and draw conclusions about endogenous and ex-
ogenous influence factors by means of evaluating the optimization potential
of different scenarios.

The basis for the investigations was a simulation model containing the
governing product consumption variables. The simulation was coupled with
an approximate inventory replenishment and routing policy which was de-
rived from domain knowledge. It has a fixed structure and was specifically
designed to mitigate the issue of fluctuating demand patterns and achieve a
constant resource usage. The policy was adapted to different scenario char-
acteristics by evolutionary policy search in the space of parameter vectors.

Core of the approach were two sub-policies that make decisions which cus-
tomer to replenish and what products respectively. They built on domain-
specific features and reduced the problem complexity by abstracting from
the state space allowing consideration of a large number of customers and
products. They were adapted to scenario characteristics by setting prede-
fined parameters. The parameter landscape has been investigated indicating
globally non-convex and multi-modal characteristics with rather low fitness-
distance correlation.

The presented methodology is an example for a policy that builds on
domain knowledge and combines several approximations. The two-stage
approach divides the inventory replenishment and routing decisions while
estimating the effects on the quality of routes during the first phase. In
a rolling-horizon fashion, only a single day of operations is optimized while
considering a deterministic forecast of product consumption. These two mea-
sures aim at mitigating the problem complexity while still considering inter-
actions between sub-problems and long-term effects. The policy combines
several approximations and heuristics to allow the consideration of instances
derived from real-world data. Using the simulation of different scenarios,
the optimization potential could be evaluated considering various influence
factors.

The study clearly shows the potential of the application of the method-
ology to intractable problems as a scenario technique overcoming the curses
of dimensionality. However, it remains an open issue how close the per-
formance of the policies get to a planning approach for computationally
tractable smaller instances.
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4.3 Priority Policies for Dial-a-Ride Problems

Apart from planning approaches based on static algorithms, routing policies
have been applied to solve dynamic vehicle routing problems. The vehicles
are considered as servers and instead of planning a routing sequence, the
request to be served next is chosen ad-hoc according to a policy function.

The aim of this work is to generate the agent function (priority policy)
by means of a simulation model and evolutionary policy search. The mo-
tivation stems from previous work performed in that area. Beham et al.
(2009b) illustrated the potential of applying direct policy search to dynamic
routing problems using policies with a fixed structure in the form of a pa-
rameter vector. The potential of evolving policies with a flexible structure
by means of genetic programming was illustrated by van Lon et al. (2012).
However, they did not use as many features as Beham et al. (2009b) to syn-
thesize the policies and no comparison was performed neither between the
approaches nor with planning algorithms. Combining these two approaches,
Vonolfen et al. (2013c) illustrated the additional potential of policies with a
flexible structure built on an extensive set of features. The performance of
the evolved policies is compared in terms of solution quality and runtime to
planning algorithms on dynamic dial-a-ride problem instances.

This section is based on and paraphrases parts of a previously published
study of Vonolfen et al. (2013c) which was an extension of the methodology
presented by Beham et al. (2009b) and van Lon et al. (2012). It uses the ge-
netic programming implementation in HeuristicLab proposed by Kommenda
et al. (2012). The main contribution in the context of this thesis are the
consideration of feature selection in the direct policy search process and the
evaluation of different policy representations in comparison with planning
algorithms.

4.3.1 Problem Definition

The dial-a-ride problem (DARP) is concerned with transporting people from
sources to destinations using a fleet of vehicles having practical applications
ranging from door-to-door transportation to taxi-cabs. It can be regarded as
a variant of pickup and delivery problems while the service quality in terms of
maximizing user convenience is the main objective. In the dynamic variant,
not all requests are known in advance but appear during the planning horizon
(Berbeglia et al., 2010).

The dynamic DARP considered in this work is a shared taxi system where
users can dynamically place requests between predefined service points. A
homogeneous fleet of taxi buses, which can carry up multiple people at once,
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serves the requests. The ability to carry multiple people at once enables
synergy effects to be utilized between the transported requests while having
to consider the user convenience for each individual passenger.

The requests arrive at predefined service points which are uniformly dis-
tributed in an Euclidean plane. For each request, an origin and target lo-
cation is given as well as the number of people to be transported which
determines the required service time. The user convenience is modeled as
the lead time between appearance of the request at the source location and
its delivery to the target location.

min

|R|∑

i=1

lri + exp(max (0, lri − b)) (4.6)

The objective function to be optimized is listed in Equation 4.6 (cf.
Vonolfen et al. (2013c)). The aim is to minimize the total lead time over
the set of requests R. For each request ri ∈ R its lead time is given by
lri and is defined as the time between its appearance at the source and its
arrival at the target location. To avoid the starvation of individual requests,
a maximum lead time bound b is defined in which each request has to be
serviced. If the lead time of a request exceeds that limit, an exponential
penalty is applied for the tardiness.

Assuming each vehicle (taxi-bus) as an autonomous entity, the problem
can be modeled as a multi-agent system. In contrast to planning a set of
routes using a central decision support system, multi-agent systems apply a
decentralized decision making process. Each vehicle makes its own decisions
according to an agent function with a possible interaction with the other
agents.

The agent function can be represented as a dynamic policy who prioritizes
the requests and selects the request with the highest priority to be served
next. Each agent individually executes the policy to decide what action to
perform next after the previous action has been completed. The decision
is made ad-hoc and no planning ahead occurs. If multiple agents chose the
same action at the same time, the agent where the policy returned the highest
priority value performs the action.

4.3.2 Evolutionary Generation of Priority Policies

The proposed priority policy is based on several domain-specific features
which were presented by Beham et al. (2009b) and extended by Vonolfen
et al. (2013c). Basically, four aspects of the current system state are consid-
ered to determine the priority individually of each pending request: request
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properties, location properties, other requests already picked up by the ve-
hicle, and other agents.

Information about each waiting request includes the demand and tem-
poral properties with the following features:

• DemandSize - Number of people to be transported between the two
specified locations

• StartDate - Time the request arrived in the system

• DueDate - Time the request is due (with respect to the maximum lead
time)

• LeadTime - Lead time of the request if it would by served immediately
including the driving and service times

Requests appear at predefined pickup and delivery locations. When eval-
uating a request, the following features about its location are considered:

• Distance - Distance to the current agent

• Min/Avg/Max-DistanceToDestinations - Minimum, average, and max-
imum distance to other locations (remoteness)

• EarliestTimeOfArrival - Earliest arrival time of the agent at the loca-
tion

• PickupOrdersAtTarget - Number of pickup requests waiting at that
location

• PickupOrderItemsAtTarget - Total pickup demand waiting at that lo-
cation which is the sum of the demands of all waiting requests

Since the vehicles can carry multiple customers, features regarding car-
ried requests already picked up by the current agent are considered:

• DeliveryOrdersAtTarget - Requests to be delivered to that that location
by the current agent

• DeliveryOrderItemsAtTarget - Total demand waiting to be delivered to
that location which is the sum of the demand of all picked up requests

• EarliestDueDate (EDD) - Minimum due date of any carried request
heading to the same target as the location of the waiting request
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Since the decision making is decentralized, self-organizing behavior be-
tween the agents is required based on the following features regarding other
agents:

• Min/Avg/Max-DistanceToOtherCouriers - Minimum, average, and max-
imum distance to the other agents

• NumberOfOtherCouriersToTarget - Number of agents heading to the
same location (agents with a common target)

In total, 18 different features are used considering information about wait-
ing and carried requests, locations, and other agents. All features are nor-
malized in the range [−1, 1] and combined to a priority value for each request
by means of a priority policy.

Direct policy search is applied to generate priority policies based on the
features for two different scenarios (details on the test environment can be
found in Section 6.4). In the first scenario, an average number of 4 requests
(low traffic intensity) while in the second scenario, an average number of 6
requests (high traffic intensity) appears per minute. For each scenario, a
training set of 7 instances was used.

Previous research has shown, that for different traffic intensities different
priority rules are needed as outlined in Section 2.2.1. For the generation of
specialized policies for the two scenarios with low and high intensity, two
different methods for direct policy search are examined. On the one hand, a
policy with a fixed structure in the form of a linear representation is used and
a parameter vector is evolved. On the other hand, a policy with a flexible
structure is evolved represented as a formula tree.

Linear Representation

The linear representation of the priority policy builds a weighted sum of the
18 normalized features as listed in Equation 4.7. The policy has 18 param-
eters (ai, where 1 ≤ i ≤ 18) which represent the weights of the individual
features.

λn =
18∑

i=1

fni ∗ ai (4.7)

The policy search is carried out on a real-valued vector using an evolution
strategy. Each element of the vector represents a weight in the range [−1, 1].
In terms of parametrization, a population size of µ = 4 and an offspring size
of σ = 16 was used in combination with comma selection. A self-adaptive
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Gaussian mutation was used with learning parameters τ = 0.4 and τ0 = 0.4.
In addition, a heuristic contious crossover was applied. The process was
repeated for 200 generations where 3204 evaluations were carried out in total.

Feature Weight
EarliestTimeOfArrival -0.94
EDD -0.89
Distance -0.89
MinimumDistanceToDestinations -0.61
LeadTime -0.52
MaximumDistanceToOtherCouriers -0.47
DemandSize -0.26
PickupOrdersAtTarget -0.15
MaximumDistanceToDestinations -0.06
AverageDistanceToDestinations -0.06
DeliveryOrderItemsAtTarget 0.02
DueDate 0.06
StartDate 0.26
PickupOrderItemsAtTarget 0.31
NumberOfOtherCouriersToTarget 0.32
AverageDistanceToOtherCouriers 0.94
DeliveryOrdersAtTarget 1.00
MinimumDistanceToOtherCouriers 1.00

Table 4.4: Evolved parameters for the low intensity scenario ordered by their
weight

The best found parameters for the low intensity scenario are listed in Ta-
ble 4.4. According to their weight, the most impact aspects are the distance
of the location to the vehicle (EarliestT imeOfArrival, Distance) as well
as the waiting orders at that location (DeliveryOrdersAtTarget), the due
date of the carried requests (EDD), and self-organizing aspects between the
vehicles (DistanceToOtherCarriers).

For the high intensity scenario, the best found parameters are listed in Ta-
ble 4.5. Similar to the low intensity scenario, self-organizing aspects between
the vehicles, the distance of the location to the vehicle, as well as the num-
ber of waiting orders at a location are important factors. However, the due
date of the request is a more important factor compared to the low-intensity
parameters.

100



Feature Weights
EarliestTimeOfArrival -0.95
AverageDistanceToDestinations -0.91
MaximumDistanceToOtherCouriers -0.84
Distance -0.51
LeadTime -0.45
DeliveryOrdersAtTarget -0.15
AverageDistanceToOtherCouriers -0.13
DeliveryOrderItemsAtTarget -0.09
EDD -0.04
MinimumDistanceToOtherCouriers -0.03
MaximumDistanceToDestinations 0.01
MinimumDistanceToDestinations 0.1
NumberOfOtherCouriersToTarget 0.37
PickupOrderItemsAtTarget 0.44
StartDate 0.5
PickupOrdersAtTarget 0.7
DueDate 0.77
DemandSize 0.79

Table 4.5: Evolved parameters for the high intensity scenario ordered by
their weight
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Tree Representation

A tree representation provides a representation for evolving priority policy
formulas without assuming a structure a-priori. In contrast, the linear rep-
resentation uses a fixed model and exposes a set of parameters which are op-
timized during the policy search. The tree representation seeks to overcome
these limitations by capturing non-linearities and synthesizing a priority func-
tion based on the features without making a-priori assumptions about the
model structure. Genetic programming (GP) is an established method for
evolving tree structures as solutions for structurally complex problems and
is applied for finding priority policies represented as trees in this context.

While for the linear representation the solution space is defined in the
space of parameter vectors, it is defined as a set of trees that follow a certain
grammar for tree representations. The root symbol of a tree returns a numer-
ical value which is calculated by combining arithmetic (addition, subtraction,
multiplication, division, average, exponential, logarithm), logical (if, greater,
less, and, or, not), and terminal symbols (constants and features). The result
of the tree evaluation is interpreted as the priority value of a given request.

In particular, genetic programming with offspring selection (Affenzeller
et al., 2009) is applied which is an enhanced version of the standard GP al-
gorithms and aims at the preservation of relevant genetic information. The
parametrization of the algorithm was borrowed from the work of Pitzer et al.
(2011) who applied a similar methodology to production logistics. A pop-
ulation size of 100 with a mutation rate of 15% and 1-elitism is used. The
offspring selection is parametrized with a maximum selection pressure of 200,
a comparison factor of 1, and a success ratio of 90%.

The comparably low population size for GP standards stems from the
computational complexity of the simulation evaluation. To avoid over-adaption,
the complexity of the trees was limited to a depth of 15 and a length limit of
25. The evolutionary process required 29072 evaluations in total to generate
the priority policies.

The evolved priority policy tree for the low intensity scenario is illustrated
in Figure 4.3 while the tree for the high intensity scenario is illustrated in
Figure 4.4. The trees combine selected features to a formula that calculates
the priority value by using logical and arithmetic expressions.

The interpretation of the relevant features is done from a more global
perspective compared to the linear model. The larger population size of the
genetic programming process in combination with the implicit selection of
the relevant features allows an analysis of the variable frequency in the final
population. The methodology of analyzing the variable impact is detailed by
Kronberger (2011).
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The variable frequency analysis for the low intensity scenario is depicted
in Figure 4.5 and for the high intensity scenario in Figure 4.6. Impor-
tant aspects for the determination of the request priority are the distance
to the vehicle (Distance), the number of waiting requests at a location
(DeliveryOrdersAtTarget), vehicle self-organization (DistanceToOther −
Couriers), as well as temporal properties of a request indicating its urgency
(LeadT ime, DueDate).

These results correspond to the interpretation of the linear models while
a more clearer picture is drawn due to an implicit feature selection in the GP
process.
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Figure 4.5: Variable impact analysis for the low intensity scenario

4.3.3 Conclusions

Conclusions drawn from the experimental setup and numerical results pre-
sented in Section 6.4 are twofold and concern the interpretation of the evolved
policies on the one hand and the evaluation in terms of runtime and solution
quality on the other hand.

In terms of interpretation, the clearest picture can be drawn from the
genetic programming process due to its implicit feature selection. The three
dominant aspects are identified based on the evolution of the policies from a
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Figure 4.6: Variable impact analysis for the high intensity scenario

comparably large set of domain features (cf. Vonolfen et al. (2013c)). Firstly,
an important aspect is related to the service quality determined mainly by
the lead time of a request and its urgency. Secondly, the current effort to
service a request for a vehicle is important w.r.t. distance and synergy effects
with already picked up requests. Thirdly, self-organizing aspects between the
agents are beneficial to split up the geographic space between the vehicles.

In terms of the achieved results on the test set, both the evolved lin-
ear as well as tree policies clearly outperform simple dispatching policies in
both scenarios while having a comparable computational complexity. The
computational effort is shifted to the training phase while the tree repre-
sentation requires significantly more evaluations due to the more complex
solution space. When applied online after the training phase, the evolved
policies have a low computational complexity which is comparable to simple
policies such as FCFS.

Additionally, the policies were compared to a planning algorithm. In
particular, an online tabu search was used which re-optimizes a planned set
of routes each time a new request appears. Unsurprisingly, the tabu search
algorithm has a much higher computational complexity than the policies.

For the low intensity scenario, there was a gap of 4.76% for the linear and a
3% gap for the tree policy compared to the tabu search. The tree dispatching
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policy yielded a significantly better result than the linear policy. In terms
of runtime, the policies required a under 1 minute of total computation time
while the tabu search required over 50 minutes.

In terms of the high intensity scenario, the gap to the planning algorithm
decreased. Both the linear (gap 0.69%) and the tree (gap -0.34%) achieved
comparable results to the planning algorithm and could be statistically not
distinguished from each other. The tabu search had an average total compu-
tation time of over 60 minutes while the tree and linear dispatching policies
required under 1 minute.

The results indicate, that specialized dispatching policies are applicable
in highly dynamic environments where a rather reactive acting is required as
opposed to planning a sequence of steps or when the computation time is a
critical aspect. The computation complexity is shifted to a training phase
and the evolved policies can be efficiently applied in an online setting with a
comparable runtime to simple policies while performing significantly better.

However, a large gap can be observed between the static and the dynamic
problem variant. Assuming that all requests would be known in advance,
a static tabu-search algorithm can achieve over 30% better quality for the
low intensity and nearly 15% better quality of the high intensity scenario
compared to the online tabu search. The optimization potential reduces
with increasing traffic intensity since the adherence to the maximal lead
time becomes a more dominant factor and the problem is more constrained.
In general, there is a large potential for incorporating a-priori information
about the appearing requests to close the gap between the static and the
dynamic problem variant.

4.4 Waiting Policies for Pickup and Delivery

Problems

The anticipation of future requests is an important aspect of dynamic vehicle
routing problems where requests appear during the planning period. Waiting
policies determine strategically beneficial locations for vehicles to wait where
new requests are likely to appear to utilize synergy effects.

Research on the distribution of waiting time along the vehicle routes has
led to general heuristics on the one hand and waiting policies that incorpo-
rate knowledge about future request patterns on the other hand. In pre-
vious work, non-robust behavior of waiting policies depending on problem
characteristics has been observed requiring specialized policies with adjusted
parameter settings (cf. Ichoua et al. (2006)).
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The aim of this work is to generate specialized waiting policies for pickup
and delivery problems with various spatial and temporal characteristics. Two
different ways to incorporate information about future requests are examined.
The first way is to utilize stochastic demand distributions as proposed by
Ichoua et al. (2006) while the second way is a newly proposed intensity
measure. The evolved policies are evaluated in terms of robustness with
respect to different problem characteristics and compared to general waiting
heuristics that do not take into account information about future requests.

4.4.1 Problem Definition

The different waiting policies have been proposed for and evaluated on dif-
ferent variants of dynamic vehicle routing problems. To provide a general
test bed, the different waiting policies are evaluated on pickup and delivery
problems with time windows (PDPTW) in this work. Applications of the
dynamic PDPTW are manifold and include full-truckload problems, less-
than-truckload problems and passenger transportation.

A fleet of vehicles has to serve a set transportation requests during a
planning period (i.e. a day of operation). A request has to be fulfilled
by exactly one service of a single vehicle, this means that split deliveries
are not allowed. The routes always start and end at the depot and the
capacity restrictions of the vehicles have to be considered as well as the time
windows for pickup and delivery locations. In the dynamic formulation, not
all requests are known in advance but are revealed during the planning period.
A service request s is revealed at a certain time rs and contains the pickup
location lps and the delivery location lds . Each location l can be serviced in
the time window defined by the opening time ol and closing time cl.

The objective is to minimize the required fleet size as well as the total
driven distance. The costs are calculated as a weighted sum of the utilized
vehicles and the driven distance. The costs for using a vehicle are set to cv =
3000, the costs for the traveled distance is set to cd = 1. According to this
parametrization of the evaluation function, the main objective is to minimize
the fleet size, the secondary objective to minimize the driven distance over a
given planning horizon.

The waiting policies considered in this work distribute the waiting time
a-posteriori after the routes have been determined based on the current re-
quests. This means, that in the first step the routing is performed and then
the scheduling where the vehicles should wait along the routes in the second
step.

After servicing each request, the vehicle can decide to wait at the current
location Ri or to move to the next location Ri+1 in the route R. The decision
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how long to wait at a current location is made after the service at Ri has been
completed. The time how long the vehicle can wait until the route would
become infeasible is determined by the time windows along the route. The
slack thus is defined as the maximum time the vehicle can wait at position
Ri in a route R until the route would become infeasible.

4.4.2 Distribution of Waiting Time

The aim of waiting policies is to distribute the waiting time along the route
in such a way, that newly arriving requests can be incorporated efficiently.
For instance, it makes sense to wait at a busy area where new requests are
likely to appear. Utilizing these synergy effects minimizes the distribution
effort leading to a lower fleet size and driven distance.

The investigated waiting policies can be categorized into general policies
and policies that consider knowledge about future requests. The motivation
to incorporate knowledge about demand patterns comes from the observa-
tion that human dispatchers typically utilize experience about intense geo-
graphical regions or peak times in the planning process. The integration of
knowledge is investigated in the form of stochastic information as well by
means of an intensity measure. The knowledge has been extracted from a
set of training instances representing historical data as detailed in Section
6.5.

General Policies

General policies utilize universal heuristics to distribute the waiting time.
The most straightforward waiting heuristics are the DriveFirst andWaitFirst
strategies which reflect the two most extreme situations. The former strategy
is never to wait and always leave immediately for the next location while
the latter is always to wait at the current location while feasible. These
trivial strategies provide a bound for comparison with more sophisticated
approaches.

Two more sophisticated strategies were defined and investigated for the
PDPTW by Mitrovic-Minic and Laporte (2004). In the Dynamic waiting
strategy (DW ), the route is partitioned into zones and each service zone con-
tains a number of consecutive locations that are close to each other. Within a
service zone, the DriveFirst strategy is used and between zones theWaitFirst
strategy is applied. A variation is the advanced dynamic waiting (ADW )
strategy where the time is distributed proportionally to the time span spent
in the zone.
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Several waiting heuristics for the DVRP were proposed by Branke et al.
(2005). The Depot waiting strategy waits at the depot as long as it is feasible
before starting a new tour. The MaxDistance strategy waits at the location
with maximum distance from the depot as long as possible. The Location
strategy distributes the slack time equally over all locations of a tour while the
Distance strategy distributes it proportionally to the driven distance. The
Variable waiting strategy was derived from an analytically proven optimal
strategy for the single vehicle case. The vehicles do not wait until the time
to return to the depot is equal to the slack time. After that, the remaining
wait time is distributed proportional to the remaining distance.

Based on Stochastic Information

Ichoua et al. (2006) proposed a threshold-based heuristic that exploits prob-
abilistic knowledge which will be denoted as the Stochastic waiting strategy.
The waiting heuristic is based on a spatial and temporal separation of the
service area into zones. For each zone, which is defined by a geographic
area j at a time period m, an arrival rate is specified in terms of a Poisson
parameter λjm.

Based on this information, the vehicle waits at the current location as
long as it is feasible and not longer than a given maximum wait time ∆ if
the following conditions are satisfied:

• The distance to the next location is greater than a given threshold α

• The number of already waiting vehicles in the geographic zone is smaller
than a given number V

• The probability for a request to occur during the waiting time in the ve-
hicle neighborhood is greater than a given threshold s. The parameter
β determines the size of the neighborhood.

The Stochstic policy has five parameters (∆, α, s, V, β) that are set ac-
cording to problem properties. Ichoua et al. (2006) presented two hand-tuned
parameter settings for low-intensity and high-intensity scenarios.

A data pre-processing step is required to generate the stochastic knowl-
edge from the past request information. For that purpose the problem in-
stances of the training set have been preprocessed by separating the requests
into 225 geographic slices (1 ≤ j ≤ 225) and 15 time slices (1 ≤ m ≤ 15)
leading to a total of 3375 zones for each problem class. For each zone, an
arrival rate is specified in terms of a Poisson parameter λjm. The parameter
λjm was calculated by averaging the number of arriving requests in that zone
over all training instances.
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Based on an Intensity Measure

After analyzing the strengths of existing approaches, three important factors
have been identified that influence the decision how long a vehicle should
wait at a given location. The aim is to distribute the waiting time in a
fine-grained and proactive way.

The first factor is based on the observation that, if the next location
is far away, it might be beneficial to wait. This has been considered by
the partitioning approach used in the Dynamic strategy and the threshold
for the distance used in the Stochastic strategy. The second factor is the
relative intensity of the current location and to distribute the available slack
proportionally. A proportional distribution has been successfully applied
using the Dynamic and Variable strategies. The third factor is the available
slack at a given time. The Variable waiting strategy proposes not to wait at
the beginning of the route. This indicates, that the slack must be carefully
distributed over the route.

Based on the strengths of previous waiting strategies, a new waiting policy
is proposed that is based on an intensity measure which in the following will
be denoted as the Intensity waiting strategy. The motivation to use an
intensity measure instead of a stochastic model is motivated by the fact that
stochastic information needs to be of a certain quality and might require
intensive pre-processing steps in practice as pointed out by Ferrucci et al.
(2012). The use of an intensity measure aims at removing these restrictions.

Instead of using a stochastic model, the intensity is calculated based on
historical request data which has been for example collected during daily
operations. In the case of this study, a set of training instances is used as
historical data. The data consists of a set S of historical service requests
where each service request s ∈ S occurs in a certain planning horizon h.
Each service request s is revealed at a certain time rs and contains the pickup
location lps and the delivery location lds .

The definition of the intensity measure is based on the transition time
between two locations l1 and l2 at the current time t. The transition time
is the time that passes between the time the vehicle leaves location l1 and
the time the vehicle starts servicing location l2. It consists of the distance
(Dist) between l1 and l2 and a possible waiting time before the time window
at location l2 opens. Formally it can be defined as listed in Equation 4.8.

TransitionT ime(l1, l2, t) = Dist(l1, l2)+max{0, ol2−(t+Dist(l1, l2))} (4.8)

The intensity of a location l at the current time t is defined as the average
transition time for requests in the historical request set S that would have
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been not revealed yet and is listed in Equation 4.9. The transition times are
normalized according to the total planning horizon h. Locations with a lower
average transition time have a higher intensity.

Intensity(l, t) = 1−

∑
{s∈S:rs>t}

TransitionT ime(l,lps ,t)
h

|{s ∈ S : rs > t}|
(4.9)

By combining these considerations into a single policy, the decision how
long to wait at a current location Ri in a given route R or to move to the
next location Ri+1 after finishing the service at location Ri at time ti is based
on these three factors:

• The transition time between Ri and the next location Ri+1 in route R.
The transition time is a sum of the distance between Ri and Ri+1 and
the waiting time before the time window opens at Ri+1.

• The intensity of location Ri as opposed to location Ri+1.

• The slack in the route R at position Ri which is the maximum time the
vehicle can wait at position Ri until the route would become infeasible.

To evaluate the benefit of waiting at a given location in the route, the
three factors are combined into a single value. The formula for calculating
the value of waiting in the given route R at a location Ri at time ti is
listed in Equation 4.10. The value of waiting is calculated at time ti before
moving to the next location Ri+1 at which the service would be completed
at time ti+1. The function Slack(Ri, ti) calculates the maximum time at
location Ri in a route R at time ti that can be waited until a time window
in the remaining section of the route would be violated. The transition time
and slack are normalized according to the remaining time within the total
planning horizon h after the location Ri has been served at time ti.

v(Ri, ti) = α′ ∗
TransitionT ime(Ri, Ri+1, ti)

(h− ti)

+ β′ ∗
Intensity(Ri, ti)

Intensity(Ri, ti) + Intensity(Ri+1, ti+1)

+ γ′ ∗
Slack(Ri, ti)

(h− ti)

(4.10)

Based on the value of waiting at a certain location the waiting policy
which returns the amount of time the vehicle should wait at the current
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position Ri of route R at time ti is listed in Equation 4.11. The parameter
ǫ′ defines a threshold the value of waiting must exceed, otherwise the vehicle
does not wait at the current location. The waiting time in the route is scaled
according to the amount v exceeds the threshold. All features are normalized
in the interval [0, 1], thus the value v is in the range [0, vmax]. The maximal
value of v is vmax = max{0, α′}+max{0, β′}+max{0, γ′}. For locations that
have a high value of waiting, a large proportion of the available slack in the
route is used.

WaitingT ime(Ri, ti) = max{0, Slack(Ri, ti) ∗ (
v(Ri, ti)− vmax ∗ ǫ

′

vmax − vmax ∗ ǫ′
} (4.11)

In total, the Intensity policy has four parameters of the waiting strategy
that have to be set according to the problem characteristics: α′, β′, γ′ and
ǫ′.

4.4.3 Evolutionary Parametrization

Both waiting policies that incorporate knowledge about future demand pat-
terns expose parameters that are set according to the problem characteristics
to allow a fine-grained distribution of the waiting time. For example, in some
scenarios the region intensity, in other scenarios the transition time might be
more important. In Ichoua et al. (2006) the parameters have been set man-
ually by means of preliminary experiments. In contrast, in this work, direct
policy search is applied to automatically specialize the policies to different
problem characteristics.

As stated earlier, the Intensity policy exposes five while the Stochastic
policy exposes four parameters. The parameters are represented as a real-
valued vector which is optimized using a self-adaptive evolution strategy.
The parametrization is tailored to the computationally complex task of direct
policy search. Thus, a comparatively small population size is used and the
ratio between parents and generated children is high which leads to a greedy
search process. Each generation, 16 children are created from the 2 parent
individuals by heuristic recombination and a normally distributed mutation.
The 2 best children replace the parents for the next generation (comma
replacement). The mutation strength is adapted according to the learning
parameters τ = 0.4 and τ0 = 0.4. This process is repeated for 50 generations.

For the training phase a push forward insertion heuristic which has been
adapted to the PDPTW by Li and Lim (2001) is applied for route calculation.
It is characterized by a comparatively low computational complexity which
is required since the policy search requires much computational resources.
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The parameter vectors of the waiting policies are evolved for different
problem classes, each containing a set of training and a set of test instances
(details about the used benchmark instances can be found in Section 6.5).
The classes are characterized by different spatial (C is clustered, R is random,
RC is mixed) and time window (1 is tight, 2 is large) properties. The evolved
parameter set for the different classed for the Stochastic policy are listed in
Table 4.6 while the parameters for the Intensity policy are listed in Table
4.7.

Class α ∆ s β V
C1 1.000000 0.843837 0.206368 0.535048 0.000000
C2 0.136841 0.609929 0.575356 0.380122 0.336438
R1 0.000000 0.537976 0.604499 0.092322 0.753874
R2 1.000000 1.000000 0.999918 0.756439 0.948408

RC1 0.693591 0.459593 0.678374 1.000000 0.370727
RC2 0.000000 1.000000 0.793226 0.216212 0.429234

Table 4.6: Evolved Parameters for the Stochastic Policy

Class α′ β′ γ′ ǫ′

C1 0.883440 0.519018 0.000000 0.000000
C2 0.000000 0.567995 0.275205 0.000000
R1 0.486998 0.080907 0.747825 0.104138
R2 0.000000 0.000000 0.673014 0.023979

RC1 0.942528 0.949774 0.165874 0.250547
RC2 0.053280 0.097974 0.800274 0.000000

Table 4.7: Evolved Parameters for the Intensity Policy

The fact that the evolved parameters are quite different for the individual
classes indicates that specialized settings are needed depending on the prob-
lem characteristics. After the policies have been evolved on the training set,
their performance is evaluated on the test set using a more sophisticated al-
gorithm for route calculation. Concretely, the unified tabu search algorithm
(Cordeau et al., 2002) is applied. The search process is based on a shift neigh-
borhood where customers are moved from one tour to another using the best
possible insertion position. The constraints are adaptively relaxed and tight-
ened to be able to move through infeasible regions of the search space which
makes the search process very powerful. In terms of parametrization, a tabu
tenure of 5log10n is used, where n is the number of customers. Every time a
new request occurs, it is inserted at the best possible position of the current
executing plan and 100 iterations are performed to calculate a new plan.
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4.4.4 Conclusions

Based on the computation results presented in Section 6.5 the drawn con-
clusions concern the competitiveness of the evolved waiting policies in com-
parison to general heuristics as well as the influence of spatial and temporal
problem characteristics to the potential of anticipatory waiting. The Inten-
sity strategy had a slight advantage over the Variable strategy which was
the best general heuristic, while the Stochastic strategy was clearly outper-
formed in the test phase. The average savings of the Intensity strategy on
the overall test set were 4.59%.

The temporal and spatial characteristics have a large influence on the
potential savings that can be achieved with anticipatory waiting. Especially
geographically clustered customers are very beneficial where 11.71% savings
could be achieved by the Intensity strategy compared to not applying a wait-
ing heuristic. Also larger time windows are more beneficial than small time
windows where over 7.14% savings were achieved. Also the degree of dy-
namism has an impact on the potential savings. The savings potential is
largest for instances were around half of the customers appear dynamically
with decreasing potential both for instances with higher and lower degree
of dynamism. A possible explanation regarding the influence of dynamic re-
quests is the fact that the lower the degree of dynamism is, the more requests
are active at the same time and thus the waiting time can be distributed in
a more fine-grained way. However, the gap to the static solution and thus
the optimization potential of applying anticipatory waiting decreases.

It can be concluded that the best general heuristic, the Variable strat-
egy, provides robust performance on the overall test set. It has been derived
from a proven optimal policy in the single vehicle case and transfers well
to the investigated problem variant. However, especially on instances with
characteristics that are beneficial for applying waiting heuristics, additional
optimization potential can be utilized by applying specialized waiting poli-
cies. On instances with clustered customers the evolved Intensity policies
perform 1.35% better, on instances with large time windows they perform
1.11% better, and on instances with clustered customers as well as large time
windows they perform 3.44% better than the Variable policy. On instances
with mixed randomly and clustered geographically distributed customers as
well as small time windows the picture is less clear.

Based on the results it can be concluded, that the potential of waiting
heuristics in general and of specialized policies in particular strongly de-
pends on the problem characteristics while specialized policies clearly can
exploit additional optimization potential compared to general heuristics in
cases where it is beneficial to apply anticipatory waiting.
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Chapter 5

Dynamic Situational Selection
of Routing Policies

In this chapter, a methodology for the situational selection of solution tech-
niques within dynamic vehicle routing environments with changing charac-
teristics is presented. The simulation optimization approach presented in
Chapter 3 as well as the automated algorithm design by direct policy search
presented in Chapter 4 are integrated in a methodological framework based
on portfolio-based algorithm selection.

In Section 5.1 the different methodologies presented in this thesis are
combined to a heuristic framework that is adaptive in terms of changing
problem characteristics. Based on this framework, in Section 5.2 a case study
is presented where a stochastic routing problem with changing uncertainty
is solved using a portfolio of human as well as semi-automatically designed
heuristics.

5.1 Portfolio-Based Dynamic Algorithm Se-

lection

As pointed out in Chapter 2, research on heuristics for dynamic vehicle rout-
ing problems has mainly focused on techniques that are especially designed
for certain problem characteristics on the one hand and on general search
strategies that work well on a wide range of problems on the other hand.
In many cases, specialized heuristics become suboptimal once the problem
characteristics change. When designing general strategies, optimization po-
tential is often lost due to a focus on average performance. This dilemma
can be observed early in dynamic vehicle routing research when Bertsimas
and Van Ryzin (1991) investigated policies discovering non-robust behavior.
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These considerations are according to the no free lunch (NFL) theorem
(Wolpert and Macready, 1997) which states, that there is no algorithm that
performs best in all situations and there is a tradeoff between generalization
and specialization. Focusing only on average-case performance of algorithms
leads to the fact that strategies might be neglected that perform well only
in certain situations while non-robust behavior was identified for highly spe-
cialized algorithmic strategies. An example are specialized waiting strategies
investigated in Section 4.4 which do not show a large benefit in the average
case, however improve the solution quality significantly for clustered problem
instances with large time windows.

With these aspects in mind, it would be desirable to have a dynamic vehi-
cle routing system that combines several specialized heuristics and adaptively
selects an appropriate strategy according to the current problem character-
istics. A methodological framework for a portfolio-based algorithm selection
is presented in the following which combines elements from several streams
of research and integrates the methodological developments presented in this
thesis.

5.1.1 Methodological Framework for Algorithm Selec-
tion

Viewing the dynamic vehicle routing problem as a multi-stage optimization
problem (as detailed in Chapter 2), a heuristic strategy is selected from a
portfolio of specialized heuristics in each decision stage during the planning
process reacting to a changing problem environment. At each decision stage,
not only decisions about the routing are made on the problem level but also
about the used routing policy that is suitable in terms of current problem
characteristics on the meta level.

Core of the approach is a portfolio of specialized heuristics which can be
human created or semi-automatically generated by direct policy search as
outlined in Chapter 4. The assumption is, that combining different policies
with individual strengths and weaknesses to a portfolio enables to overcome
the dilemma of generalization versus specialization as presented by the NFL
theorem. The aim is to create a portfolio that achieves better results than
each policy individually. The portfolio can contain very specialized policies
that probably only perform well under certain situations. By dynamically
selecting a suitable policy from the portfolio, the methodology allows an
adaption to changing problem characteristics and becomes more generally
applicable than each individual policy.

The idea of combining several algorithms to a portfolio was first presented
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by Huberman et al. (1997) and stems from applying principles of financing
to optimization. Analogous to having a set of financial assets providing
a return of investments, computational resources are invested by running
multiple algorithms in parallel and the risk and reward in terms of solution
quality is investigated.

As Silverthorn (2012) notes, modern portfolio approaches apply algo-
rithm selection instead of the economical framework. Approaches based on
machine-learning have been very competitive. Examples are the SATzilla
system (Xu et al., 2008) in the area of satisfiability problems and the CP-
Hydra system (O’Mahony et al., 2008) for constraint programming which won
several competitions on international conferences. The research on portfolio-
based algorithm selection is very active and an online survey is provided by
Kotthoff (2014).

A theoretical model for algorithm selection was already presented by Rice
(1976) and includes three important aspects. The problem space (P ) is a set
of considered problem instances. The algorithm space (A) is a set of algo-
rithms that can be used to solve instances of the considered problem. The
performance measure space (Y ) includes possible criteria to measure algo-
rithm performance such as runtime or accuracy. The aim is, for a particular
problem instance p ∈ P , to find a selection mapping S(p) that returns an
algorithm a ∈ A which maximizes the performance measure y(a, p). Rice
(1976) noted that problem and algorithm characteristics are important for
algorithm selection as well as the definition of performance criteria.

Derived from the above definition, methodological approaches dealing
with the algorithm selection problem must tackle three important aspects as
outlined by Cruz-Reyes et al. (2012):

• Selection of problem features to characterize problem instances

• Selection of a set of algorithms with different strengths and weaknesses
with respect to a large range of problem instances

• Creation of a mapping between the problem space and the algorithm
space to select an algorithm for a given problem instance connecting
problem features with algorithms

These three aspects are considered in the presented methodology which
is illustrated in Figure 5.1. It is based on the simulation optimization model
presented in Section 3.1 and extends it by replacing the single optimization
component with a portfolio-based algorithm selection while the interaction
with the simulation environment stays the same1.

1For details on the world state representation, the interaction mechanisms, and the
optimization model see Section 3.1
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Figure 5.1: Methodological framework for dynamic algorithm selection (illus-
trated in black) extending the simulation optimization approach presented
in Section 3.1 (illustrated in light gray)

Events received from the simulation indicate changes of the problem en-
vironment (e.g., a new order was placed) which are tracked by the Problem-
Characterization component to update the current problem feature values
as well as by each policy in the Portfolio to update its world state. The
PolicySelection component selects a policy from the portfolio based on the
current problem features. The selected policy is used to make routing deci-
sions and can incorporate any of the solution methods presented in Section
2.2. In principle, a different policy can be selected whenever the problem en-
vironment changes allowing an adaption of the solution strategy to changing
problem characteristics.

The methodological framework combines problem characterization, port-
folio design, and problem to algorithm mapping. These three aspects will
be examined in the following and the base framework will be extended to
incorporate learning in terms of extending the portfolio and improving the
mapping.

Problem Characterization

Problem characterization has the purpose of defining a set of features that
differentiate problem instances and serves as a basis for algorithm selection.
The importance of selecting appropriate problem features has been already
pointed out when the algorithm selection problem was initially defined by
Rice (1976). Recently it was highlighted by Cruz-Reyes et al. (2012) who
noted that the definition of appropriate problem features is a difficult task
and a meaningful problem differentiation is needed for building a mapping
and understanding the connection between problem characteristics and algo-
rithm performance.
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As Cruz-Reyes et al. (2012) points out, there are two approaches to char-
acterize problem instances. On the one hand, problem dependent features
can be derived from domain knowledge while on the other hand a more gen-
eral fitness landscape analysis can be performed. Both methods have been
applied in the past to characterize vehicle routing problems.

In terms of problem specific features, the classical VRP has been studied
with and without time windows. Solomon (1987) has pointed out the signif-
icance of spatial and temporal problem characteristics of VRPTW instances
and proposed an often used benchmark set with different combinations of
these. Random, clustered, and mixed geographically distributed customers
were considered as well as small and large time windows. Six different classes
of problem instances with different number of customers were generated com-
bining these properties. Ruiz-Vanoye et al. (2008) proposed complexity in-
dicators based on descriptive statistics that consider the geographical and
demand distribution of the customers, the customer number, time window
properties, and service time distributions. Pitzer et al. (2012) investigated a
VRP without time windows and considered the problem size, the clustering
as well as the geographical eccentricity of the customers, and distance as well
as demand distributions.

In contrast to problem specific features, fitness landscape analysis mea-
sures are problem independent and thus more generally applicable. Assuming
a certain neighborhood, different properties of the resulting fitness landscape
are analyzed in terms of statistical as well as information theoretical mea-
sures. The analysis of fitness-distance correlation of CVRP instances re-
vealed that many instances had a big-valley structure (Kubiak, 2007) which
means that local optima are clustered in a globally convex structure. Ven-
tresca et al. (2013) analyzed VRPTW instances with information theoretic
landscape measures such as the ruggedness, neutrality, and the basin of at-
traction as well as the isolation of local optima. Pitzer et al. (2012) analyzed
CVRP instances using several fitness analysis features that included both
statistical and information theoretical measures.

As Pitzer et al. (2012) concluded, both problem dependent and fitness
landscape analysis measures can provide a valuable contribution to drawing
a complete picture of the problem instance characteristics and that a cor-
relation exists between them. An important topic that can be investigated
based on the problem features is the discrimination in terms of problem diffi-
culty. Ventresca et al. (2013) used information theoretic landscape measures
to cluster problem instances in terms of their difficulty. Also for other com-
binatorial optimization problems, such as the quadratic assignment problem
(Pitzer et al., 2014), a correlation between problem features and its hardness
for certain search methods has been found.
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Portfolio Design

Portfolio design is concerned with selecting a set of algorithms and combining
them together to solve a diverse set of instances for a given problem. As
pointed out by Gomes and Selman (1997), creating a portfolio of algorithms
makes sense in cases where the algorithms show different performance profiles
and no single algorithm dominates the others on all problem instances. Cruz-
Reyes et al. (2012) state that creating a portfolio of algoirthms is typically
motivated by the fact that for a given problem usually a large range of
solution techniques exist that have different strength and weaknesses. The
portfolio can be designed beforehand (a-priori) or by means of online or offline
learning.

In terms of an a-priori selection of the set of algorithms to be included in
the portfolio, as noted by Cruz-Reyes et al. (2012), portfolios usually contain
several state-of-the-art algorithms for a given problem. The selection of the
set of algorithms to be included in the portfolio is typically based on a diverse
set of problem instances on which the performance is evaluated empirically.
When choosing a representative instance set which covers a wide range of
problem characteristics for the selection step, the risk is minimized that the
portfolio will perform poor on unseen problem instances.

By integrating automated algorithm design, the portfolio can be extended
with newly generated algorithms. This approach was first studied by Xu et al.
(2010) for satisfiability problems and showed advantages over pre-defined
portfolios being particularly advantageous in problem domains that require
highly specialized algorithms. The method requires an automated algorithm
design procedure as well as a portfolio building technique.

Extending the portfolio by newly generated policies can be viewed as a
learning capability to adapt to previously unseen problem characteristics. A
methodology integrating the policy generation approach presented in Sec-
tion 4.1 in the portfolio architecture is illustrated in Figure 5.2. An Ex-
plorationElement explores previously unseen problem features (for example
by reacting to problem features that are encountered during online opera-
tion). Based on these features, a ProblemGeneration component generates
new problem data that is used to search for an efficient policy using direct
policy search (see Section 4.1). The PortfolioExtension component can then
decide to include these newly generated policies in the portfolio or to replace
a given policy by a new one based on the performance measures.
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Figure 5.2: Methodology extending the portfolio with newly generated poli-
cies using the methodology presented in Section 4.1 (illustrated in light gray)
by exploring new problem features (illustrated in black)

Problem to Algorithm Mapping

A problem to algorithm mapping mechanism is the core of a system for
automated algorithm selection. The aim is to map from problem features
to an algorithm that provides the best performance measure. In the case of
dynamic vehicle routing, a routing policy is selected based on the current
problem characteristics.

As Smith-Miles (2008) notes, many different research directions have been
followed in several areas. In the area of meta-learning, machine learning
methods have been investigated to learn models relating problem features
with algorithm performance. Work in the area of artificial intelligence focused
on empirical hardness estimations while within research on metaheuristics
search spaces were characterized using fitness landscape analysis. A conclu-
sion is that an intersection of techniques from multiple disciplines is required
to provide an efficient mapping mechanism for algorithm selection. Several
methods have been investigated ranging from human-defined heuristic rules
to learning approaches based on meta-knowledge about algorithm perfor-
mance.

A rather straightforward approach is the use of heuristic rules that select
and algorithm based on problem features and are defined beforehand by a
domain expert. For example, Beck and Freuder (2004) proposed different se-
lection strategies for scheduling problems based on limited problem instance

123



knowledge with inexpensive metrics. Obvious disadvantages are the require-
ment for human experience in the design of the rules and the lack of learning
capabilities once the rules have been defined.

The use of machine learning methods for the development of algorithm se-
lection models was first studied in the context of selecting learning algorithms
for classification problems according to Smith-Miles (2008) who generalized
the idea of meta-learning to other application areas such as combinatorial
optimization. Kotthoff et al. (2011) surveyed and compared various machine
learning methods for algorithm selection:

• Case-based reasoning does not build a model or theory about algorithm
performance but finds the examples of past performance (cases) to infer
about unseen problem instances. For example, the nearest neighbors
of a new problem instance could be found in the past performance data
based on the problem features.

• Classification labels the different problem instances with an algorithm
that should be used to solve them. A classifier is learned that discrim-
inates the problem instances according to their features.

• Regression predicts the performance of each algorithm on a given prob-
lem instance. The algorithm with the best predicted performance can
be selected.

• Statistical relational learning predicts performance ranking of algo-
rithms for a particular problem instance while considering uncertainty.
For example, support vector machines can be applied to predict the
ranking scores. It is a rather new approach to algorithm selection.

The base framework for portfolio-based algorithm selection (presented
in Figure 5.1) can be extended with machine learning techniques to learn
about the problem to algorithm mapping as illustrated in Figure 5.3. A Per-
formanceEvaluation component provides feedback about the performance of
applying a selected policy in a situation with certain problem characteristics.
A Reasoning component generates mapping knowledge by applying machine
learning techniques to build a meta-model explaining the policy performance
based on the current set of problem features. That way, the system can
continuously extend the mapping knowledge offline during training or online
during operation and learn about the mapping between problem features and
policy performance.
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Figure 5.3: Methodology extending the base framework for algorithm selec-
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5.1.2 Specializations and Possible Application Areas

The application area of the proposed framework is focused on dynamic ve-
hicle routing problems where the characteristics change during operations
requiring to change the solution method to utilize the full optimization po-
tential.

In principle, the problem characteristics of a dynamic vehicle routing
environment can change with any new information that arrives during oper-
ation (see Section 2.1.3. For example, newly arriving requests can change the
overall spatial and temporal characteristics such as geographical distribution
of the customers or time window properties. Also, the degree of dynamism
might change during operations requiring to switch between reactive poli-
cies and planning algorithms. When stochastic information is available, the
information quality might change requiring different solution approaches.

Depending on the application, specializations of the general methodolog-
ical framework can be created. There are three important design decisions
when specializing the general framework for portfolio-based algorithm selec-
tion. They can be summarized as following:

• The problem characterization can be achieved by problem dependent
or general fitness landscape features. Also, a combination of both is
possible.

• The portfolio design can be done either a-priori using a set of available
pre-defined algorithms or by means of learning. The learning can occur
offline on training instances as well as online during operations.
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• In terms of problem to algorithm mapping human-defined heuristic rules
or learning approaches can be used. The machine learning process can
be carried out offline on training instances as well as online as new
problem characteristics are encountered. When the algorithm portfolio
is extended online, also the mapping must be adapted.

In the following, a specialization of the methodological framework for
portfolio-based algorithm selection will be presented which is applied to a
stochastic routing environment with changing uncertainty.

5.2 Combining Several Heuristics in Environ-

ments with Changing Uncertainty

In this section, a dynamic pickup and delivery problem with stochastic cus-
tomers is investigated where the appearance probabilities of the customers
change over time. The robustness behavior of various policies in terms of
uncertainty of the stochastic knowledge on instances with different spatial
and temporal characteristics is investigated. On the basis of the robustness
analysis, the different policies are combined to a portfolio by specializing
the portfolio-based algorithm selection framework presented in the previous
section.

5.2.1 Context and Motivation

The incorporation of advance knowledge about future events allows a pro-
active planning process and potentially improves the solution quality com-
pared to purely reactive planning. However, previous studies have shown
that the quality of the advance knowledge has a major impact on the poten-
tial savings. Thus it is important to consider the robustness of the pro-active
planning processes in terms of data quality considering the temporal and
spatial properties of the problem environment.

Bent and Van Hentenryck (2004b) noted that the incorporation of ad-
vance knowledge is especially beneficial in environments with a high degree
of dynamism. In other studies the robustness of the policies concerning the
quality of advance knowledge was investigated. Ferrucci et al. (2012) identi-
fied a near-linear relationship between the quality of the advance knowledge
and the improvement in solution quality of a pro-active compared to a purely
reactive approach. As a basis for their analysis, they proposed a structural
diversity measure and liked the advantages of pro-active planning to the geo-
graphic and temporal variations of request arrivals for relocating the vehicles.
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Hentenryck et al. (2010) investigated the effect of noisy stochastic informa-
tion on the solution quality. A main finding was that it is better to rather
over-estimate the number of appearing customers when it comes to optimiz-
ing the service quality. However, at some point the driven distance increases
due to an increasing number of pro-active relocations where no customer
materializes and a reactive planning outperforms the pro-active approach.

In this study, a dynamic pickup and delivery problem with stochastic
customers is investigated in which the uncertainty related to the appearance
of new customers changes over time. In particular, a standard pickup and
delivery problem with time windows (PDPTW) is used as a problem formu-
lation where requests appear dynamically during operations. Additionally,
for each dynamically appearing customer an appearance probability between
0% and 100% is given according to a uniform distribution. The main objec-
tive is the minimization of the fleet size while the secondary objective is the
minimization of the driven distance. Each used vehicles is weighted with a
cost factor of cv = 3000 while each unit of driven distance with a factor of
cd = 1. The objective value is thus a weighted sum of total fleet size and
driven distance.

The proposed measure for data quality in this context is depending on the
appearance probability over all stochastic customers. In practical contexts,
advance information about future events might be noisy and the data quality
can change over time. For example, long-term events might be associated
with a larger uncertainty than near-term events. An important aspect of
solution methods that are applied in uncertain environments is thus their
robustness concerning data quality. The proposed methodology combines
different pro-active policies to a portfolio and adaptively selects an appropri-
ate one depending on the current data quality and instance characteristics.
The performance of the presented methodology is evaluated on dynamic and
stochastic PDPTW instances with different spatitial and temporal charac-
teristics where the appearance probabilities of the requests change over time
(see Section 6.6 for details on the problem instances).

As stated in the previous section, the problem characterization, the port-
folio design, and the problem to algorithm mapping are important design
decisions when specializing the general framework for portfolio-based algo-
rithm selection to an application area. These aspects are detailed in the
following in the context of this study.

5.2.2 Problem Characterization

The different problem instances are characterized according to three feature
dimensions while all three are problem dependent. The first two dimensions
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are temporal and spatial properties of the transport requests which are as-
sumed to be fixed for each instance. The third dimension is the uncertainty
in terms of request appearance which changes over time for a given instance.

As detailed in Section 6.6, the instances are split into pre-defined classes in
terms of geographic distribution of requests (C = clustered, R = random, RC
= mixed) and time window size (1 = tight, 2 = large). These characteristics
are known a-priori per instance class and do not change. The combination
of these characteristics leads to six different instance classes.

The uncertainty in terms of appearance of future requests changes over
time which can be interpreted as a changing data quality of the a-priori in-
formation. For each request r ∈ Rt in the future requests set, an appearance
probability pr is given as well as its arrival time ar. The future request set R
contains all stochastic requests at time t during the total planning horizon
H.

A single uncertainty value is derived from the appearance probabilities of
all future requests by aggregating them using three different formulas that
weigh the requests uniformly, linear and exponentially respectively. The lat-
ter two consider the relative appearance time of request r defined as ar−t

H
.

In that case, the uncertainty of near-term requests is considered more im-
portant than the uncertainty of long-term requests in calculating the total
uncertainty value.

The uniform weighting function simply calculates the average over the
appearance probabilities of all future requests neglecting their appearance
time:

uncertaintyUniform(t) = 100%−
∑

r∈Rt

pr
|Rt|

(5.1)

One way to consider the appearance time is to linearly decrease the weight
of a future request with its distance to the current time t:

uncertaintyLinear(t) = 100%−

∑
r∈Rt

pr(1.0−
ar−t
H

)∑
r∈Rt

1.0− ar−t
H

(5.2)

Also an exponential decrease of weight is considered, while the parameter
α determines the slope of the function:

uncertaintyExponentialα(t) = 100%−

∑
r∈Rt

pre
(−ar−t

H
/α)

∑
r∈Rt

e(−
ar−t
H

/α
(5.3)

The different weighting functions are illustrated in Figure 5.4. The expo-
nential weighting function with an α value of 0.1 provides the most short-term
weighting while the uniform function weights all stochastic requests equally.
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Figure 5.4: Different weighting functions to aggregate the appearance prob-
abilities of all future requests to a single uncertainty value. In the linear
and exponential (exp) weighting, the uncertainty of near-term requests is
weighted more than long-term requests.

5.2.3 Portfolio Design

The portfolio design has been performed a-priori using a set of pre-defined
heuristics that have different strengths and weaknesses concerning robust-
ness behavior in terms of uncertainty. The algorithms have been evaluated
beforehand on a set of evaluation instances with fixed characteristics to draw
conclusions about their performance under different situations. A sampling-
based approach, waiting strategies, and purely reactive planning have been
combined to an algorithm portfolio to minimize the risk of providing bad
solutions when the data quality decreases.

All three heuristics are based on a unified tabu search proposed by Cordeau
and Laporte (2003) for route calculation which works on a standard pickup
and delivery problem with time windows formulation. At each time step,
the current situation is converted to a static problem. The initial solutions
are created using a push-forward insertion heuristic proposed by Li and Lim
(2001). The neighborhood is explored exhaustively and a maximum of 100
iterations are performed each time step. This basic algorithm is used as a
purely re-active algorithm that can be extended with the consideration of
a-priori knowledge about future requests.

Two different approaches, the multiple-scenario algorithm (MSA) and
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waiting strategies, are integrated that utilize the available stochastic infor-
mation about future requests differently. The MSA samples multiple scenar-
ios from the stochastic data and solves each resulting deterministic problem
instance separately. From the solutions of the individual scenarios a con-
sensus plan is formed. This heuristic for stochastic vehicle routing problems
has been proposed by Hentenryck and Bent (2009). The waiting strategies
perform anticipatory waiting at strategically beneficial positions which are
derived from the a-priori knowledge. The generated waiting strategies pre-
sented in Section 4.4 are used which have been specialized to the different
spatial and temporal characteristics of the problem instance classes.

The three routing heuristics have been analyzed in terms of robustness
behavior on different instance classes. For that purpose, evaluation instances
with a fixed level of uncertainty were used. The evaluation set contains
instances in six classes with different temporal and spatial characteristics.
In each class, problems were considered where all customers have a certain
appearance probability. Instances with 10% to 90% appearance probability
were considered (details on the evaluation instance set can be found in Section
6.6).

The results on the evaluation set are illustrated in Figure 5.5 and illustrate
a good potential for synergy in some cases. While for the clustered instances
(C1, C2) the generated waiting strategies clearly dominate in nearly all in-
stances but the ones with 90% appearance probability. For the other classes
no single heuristic dominates in all cases. For example, for the class R1
the MSA algorithm dominates until about 30% appearance probability and
then reactive planning yields better performance. The a-priori performance
evaluation clearly indicates that a combination of different approaches might
proof fruitful in terms of robustness.

5.2.4 Problem to Algorithm Mapping

From this a-priori performance analysis of the heuristics under different fixed
problem characteristics, a fixed set of rules for algorithm selection can be
derived beforehand. The rule set follows the logic of always selecting the
heuristic that performed best on the evaluation instance set under certain
characteristics.

The rule set is listed in Table 5.1 and has been derived manually from
the performance evaluation that was performed during portfolio design. As
a general pattern it can be observed, that the MSA heuristic performs best
in all instance classes until a certain degree of uncertainty. Then, either the
waiting strategies (AW) offer a larger robustness or it makes sense to switch
to reactive planning (AH).
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Figure 5.5: Performance evaluation of the three routing heuristics (reactive
= AH, sampling = MSA, waiting = AW) on the evaluation instance set with
fixed characteristics. Instance classes were considered with clustered (C ),
randomly (R ), and mixed (RC ) geographical distributions as well as small
( 1) and large ( 2) time windows. In each of the six classes, instances with
90% to 10% appearance probability were examined where all customers have
the same fixed uncertainty.
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Class Rule Selection
C1 IF uncertainty <= 10% MSA

ELSE AW
C2 IF uncertainty <= 10% MSA

ELSE AW
R1 IF uncertainty <= 70% MSA

ELSE AH
R2 IF uncertainty <= 60% MSA

ELSE AW
RC1 IF uncertainty <= 70% MSA

ELSE AW
RC2 IF uncertainty <= 70% MSA

ELSE AW

Table 5.1: Rule set for the different instance classes for selecting a solution
strategy depending on the current degree of uncertainty

5.2.5 Conclusions

Based on the results presented in Section 6.6, the overall conclusion can
be drawn that the portfolio approach clearly outperforms any individual
heuristic on the overall instance set. The expontential weighting function
with an α value of 1.5 was identified as the best overall strategy. It can
be observed that for small time windows a smaller α value of 0.5 is slightly
advantageous because it focuses more on short term requests. In general, the
α value of 1.5 proved as a robust parametrization and this portfolio achieved
2.16% better results than the MSA which was the best individual heuristic.

In terms of optimization potential it can be observed, that the individual
policies complement each other especially in terms of spatial characteristics.
While for the clustered problem instances the waiting strategies are clearly
dominating the other strategies, the MSA is the overall best on the other
classes until a certain degree of uncertainty. If the policy would be solely
selected based on the instance class, selecting WS for clustered instances and
MSA for the remaining while disregarding the current uncertainty, already
a saving of 1.54% can be achieved compared to only using the MSA. If a
dynamic policy selection is performed based on the current degree of uncer-
tainty, this result can be further improved by 0.63% allowing the utilization
of additional optimization potential.

However, the potential of the dynamic algorithm selection based on the
changing degree of uncertainty clearly depends on the fact how well the
performance profiles complement each other. In cases where one algorithm
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dominates all others the potential savings are little. On the instances in the
C1 and C2 classes, the waiting strategies (AW) perform basically equally well
as the portfolio since it clearly outperforms all other algorithms under that
conditions. For the other classes, however, no single policy dominates the
others and it depends on the degree of uncertainty which algorithm should
be chosen. In that case, it is advisable to combine the policies to a portfolio
for dynamically choosing a policy based on the current data quality.

Summarizing, an important point is that the semi-automatically gener-
ated waiting policies complement the human-designed MSA policy. While
the MSA proves as a generally robust policy, the waiting policies are highly
specialized and prove beneficial in certain situations. A portfolio approach
allows the utilization of additional optimization potential by the combination
of specialized policies instead of focusing solely on overall performance.
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Chapter 6

Computational Results

The computational experiments are carried out with the open-source opti-
mization environment HeuristicLab in which the presented algorithmic con-
cepts have been implemented. Its flexible architecture and design, as outlined
by Wagner et al. (2014), are the foundation for the integration of the simu-
lation optimization as well as the algorithmic approaches. The user interface
offers capabilities for experiment design and results analysis. Parallel execu-
tion of the test runs is supported by the distributed computing infrastructure
Hive (Scheibenpflug et al., 2012) integrated in HeuristicLab.

The test runs are executed on the Hive system running on a heterogeneous
environment consisting of the HPC Blade Cluster as well as on lab computers
provided by the University of Applied Sciences Upper Austria. The Blade
cluster consists of 8 racks, each with two four-core Intel Xeon CPUs with 2.49
gigahertz accessing 32 gigabyte of memory and running a 64-bit Windows
Server 2008 operating system. The lab computers are 22 desktop PCs, each
with an four-core Intel Core2 CPU running at 2.66 gigahertz accessing 4 GB
of memory and running a 64 bit Windows 7 Professional operating system.

The computational results are analyzed for statistical significance using
the open-source software R (R Core Team, 2013). The analysis of the results
is based on the findings of Garćıa et al. (2009) concerning the application
of statistical techniques to evaluate the performance of metaheuristics. In
particular, a multi-sample analysis is applied to compare the performance
of several heuristics on different problem instances. For each instance, the
results are aggregated to a single value (e.g., by building an arithmetic av-
erage over the runs for an instance). For comparing multiple algorithms,
the Friedman test and for comparing two algorithms, the Wilcoxon signed
rank test is applied on the median results of the test runs. In both cases, a
significance level of 5% is used and for multiple comparisons the Hochberg
procedure is applied to adjust the significance levels.
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6.1 Identification of Bottlenecks Within

Transport Activities in Steel Production

The methodology outlined in Section 3.2 was implemented in HeuristicLab
to perform a simulation study with the aim of identifying bottlenecks within
material handling of the cold charge steel production process. Both the simu-
lation and optimization environment were modeled in HeuristicLab according
to the generic pickup and delivery model presented in Section 3.1.2.

The data needed for the simulation model has been exported directly
from the enterprise resource planning (ERP) system of the steel factory.
Concretely, the crane movements at the handover places, the status of the
storage places in the slab yard, the rolling schedule, the availability of the
straddle carriers, and the processing schedule for the slabs has been exported.
The simulation environment has been validated with domain experts of the
steel factory aided by a visualization of the transport activities and different
reporting capabilities.In total, data for nine different shifts has been exported
and validated were each shift lasts eight hours.

The experiments have been carried out by individually simulating each
shift. The original transport schedule was created by a human expert during
the shift. On average, around 300 transport requests are carried out by 3 to 5
straddle carriers during a shift. The original schedule is a starting solution for
the optimization algorithm which aims to improve it in terms of throughput
while considering all operational constraints. Newly created schedules can
be evaluated either by a full simulation run or by a static evaluation of the
shift using the exported data. All experiments have been carried out on an
Intel Xeon R© Processor with 8 CPUs (2.5GHz) and 32 GB of memory.

The analysis of the original schedules executed during the nine shifts
(shift A - I) are summarized in Table 6.1. The total effort for performing
the transport activities during a shift is the sum of the travel and the service
effort. On average, the straddle carriers spend about 57.21% of the total
effort with traveling between the different locations and about 42,79% with
service activities. The service activities include picking up slabs from stacks,
shuffling activities to retrieve a slab that is not on top of a stack, and putting
slabs on stacks. These results indicate that a significant time of the total
effort is spent with service operations.

The results of the optimized schedule, that has been created by the algo-
rithm for the different shifts are listed in Table 6.2. On average, the algorithm
was able to save 4.48% of the total effort while 3.33% were saved on the travel
and 6.01% were saved on the service effort. The travel effort in the optimized
shifts is about 57,90% while the service effort is about 42.10%.
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Original
Travel Service Total
Effort Effort Effort

(minutes) (minutes) (minutes)
Shift A 474.16 556.5 1030.66
Shift B 774.9 431.6 1206.5
Shift C 678.05 563 1241.05
Shift D 616.02 260 876.02
Shift E 548.04 499 1047.04
Shift F 643.74 395.2 1038.94
Shift G 550.03 508 1058.03
Shift H 365.12 285 650.12
Shift I 532.15 378 910.15
Total 5182.21 3876.3 9058.51

Table 6.1: Travel and service effort of the original schedules created by the
domain experts during different shifts.

Optimized
Travel Service Total
Effort Effort Effort

(minutes) (minutes) (minutes)
Shift A 459.32 ( -3.13%) 507 ( -8.89%) 966.32 ( -6.24%)
Shift B 758.64 ( -2.10%) 410.8 ( -4.82%) 1169.44 ( -3.07%)
Shift C 635.07 ( -6.34%) 531 ( -5.68%) 1166.07 ( -6.04%)
Shift D 590.26 ( -4.18%) 256 ( -1.54%) 846.26 ( -3.40%)
Shift E 523.27 ( -4.52%) 483 ( -3.21%) 1006.27 ( -3.89%)
Shift F 635.12 ( -1.34%) 361.4 ( -8.55%) 996.52 ( -4.08%)
Shift G 541.43 ( -1.56%) 476 ( -6.30%) 1017.43 ( -3.84%)
Shift H 348.98 ( -4.42%) 267 ( -6.32%) 615.98 ( -5.25%)
Shift I 517.69 ( -2.72%) 351 ( -7.14%) 868.69 ( -4.56%)
Total 5009.78 ( -3.33%) 3643.2 ( -6.01%) 8652.98 ( -4.48%)

Table 6.2: Comparison of the travel and service effort of the optimized with
the original schedules.
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H0 Ha Samples p-Value Result
µ̃D = 0 µ̃D < 0 travel efforts of the

original (x̃1 = 550.03)
and the optimized
(x̃2 = 541.43) schedules

0.00195 Reject H0

µ̃D = 0 µ̃D < 0 service efforts of the
original (x̃1 = 431.6)
and the optimized
(x̃2 = 410.8) schedules

0.00195 Reject H0

µ̃D = 0 µ̃D < 0 total efforts of the
original (x̃1 = 1038.94)
and the optimized (x̃2

= 996.52) schedules

0.00195 Reject H0

Table 6.3: The efforts of the schedules have been compared using a one-sided
Wilcoxon signed rank test and the results have been tested for statistical
significance with p < 0.05.

Based on the statistical analysis presented in Table 6.3, it can be con-
cluded that the optimized schedule significantly reduces both the travel and
the service effort. In the following, a more detailed comparison will be per-
formed to understand how the improvement is achieved to identify bottle-
necks and optimization potential in terms of travel and service effort.

In Table 6.4, the travel effort between the original and the optimized
schedules is examined in more detail. It can be observed, that in the opti-
mized schedules the number of trips increases by 4.17%, however the time
the straddle carries travel without having a slab loaded decreases by 10.68%
on average. Based on the statistical tests presented in Table 6.5, it can be
stated that the optimized schedule performs significantly more trips however
reduces the time that the straddle carriers travel empty.

In terms of the service effort, especially operations at the slab yard are
interesting since shuffling operations can occur there. In Table 6.6, the service
effort for picking up and storing slabs at the yard is analyzed. The shuffling
operations make up 10.81% while creating temporary stacks makes up 18.43%
of the total service time. The rest of the service time is made up of single
lifts while retrieving or delivering slabs to the yard or handover places. In
the optimized schedule, a decrease of the shuffling effort (-5.44%) and effort
in the creation of temporary stacks (-30.65%) can be observed. The results
were tested for significance as reported in Table 6.7. While the decrease in
shuffling effort is not significant, the decrease of stacking effort is.
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Original Optimized
Number Traveled Number Traveled
of Trips Empty of Trips Empty
(count) (minutes) (count) (minutes)

Shift A 141 165.13 161 (+14.18%) 140.92 (-14.66%)
Shift B 210 291.79 221 (+5.24%) 266.80 (-8.56%)
Shift C 177 224.75 178 (+0.56%) 187.80 (-16.44%)
Shift D 170 177.41 172 (+1.18%) 164.10 (-7.50%)
Shift E 186 181.21 191 (+2.69%) 157.68 (-12.99%)
Shift F 186 252.20 189 (+1.61%) 241.11 (-4.40%)
Shift G 184 167.49 194 (+5.43%) 156.50 (-6.56%)
Shift H 96 98.28 102 (+6.25%) 77.51 (-21.14%)
Shift I 160 209.77 165 (+3.13%) 186.81 (-10.95%)
Total 1510 1768.04 1573 (+4.17%) 1579.23 (-10.68%)

Table 6.4: Analysis of the original and optimized schedules in terms of travel
effort.

H0 Ha Samples p-Value Result
µ̃D = 0 µ̃D > 0 number of trips of

the original (x̃1 =
177) and the optimized
(x̃2 = 178) schedules

0.00195 Reject H0

µ̃D = 0 µ̃D < 0 empty minutes trav-
eled of the original
(x̃1 = 181.21) and the
optimized (x̃2 = 164.1)
schedules

0.00195 Reject H0

Table 6.5: By means of a one-sided Wilcoxon signed rank test, significance
tests were performed for the travel efforts. A significance level of p < 0.05
was used.
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Original Optimized
Shuffling Temporary Shuffling Temporary

Effort Stacking Effort Stacking
(minutes) (minutes) (minutes) (minutes)

Shift A 104 214.5 104 (+0.00%) 162 ( -24.48%)
Shift B 28.6 39 28.6 (+0.00%) 15.6 ( -60.00%)
Shift C 75 110 69 ( -8.00%) 90 ( -18.18%)
Shift D 42 80 42 (+0.00%) 77 ( -3.75%)
Shift E 36 76 36 (+0.00%) 58.5 ( -23.03%)
Shift F 28.6 46.8 20.8 ( -27.27%) 27.3 ( -41.67%)
Shift G 48 76 45 ( -6.25%) 38 ( -50.00%)
Shift H 33 36 27 ( -18.18%) 18 ( -50.00%)
Shift I 24 36 24 (+0.00%) 9 ( -75.00%)
Total 419.2 714.3 396.4 ( -5.44%) 495.4 ( -30.65%)

Table 6.6: Analysis of the original and optimized schedules in terms of service
effort at the slab yard.

H0 Ha Samples p-Value Result
µ̃D = 0 µ̃D < 0 shuffling efforts of

the original (x̃1 =
36) and the optimized
(x̃2 = 36) schedules

0.06250 Not reject H0

µ̃D = 0 µ̃D < 0 temporary stacking
efforts of the original
(x̃1 = 76) and the opti-
mized (x̃2 = 38) sched-
ules

0.00195 Reject H0

Table 6.7: With a significance value of p < 0.05, the statements about
shuffling effort have been tested for statistical significance using a one-sided
Wilcoxon signed rank test.
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6.1.1 Scenario With Dynamically Arriving Informa-
tion

Optimized (with dynamic information)
Travel Service Total
Effort Effort Effort

(minutes) (minutes) (minutes)
Shift A 467.73 ( -1.36%) 537 ( -3.50%) 1004.73 ( -2.52%)
Shift B 789.66 (+1.90%) 434 (+0.56%) 1223.66 (+1.42%)
Shift C 663.71 ( -2.11%) 537.5 ( -4.53%) 1201.21 ( -3.21%)
Shift D 612.49 ( -0.57%) 253 ( -2.69%) 865.49 ( -1.20%)
Shift E 554.12 (+1.11%) 470 ( -5.81%) 1024.12 ( -2.19%)
Shift F 628.63 ( -2.35%) 356.2 ( -9.87%) 984.83 ( -5.21%)
Shift G 553.17 (+0.57%) 488 ( -3.94%) 1041.17 ( -1.59%)
Shift H 362.86 ( -0.62%) 277.5 ( -2.63%) 640.36 ( -1.50%)
Shift I 553.44 (+4.00%) 384 (+1.59%) 937.44 (+3.00%)
Total 5185.81 (+0.07%) 3737.2 ( -3.59%) 8923.01 ( -1.50%)

Table 6.8: Comparison of the travel and shuffling effort of the optimized
schedule with the original schedules in the case of dynamically arriving in-
formation.

Another influence factor that has been analyzed in addition to the travel-
ing and shuffling effort is the value of information. It is based on the assump-
tion, that all transport requests apart from the rolling schedule are known
one hour in advance in contrast to being known at the beginning of the shift
as assumed in the previous section. When considering dynamically arriving
information (see Table 6.2), the algorithmic performance decreases which is
outlined in Table 6.8. The travel effort increases by 0.07% while the shuffling
effort decreases by 3.59% compared to the original schedule. Compared to
the optimized schedule without dynamic information, the travel effort in-
creased by 3.51% while the shuffling effort increased by 2.58% leading to an
increase of 3.12% in total effort.

The results have been tested for significance as listed in Table 6.9. No
significant difference can be detected between the travel as well as the total
efforts. A statistical significance exists between the service efforts compared
to the original schedule.
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H0 Ha Samples p-Value Result
µ̃D = 0 µ̃D < 0 travel efforts of the

original (x̃1 = 550.03)
and the dynam-
ically optimized
(x̃2 = 554.12) schedules

0.50000 Not reject H0

µ̃D = 0 µ̃D < 0 service efforts of the
original (x̃1 = 431.6)
and the dynamically
optimized (x̃2 = 434)
schedules

0.00977 Reject H0

µ̃D = 0 µ̃D < 0 total efforts of the
original (x̃1 = 1038.94)
and the dynam-
ically optimized
(x̃2 = 1004.73) sched-
ules

0.10156 Not reject H0

Table 6.9: The hypotheses about the efforts have been tested with a signif-
icance level of p < 0.05 by using the one-sided Wilcoxon signed rank test
comparing the original with the dynamically optimized schedule
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6.2 Analyzing the Influence Between Ware-

housing and In-House Transport in the

Production of Firefighting Vehicles

To analyze the influences between warehousing and in-house transport, an
integrated model was created as detailed in Section 3.3. It consists of the
storage optimization algorithm implemented in HeuristicLab and the picking
simulation implemented in AnyLogic c©(Kofler et al., 2010). The release times
obtained in the picking simulation are converted to daynamically appearing
transport requests in the pickup and delivery simulation.

The test scenario was exported from the company enterprise resource
planning (ERP) system and a production snapshot of a single day was cre-
ated. During that day of operation, 487 parts are picked from the high-rack
storage consisting of 12 two-sided aisles. They are commissioned in 89 pal-
lets to the handover zone. These pallets are transported to 35 workstations
which are served from the warehouse. Additionally, there are 89 uniformly
distributed back-haul requests from the workstations to the warehouse lead-
ing to a total of 178 in-house transport requests. Based on this scenario,
different storage assignment strategies as well as picking schedules have been
evaluated.

In terms of storage assignment strategies, five random storage assignments
have been generated (R1-R5) as well as assignments based solely on pick
frequency (PF) and part affinity (PA). Also, combinations of PF and PA
were tested weighting them differently (quality = α ∗PF +β ∗PA). For the
strategy C1 the parameters α = 1, β = 1, for the strategy C2 α = 100, β = 1,
and for the strategy C3 α = 200, β = 1 were used.

In terms of picking schedules, balanced and clustered picking schedules
were evaluated. Using the balanced schedule, the orders are picked in a
random sequence while using the clustered schedule orders are clustered ac-
cording to their target workstation.

The results for the balanced schedule are listed in Table 6.10 while the
results for the clustered schedule are listed in Table 6.11. Both the average
picking duration in terms of warehousing and also the average transport
duration in terms of in-house transport are analyzed.

The total quality can be evaluated by considering the total makespan of
picking and transporting all items from and to the warehouse in the consid-
ered day of operation. Over all storage assignment strategies, the average
picking duration increases by 9.79% while the average transport duration
decreases by 8.75% leading to ta total reduction of makespan of 2.94% when
using the clustered schedule compared to the balanced picking schedule.
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Balanced Picking Schedule
Average Average
Picking Transport Total

Duration Duration Makespan
(minutes) (minutes) (minutes)

R1 4.71 10.25 501.00
R2 7.39 12.82 714.00
R3 3.91 9.81 479.00
R4 3.94 9.87 474.00
R5 4.82 10.42 494.00
PF 5.64 11.11 570.00
PA 5.64 10.78 560.00
C1 4.12 9.68 474.00
C2 4.47 10.44 494.00
C3 4.71 10.18 490.00
Median 4.71 10.34 494.00

Table 6.10: Evaluation of picking durations in the warehouse, in-house trans-
port durations, and total makespan using a balanced picking schedule.

Clustered Picking Schedule
Average Average Total

Picking Duration Transport Duration Makespan
(minutes) (minutes) (minutes)

R1 5.51 (+16.95%) 9.51 (-7.23%) 506.00 (+1.00%)
R2 6.00 (-18.84%) 9.86 (-23.02%) 557.00 (-21.99%)
R3 4.44 (+13.51%) 8.95 (-8.79%) 473.00 (-1.25%)
R4 4.34 (+9.97%) 9.31 (-5.67%) 473.00 (-0.21%)
R5 5.25 (+8.86%) 9.43 (-9.50%) 483.00 (-2.23%)
PF 7.96 (+41.04%) 9.43 (-15.17%) 731.00 (+28.25%)
PA 6.71 (+18.92%) 10.40 (-3.53%) 626.00 (+11.79%)
C1 4.87 (+17.98%) 9.28 (-4.12%) 472.00 (-0.42%)
C2 4.25 (-5.03%) 9.53 (-8.70%) 473.00 (-4.25%)
C3 5.09 (+8.11%) 9.43 (-7.37%) 476.00 (-2.86%)
Median 5.17 (+9.79%) 9.43 (-8.75%) 479.50 (-2.94%)

Table 6.11: Comparison of warehouse picking, in-house transport, and total
makespan of the clustered with the balanced picking schedule.
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As listed in Table 6.12, statistical significances were detected in terms of
an increase of picking and a decrease of transport durations when applying
a clustered picking schedule. A significant decrease in total makespan can
only be detected when the PF and PA scenarios are omitted which show an
outlining increase in warehousing effort.

H0 Ha Samples p-Value Result
µ̃D = 0 µ̃D > 0 picking durations of

the balanced (x̃1 =
4.71) and the clustered
( x̃2 = 5.17) schedules

0.04199 Reject H0

µ̃D = 0 µ̃D < 0 transport durations
of the balanced (x̃1 =
10.34) and the clustered
( x̃2 = 9.43) schedules

0.00098 Reject H0

µ̃D = 0 µ̃D < 0 total makespans of
the balanced (x̃1 = 494)
and the clustered ( x̃2 =
479.5) schedules

0.27830 Not reject H0

µ̃D = 0 µ̃D < 0 total makespans ex-
cept PF, PA of the
balanced (x̃1 = 492)
and the clustered ( x̃2 =
474.5) schedules

0.01953 Reject H0

Table 6.12: Significance of makespan difference between the balanced and
the clustered schedules. The hypothesis have been tested using a one-sided
Wilcoxon signed rank test with a significance level of p < 0.05.
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6.3 Simulation-Based Sensitivity Analysis of

Different Inventory Routing Scenarios

The simulation optimization approach detailed in Section 3.4 as well as the
inventory replenishment policy generation detailed in Section 4.2 have been
implemented in HeuristicLab to evaluate different inventory routing scenarios
according to the generic inventory routing model presented in Section 3.1.2.
Simulation optimization is mainly applied as a scenario technique in that
context to perform a sensitivity analysis with respect to different endogenous
as well as exogenous factors. Especially the consideration of mixed scenarios,
where only part of the supermarkets have a vendor-managed inventory, is a
novel aspect of this work.

The scenarios are evaluated in the context of a practically motivated
case-study and have been created based on real-world data. The presented
case-study considers the transportation of fast-moving consumer goods to
supermarkets from a central depot and was conducted with an Austrian
retailer who provided the data exported from the company enterprise resource
planning system.

The scenario consists of 84 supermarkets which are served from a single
central depot. The supermarkets are located in Lower and Upper Austria
with a mean distance of 122 km between the customer locations (standard
deviation 67 km) and a mean distance to the depot of 86 km (standard devi-
ation 44 km). The supermarkets have been categorized into large, medium,
and small according to the average weekly demand. In total, 5113 different
products are considered while not necessarily each supermarkets offers all
products. The supermarket categories are detailed in Table 6.13.

Category Supermarkets Products Demand Fraction
Small 16 3559 11%
Medium 40 4272 44%
Large 28 4592 45%

Table 6.13: Supermarket categories in the considered case-study (cf.
Vonolfen et al. (2013a)).

For each product, weekday, and customer category, separate distribu-
tion parameters (average, standard deviation) are given while the demand is
assumed to follow a Gaussian distribution. No seasonal fluctuations are con-
sidered which means that the demand parameters do not change over time. A
main challenge in the context is the fluctuation of the expected daily demand
during a week which is illustrated in Figure 6.1. While on Wednesday and
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Friday the highest demand occurs, on Sunday the supermarkets are closed.
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Figure 6.1: Fraction of the expected daily demand in terms of the expected
weekly demand (cf. Vonolfen et al. (2013a).

The supermarkets are served using a fleet of homogeneous vehicles where
each vehicle has a capacity of 30 roll containers. On Saturday no deliveries
occur since the supermarkets are closed on Sunday. For each supermarket it
can be chosen independently if a vendor-manged inventory should be used
or the supermarket places the orders itself. This allows the consideration of
mixed scenarios.

Based on this case-study, the influence of using a vendor-managed in-
ventory, the influence of the service quality, and the influence of different
exogenous factors on the distribution costs is investigated. This is achieved
by considering different scenarios and evaluating the optimization potential
using the proposed simulation optimization methodology. For each scenario
where VMI is applied, a separate parametrization of the inventory replen-
ishment policies has been generated as outlined in Section 4.2 on a set of
training instances. The test runs have been carried out on ten instances that
have been sampled beforehand from the scenario. Each instance covers the
planning horizon of a fiscal quarter. The results are listed in detail for the
test phase and the performance on the training instances is indicated as a
comparison.

6.3.1 Influence of Vendor-Managed Inventory

To evaluate the potential savings when transitioning supermarkets to a vendor-
managed inventory (VMI), three different scenarios were examined. In the
0% VMI scenario the supermarkets place the orders themselves and VMI is
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not used. The 50% VMI scenario consists of 50% randomly selected super-
markets that have a VMI while the rest apply a classic order strategy. In the
100% VMI scenario, all supermarkets have been transitioned to a VMI. In
all scenarios a service quality (SQ) of 99% is ensured.

The results for the 0% VMI scenario are listed in Table 6.14. On average
a fleet size of 48.5 vehicles and a driven distance of 527665.56 is required
to reach the desired service quality. In the 50%VMI scenario, 7.38% of the
total costs could be saved as listed in Table 6.15. While the driven distance
is increased slightly by 1.85%, the fleet size can be reduced by 29.69% with
comparable service quality. In the 100% VMI scenario, 14.73% of the total
costs could be saved compared to not applying VMI as detailed in Table 6.16.
The driven distance is decreased by 6.15% and the fleet size by 35.46% on
average with comparable service quality.

The results have been tested for statistical significance which is detailed
in Table 6.17. It is shown, that applying VMI has a significant influence on
the total costs. In a pairwise post-hoc analysis, the results for all scenarios
are distinguishable from each other.

0% VMI
Distance Fleet SQ Costs

(km) (count) (relative) (Euro)
Instance 1 526053.51 49 99.70% 1493107.02
Instance 2 528257.51 50 99.70% 1506515.02
Instance 3 530315.11 48 99.69% 1492630.22
Instance 4 526201.56 45 99.71% 1457403.11
Instance 5 529142.89 51 99.70% 1517285.78
Instance 6 524835.33 49 99.68% 1490670.67
Instance 7 525151.44 48 99.69% 1482302.89
Instance 8 528859.47 48 99.69% 1489718.93
Instance 9 530093.49 48 99.70% 1492186.98
Instance 10 527745.24 49 99.70% 1496490.49
Average 527665.56 48.50 99.70% 1491831.11
Stdev 1998.68 1.58 0.01% 15526.12

Table 6.14: Evaluation of scenario where all supermarkets follow an order-
based strategy and no vendor managed inventory is used. The results pre-
sented on the test instances.
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50% VMI
Distance Fleet SQ Costs

(km) (count) (relative) (Euro)
Instance 1 535801.18 35 99.75% 1386602.36 (-7.13%)
Instance 2 543147.67 34 99.71% 1392295.33 (-7.58%)
Instance 3 540405.20 33 99.74% 1377810.40 (-7.69%)
Instance 4 535421.67 34 99.71% 1376843.33 (-5.53%)
Instance 5 531998.98 33 99.75% 1360997.96 (-10.30%)
Instance 6 537506.02 35 99.66% 1390012.04 (-6.75%)
Instance 7 535584.82 35 99.74% 1386169.64 (-6.49%)
Instance 8 535881.89 33 99.77% 1368763.78 (-8.12%)
Instance 9 540192.13 35 99.71% 1395384.27 (-6.49%)
Instance 10 538276.20 34 99.74% 1382552.40 (-7.61%)
Average 537421.58 34.10 99.73% 1381743.15 (-7.38%)
Stdev 3195.10 0.88 0.03% 10790.77

Table 6.15: Evaluation of scenario where a randomly selected half of the
supermarkets follow an order-based strategy and the other half has a vendor-
managed inventory. The costs are compared to the 0% VMI scenario (Table
6.14). The results are presented on the test instances. The performance on
the training instances was 1331476.54 (-3.64% compared to the test results).
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100% VMI
Distance Fleet SQ Costs

(km) (count) (relative) (Euro)
Instance 1 495597.11 31 99.76% 1270194.22 (-14.93%)
Instance 2 494161.67 31 99.72% 1267323.33 (-15.88%)
Instance 3 494369.11 31 99.76% 1267738.22 (-15.07%)
Instance 4 498315.00 31 99.75% 1275630.00 (-12.47%)
Instance 5 493132.20 32 99.76% 1274264.40 (-16.02%)
Instance 6 496249.42 32 99.75% 1280498.84 (-14.10%)
Instance 7 496965.98 32 99.73% 1281931.96 (-13.52%)
Instance 8 495431.53 31 99.65% 1269863.07 (-14.76%)
Instance 9 494665.71 31 99.72% 1268331.42 (-15.00%)
Instance 10 493276.31 31 99.70% 1265552.62 (-15.43%)
Average 495216.40 31.30 99.73% 1272132.81 (-14.73%)
Stdev 1638.50 0.48 0.03% 5694.93

Table 6.16: Evaluation of scenario where all supermarkets have a vendor-
managed inventory. The costs are compared to the 0% VMI scenario (Table
6.14). The results are presented on the test instances. The performance on
the training instances was 1229812.78 (-3.33% compared to the test results).

H0 Ha Samples p-Value Result
µ̃1 = µ̃2 = µ̃3 ¬H0 Costs of the sce-

narios:

0% VMI
(x̃1 = 1492408.60)
50% VMI
(x̃2 = 1384361.02)
100% VMI
(x̃3 = 1270028.65)

4e-05 Reject H0

µ̃D = 0 µ̃D 6= 0 Post-hoc pairwise
comparisons:
0% / 50% VMI 0.002 Reject H0

0% / 100% VMI 0.002 Reject H0

50% / 100% VMI 0.002 Reject H0

Table 6.17: Statistical analysis of the different VMI scenarios. A Friedman
test was used to test if any median of the scenarios differ. For a post-hoc
analysis, the Wilcoxon signed rank test was applied and the p-values were
adjusted using Hochberg’s procedure. A significance level of p < 0.05 was
used.
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6.3.2 Influence of Service Quality

While in the previous scenarios, a SQ of 99% was demanded, the influence
of the SQ on the total costs was investigated by considering scenarios where
only 95% and 90% SQ were demanded. In all three scenarios, 100% of the
supermarkets apply VMI and thus the results are compared to the results
with 100% VMI and 99% SQ as listed in Table 6.16.

The results for the scenario 95% SQ are listed in Table 6.18. The average
driven distance is reduced by 8.69% and the fleet size by 40.82%. However,
the costs for the out-of stock situations are increased leading to total savings
of 3.95% compared to the scenario with 99% SQ. In the scenario with 90%
SQ, as listed in Table 6.19, 11.08% are saved in terms of driven distance and
41.03% while the total costs are reduced by 6% compared to the scenario
with 99% SQ.

The results have been tested for statistical significance as detailed in
Table 6.20. The influence of the SQ on the resulting costs is significant and
all pairwise compared scenarios lead to distinguishable results in terms of
costs.

95% Service Quality
Distance Fleet SQ Costs

(km) (count) (relative) (Euro)
Instance 1 478974.31 28 96.96% 1209948.62 (-4.74%)
Instance 2 479808.98 29 97.24% 1220617.96 (-3.69%)
Instance 3 483947.42 29 97.20% 1228894.84 (-3.06%)
Instance 4 482950.93 30 97.03% 1235901.87 (-3.11%)
Instance 5 479610.47 28 97.28% 1211220.93 (-4.95%)
Instance 6 486648.47 29 97.22% 1234296.93 (-3.61%)
Instance 7 480641.56 29 97.19% 1222283.11 (-4.65%)
Instance 8 482969.91 29 97.17% 1226939.82 (-3.38%)
Instance 9 481749.49 28 96.98% 1215498.98 (-4.17%)
Instance 10 480885.29 28 97.41% 1213770.58 (-4.09%)
Average 481818.68 28.70 97.17% 1221937.36 (-3.95%)
Stdev 2350.72 0.67 0.14% 9367.67

Table 6.18: Scenario analysis with 95% service quality and 100% VMI super-
markets. The costs are compared with Table 6.16 where 99% service quality
was demanded. The results are presented on the test instances. The per-
formance on the training instances was 1189016.67 (-0.57% compared to the
test results).
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90% Service Quality
Distance Fleet SQ Costs

(km) (count) (relative) (Euro)
Instance 1 468264.27 29 91.69% 1197528.53 (-5.72%)
Instance 2 469671.13 28 88.68% 1191342.27 (-6.00%)
Instance 3 468102.56 28 90.41% 1188205.11 (-6.27%)
Instance 4 466409.89 28 91.07% 1184819.78 (-7.12%)
Instance 5 468997.24 29 90.87% 1198994.49 (-5.91%)
Instance 6 466409.89 28 91.07% 1184819.78 (-7.47%)
Instance 7 468997.24 29 90.87% 1198994.49 (-6.47%)
Instance 8 471051.49 29 91.44% 1203102.98 (-5.26%)
Instance 9 469764.38 29 90.48% 1200528.76 (-5.35%)
Instance 10 474206.96 29 92.08% 1209413.91 (-4.44%)
Average 469187.50 28.60 90.87% 1195775.01 (-6.00%)
Stdev 2279.58 0.52 0.92% 8186.09

Table 6.19: Scenario analysis with 90% service quality and 100% VMI super-
markets. The costs are compared with Table 6.16 where 99% service quality
was demanded. The results are presented on the test instances. The per-
formance on the training instances was 1210919.99 (-0.90% compared to the
test results).

152



H0 Ha Samples p-Value Result
µ̃1 = µ̃2 = µ̃3 ¬H0 Costs of the sce-

narios:

99% SQ
(x̃1 = 1270028.65)
95% SQ
(x̃2 = 1221450.54)
90% SQ
(x̃3 = 1198261.51)

4e-05 Reject H0

µ̃D = 0 µ̃D 6= 0 Post-hoc pairwise
comparisons:
99% SQ / 95% SQ 0.002 Reject H0

99% SQ / 90% SQ 0.002 Reject H0

95% SQ / 90% SQ 0.002 Reject H0

Table 6.20: Significance test for the scenarios with different service qualities.
The differences between the samples was tested using a Friedman test. As a
post-hoc procedure, a pair-wise Wilcoxon signed rank test was applied and
the p-values were adjusted using Hochberg’s procedure. For both tests, a
significance level of p < 0.05 was used.
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6.3.3 Influence of Exogenous Characteristics

While the service quality is and important endogenous factor, spatial and
temporal scenario characteristics can be considered as exogenous factors.
Concretely, the influence of the demand distribution in terms of number of
products and heterogeneity of the demand and spatial distribution of the
supermarkets are considered.

To investigate the influence of the different exogenous scenario proper-
ties, mixed scenarios are investigated where 50% of the supermarkets are
transitioned to VMI while the remaining retain an order-based strategy. In
the case of the Most Products scenario, the supermarkets with the largest
product portfolio while in the Demand Heterogeneity scenario the supermar-
kets with the highest fluctuation in demand are selected. In terms of spatial
influence factors, in the Multiple Clusters scenario five clusters of VMI su-
permarkets are created while in the Single Cluster scenario a single cluster is
created according to geographic proximity. The single cluster / five clusters
with the highest total demand are transitioned to VMI.

The results are compared to a random selection of the VMI supermarkets
as listed in Table 6.15. The best result was achieved by selecting the largest
supermarkets and, as listed in Table 6.21, 6.28% of the costs can be saved
compared to random selection. Selecting multiple clusters (Table 6.23) and a
single cluster (Table 6.24) leads to slight benefits while a single cluster is bet-
ter than multiple clusters. Selecting VMI supermarkets in terms of demand
heterogeneity is not beneficial in that case and even a random selection is
better (Table 6.22). This can be explained by the fact that the heterogeneity
of the smallest supermarkets is the highest in the considered case-study and
thus the smallest supermarkets are selected in that case.

The statistical significance of the influence of the exogenous properties on
the costs has been verified as listed in Table 6.25. By pairwise comparision,
all scenarios but the Random and the Multiple Clusters scenario can be
distinguished in terms of costs.
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Most Products
Distance Fleet SQ Costs

(km) (count) (relative) (Euro)
Instance 1 502923.20 32 99.39% 1293846.40 (-6.69%)
Instance 2 501022.27 32 99.39% 1290044.53 (-7.34%)
Instance 3 501713.58 33 99.27% 1300427.16 (-5.62%)
Instance 4 502945.98 32 99.47% 1293891.96 (-6.02%)
Instance 5 500362.20 33 99.05% 1297724.40 (-4.65%)
Instance 6 502708.62 32 99.33% 1293417.24 (-6.95%)
Instance 7 505101.67 32 99.17% 1298203.33 (-6.35%)
Instance 8 501554.51 32 99.59% 1291109.02 (-5.67%)
Instance 9 500620.44 32 99.36% 1289240.89 (-7.61%)
Instance 10 502309.24 33 99.50% 1301618.49 (-5.85%)
Average 502126.17 32.30 99.35% 1294952.34 (-6.28%)
Stdev 1399.53 0.48 0.16% 4331.37

Table 6.21: Scenario with 50% VMI supermarkets, where the supermarkets
with the most products where selected. The costs are compared to the results
presented in Table 6.15 where the VMI supermarkets were randomly chosen.
The results are presented on the test instances. The performance on the
training instances was 1275082.02 (-1.53% compared to the test results).
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Demand Heterogeneity
Distance Fleet SQ Costs

(km) (count) (relative) (Euro)
Instance 1 544684.67 34 99.77% 1395369.33 (+0.63%)
Instance 2 543361.00 35 99.77% 1401722.00 (+0.68%)
Instance 3 551475.27 34 99.77% 1408950.53 (+2.26%)
Instance 4 546647.73 34 99.78% 1399295.47 (+1.63%)
Instance 5 542532.60 33 99.77% 1382065.20 (+1.55%)
Instance 6 545887.47 35 99.78% 1406774.93 (+1.21%)
Instance 7 543828.00 35 99.75% 1402656.00 (+1.19%)
Instance 8 546704.51 33 99.78% 1390409.02 (+1.58%)
Instance 9 543541.58 34 99.78% 1393083.16 (-0.16%)
Instance 10 544227.89 35 99.76% 1403455.78 (+1.51%)
Average 545289.07 34.20 99.77% 1398378.14 (+1.20%)
Stdev 2592.12 0.79 0.01% 8199.56

Table 6.22: Scenario with 50% VMI supermarkets, where the supermarkets
with the highest demand heterogeneity where selected. The costs are com-
pared to the results presented in Table 6.15 where the VMI supermarkets
were randomly chosen. The results are presented on the test instances. The
performance on the training instances was 1349603.45 (-3.49% compared to
the test results).
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Multiple Clusters
Distance Fleet SQ Costs

(km) (count) (relative) (Euro)
Instance 1 533721.51 33 99.76% 1364443.02 (-1.60%)
Instance 2 538095.20 35 99.64% 1391190.40 (-0.08%)
Instance 3 532705.67 33 99.76% 1362411.33 (-1.12%)
Instance 4 538613.56 33 99.78% 1374227.11 (-0.19%)
Instance 5 537107.42 34 99.77% 1380214.84 (+1.41%)
Instance 6 537703.00 34 99.72% 1381406.00 (-0.62%)
Instance 7 531739.91 34 99.79% 1369479.82 (-1.20%)
Instance 8 536026.93 36 99.76% 1396053.87 (+1.99%)
Instance 9 535661.42 35 99.76% 1386322.84 (-0.65%)
Instance 10 537158.82 35 99.77% 1389317.64 (0.49%)
Average 535853.34 34.20 99.75% 1379506.69 (-0.16%)
Stdev 2375.40 1.03 0.04% 11569.69

Table 6.23: Scenario with 50% VMI supermarkets, where supermarkets from
multiple geographical clusters were selected. The costs are compared to the
results presented in Table 6.15 where the VMI supermarkets were randomly
chosen. The results are presented on the test instances. The performance on
the training instances was 1374399.78 (-0.37% compared to the test results).
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Single Cluster
Distance Fleet SQ Costs

(km) (count) (relative) (Euro)
Instance 1 526859.87 34 99.75% 1359719.73 (-1.94%)
Instance 2 528458.73 34 99.65% 1362917.47 (-2.11%)
Instance 3 529617.98 33 99.50% 1356235.96 (-1.57%)
Instance 4 527769.60 34 99.76% 1361539.20 (-1.11%)
Instance 5 526658.16 35 99.61% 1368316.31 (+0.54%)
Instance 6 523386.71 33 99.75% 1343773.42 (-3.33%)
Instance 7 532431.82 33 99.71% 1361863.64 (-1.75%)
Instance 8 526266.00 34 99.75% 1358532.00 (-0.75%)
Instance 9 528929.98 34 99.70% 1363859.96 (-2.26%)
Instance 10 529556.29 34 99.54% 1365112.58 (-1.26%)
Average 527993.51 33.80 99.67% 1360187.03 (-1.56%)
Stdev 2431.24 0.63 0.09% 6699.14

Table 6.24: Scenario with 50% VMI supermarkets, where supermarkets from
a single geographical cluster were selected. The costs are compared to the
results presented in Table 6.15 where the VMI supermarkets were randomly
chosen. The results are presented on the test instances. The performance on
the training instances was 1355699.13 (-0.33% compared to the test results).
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H0 Ha Samples p-Value Result
µ̃1 = µ̃2 =
µ̃3 = µ̃4 =
µ̃5

¬H0 Costs of the sce-
narios:

Random
(x̃1 = 1384361.02)
Most Products
(x̃2 = 1293869.18)
Demand Het.
(x̃3 = 1400508.74)
Mult. Clusters
(x̃4 = 1380810.42)
Single Cluster
(x̃5 = 1361701.42)

5e-07 Reject H0

µ̃D = 0 µ̃D 6= 0 Post-hoc pairwise
comparisons:
Random / Products 0.0098 Reject H0

Random / Demand 0.0117 Reject H0

Random / Clusters 0.5566 Not Reject H0

Random / Cluster 0.0117 Reject H0

Products / Demand 0.0098 Reject H0

Products / Clusters 0.0098 Reject H0

Products / Cluster 0.0098 Reject H0

Demand / Clusters 0.0117 Reject H0

Demand / Cluster 0.0098 Reject H0

Clusters / Cluster 0.0098 Reject H0

Table 6.25: Statistical analysis of scenarios with 50% VMI supermarkets
that were chosen according to different criteria. The influence of this factor
was tested using a Friedman test and as a post-hoc procedure, a pair-wise
Wilcoxon signed rank test was applied and the p-values were adjusted using
Hochberg’s procedure. A significance value of p < 0.05 is used.
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6.4 Quality of Service and Runtime Analy-

sis of Generated Priority Rules for Taxi

Buses

The methodology described in Section 4.3 has been implemented in Heuris-
ticLab using the simulation optimization model for the pickup and delivery
problem described in Section 3.1.2 as well as the genetic programming im-
plementation presented by Kommenda et al. (2012).

The methodology is evaluated on two different scenarios. Both consist of
26 predefined service points which are geographically uniformly distributed.
There is a fleet of 6 taxi buses which can carry up to 10 people. In total, 1000
requests arrive during the planning horizon according to a Poisson process
and each request has to be serviced within 15 minutes after it appeared. For
the low intensity scenario 4 requests, while for the high intensity scenario 6
requests arrive per minute on average. For each scenario, 14 instances have
been generated leading to a training set of 7 and a test set of 7 instances.

Using that test environment, five different dispatching policies have been
evaluated. Three simple dispatching policies, as described in Section 2.2.1
have been are considered. The simple policies are the first come First come
first serve (FCFS) policy that serves the requests according to their appear-
ance, the earliest due date (EDD) policy that serves them according to their
urgency, and the nearest neighbor (NN) policy which serves the request that
is currently closest to the vehicle.

These strategies are compared to the complex policies proposed in Section
4.3, which are based on a linear and a tree representation, on the test set.
Additionally, for the generated policies the results of the training phase are
indicated as a comparison. Two planning-based algorithms serve as a bound
for the policies. The a-priori tabu search solves a static problem instance
where the requests do not appear dynamically but are known in advance.
The ad-hoc tabu search is an online algorithm which recalculates the current
set of routes every time a new request appears.

6.4.1 Low Intensity Scenario

The low-intensity scenario is characterized with 4 requests appearing per
minute on average. The results for the a-priori tabu search presented in
Table 6.26 serve as a competitive comparison to the dynamic approaches.
The ad-hoc tabu search, which is an online algorithm that reoptimizes the
current set of routes whenever new requests appear, performs on average
34.34% worse than the static algorithm (the results are listed in Table 6.27).
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Tabu Search (a-priori)
Lead Time Tardiness Quality Runtime
(minutes) (penalty) (total) (minutes)

Instance 1 (static) 3361.58 0.22 3361.80 49.14
Instance 2 (static) 3518.22 0.75 3518.97 47.86
Instance 3 (static) 3457.37 0.22 3457.59 47.63
Instance 4 (static) 3354.71 0.54 3355.25 44.41
Instance 5 (static) 3269.69 1.46 3271.15 45.79
Instance 6 (static) 3389.95 0.62 3390.57 48.47
Instance 7 (static) 3228.12 0.00 3228.12 45.30
Average 3368.52 0.54 3369.06 46.94
Stdev 100.40 0.48 100.39 1.77

Table 6.26: Lead time and tardiness results for the ad-hoc tabu search on
the low intensity test instances with all requests known in advance.

Tabu Search (ad-hoc)
Lead Time Tardiness Quality Runtime
(minutes) (penalty) (total) (minutes)

Instance 1 4466.83 0.00 4466.83 (+32.87%) 52.45
Instance 2 4703.26 0.00 4703.26 (+33.65%) 49.94
Instance 3 4650.33 0.80 4651.13 (+34.52%) 38.62
Instance 4 4465.75 0.14 4465.89 (+33.10%) 57.87
Instance 5 4416.00 0.00 4416.00 (+35.00%) 51.34
Instance 6 4532.38 0.12 4532.50 (+33.68%) 60.20
Instance 7 4462.25 0.00 4462.25 (+38.23%) 59.17
Average 4528.11 0.15 4528.27 (+34.41%) 52.80
Stdev 108.15 0.29 108.29 7.44

Table 6.27: Lead time and tardiness results for the ad-hoc tabu search on
the low intensity test instances. The quality is compared to the a-priori tabu
search (Table 6.26).

161



The results of the ad-hoc tabu search are used to compare this planning
approach to different dispatching policies. In general, the evolved tree policy
yields the best performance of all policies as listed in Table 6.32 and achieved
3% worse results than the online planning algorithm while using around
74 times less runtime. The tree dispatching policy achieved an increase in
solution quality of 30.11% compared to the FCFS policy (Table 6.28), 24,52%
compared to the EDD policy (Table 6.29), 99.59% compared to the NN policy
(Table 6.30), and 1.68% compared to the evolved linear policy (Table 6.31).

The results presented in Table 6.33 illustrate, that there is a significant
effect on the used policy on the solution quality. In a post-hoc pairwise
comparison, the results for all policies could be distinguished from each other
with a significance level of p < 0.05 and the evolved tree policy was confirmed
as the best policy.

FCFS
Lead Time Tardiness Quality Runtime
(minutes) (penalty) (total) (minutes)

Instance 1 6224.71 11.08 6235.79 (+39.60%) 0.54
Instance 2 8830.73 1800.00 10630.73 (+126.03%) 0.67
Instance 3 5910.12 59.08 5969.20 (+28.34%) 0.54
Instance 4 5640.24 1.76 5642.00 (+26.34%) 0.62
Instance 5 5609.90 802.99 6412.89 (+45.22%) 1.07
Instance 6 6380.07 3.45 6383.52 (+40.84%) 0.50
Instance 7 5437.94 0.00 5437.94 (+21.87%) 0.58
Average 6290.53 382.62 6673.15 (+47.37%) 0.65
Stdev 1170.66 690.85 1783.72 0.20

Table 6.28: Lead time and tardiness results for the first come first serve
policy on the low intensity test instances. The quality is compared to the
ad-hoc tabu search (Table 6.27).
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EDD
Lead Time Tardiness Quality Runtime
(minutes) (penalty) (total) (minutes)

Instance 1 6069.12 12.15 6081.27 (+36.14%) 0.66
Instance 2 8585.18 150.11 8735.29 (+85.73%) 0.66
Instance 3 5784.00 91.30 5875.30 (+26.32%) 0.56
Instance 4 5609.43 4.35 5613.78 (+25.70%) 0.53
Instance 5 5416.44 46.29 5462.73 (+23.70%) 0.97
Instance 6 6250.18 5.55 6255.73 (+38.02%) 0.64
Instance 7 5231.67 0.00 5231.67 (+17.24%) 0.53
Average 6135.15 44.25 6179.40 (+36.46%) 0.65
Stdev 1136.72 57.01 1181.26 0.15

Table 6.29: Lead time and tardiness results for the earliest due date policy
on the low intensity test instances. The quality is compared to the ad-hoc
tabu search (Table 6.27).

NN
Lead Time Tardiness Quality Runtime
(minutes) (penalty) (total) (minutes)

Instance 1 5031.56 1.1E+6 1.1E+6 (+2.4E+4%) 0.65
Instance 2 5301.24 5.9E+6 5.9E+6 (+1.3E+5%) 0.72
Instance 3 5046.62 7.5E+5 7.5E+5 (+1.6E+4%) 0.55
Instance 4 4778.20 7.8E+1 4.9E+3 (+8.7E+0%) 0.81
Instance 5 4778.32 1.1E+5 1.2E+5 (+2.5E+3%) 0.96
Instance 6 4999.61 1.1E+5 1.1E+5 (+2.4E+3%) 0.52
Instance 7 4898.36 4.8E+4 5.3E+4 (+1.1E+3%) 0.66
Average 4976.27 1.1E+6 1.1E+6 (+2.5E+4%) 0.70
Stdev 181.95 2.2E+6 2.2E+6 0.15

Table 6.30: Lead time and tardiness results for the nearest neighbor policy
on the low intensity test instances. The quality is compared to the ad-hoc
tabu search (Table 6.27).
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Linear
Lead Time Tardiness Quality Runtime
(minutes) (penalty) (total) (minutes)

Instance 1 4678.16 0.00 4678.16 (+4.73%) 0.69
Instance 2 5014.52 0.00 5014.52 (+6.62%) 0.77
Instance 3 4805.72 36.29 4842.01 (+4.10%) 0.55
Instance 4 4601.19 0.00 4601.19 (+3.03%) 0.65
Instance 5 4624.89 11.20 4636.09 (+4.98%) 1.06
Instance 6 4742.46 16.46 4758.92 (+5.00%) 0.51
Instance 7 4675.46 0.21 4675.67 (+4.78%) 0.69
Average 4734.63 9.17 4743.79 (+4.76%) 0.70
Stdev 141.42 13.70 143.79 0.18

Table 6.31: Lead time and tardiness results for the evolved linear policy
on the low intensity test instances. The quality is compared to the ad-hoc
tabu search (Table 6.27). On the training instances, a gap of 4.26% to the
planning algorithm was achieved.

Tree
Lead Time Tardiness Quality Runtime
(minutes) (penalty) (total) (minutes)

Instance 1 4666.94 0.00 4666.94 (+4.48%) 0.67
Instance 2 4722.24 19.16 4741.40 (+0.81%) 0.77
Instance 3 4724.18 18.56 4742.74 (+1.97%) 0.59
Instance 4 4561.06 0.00 4561.06 (+2.13%) 0.79
Instance 5 4535.26 21.24 4556.50 (+3.18%) 0.97
Instance 6 4734.31 15.42 4749.73 (+4.79%) 0.52
Instance 7 4629.63 0.00 4629.63 (+3.75%) 0.69
Average 4653.37 10.63 4664.00 (+3.00%) 0.71
Stdev 81.17 10.08 84.54 0.15

Table 6.32: Lead time and tardiness results for the evolved tree policy on
the low intensity test instances. The quality is compared to the ad-hoc tabu
search (Table 6.27). On the training instances, a gap of 2.24% to the planning
algorithm was achieved.
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H0 Ha Samples p-Value Result
µ̃1 = µ̃2 =
µ̃3 = µ̃4 = µ̃5

¬H0 Quality of the
policies:

FCFS
(x̃1 = 6235.79)
EDD
(x̃2 = 5875.30)
NN
(x̃3 = 1.20E + 05)
Linear
(x̃4 = 4678.16)
Tree
(x̃5 = 4666.94)

3.25e-05 Reject H0

µ̃D = 0 µ̃D 6= 0 Post-hoc pairwise
comparisons:
FCFS / EDD 0.031 Reject H0

FCFS / NN 0.031 Reject H0

FCFS / Linear 0.031 Reject H0

FCFS / Tree 0.031 Reject H0

EDD / NN 0.031 Reject H0

EDD / Linear 0.031 Reject H0

EDD / Tree 0.031 Reject H0

NN / Linear 0.031 Reject H0

EDD / Tree 0.031 Reject H0

Linear / Tree 0.031 Reject H0

Table 6.33: Statistical analysis of the different policies for the low intensity
scenario. A Friedman test was used to test if any median of the qualities
achieved by the policies differ. For a post-hoc analysis, the Wilcoxon signed
rank test was applied and the p-values were adjusted using Hochberg’s pro-
cedure. A significance level of p < 0.05 was used.
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6.4.2 High Intensity Scenario

In the high intensity scenario, 6 requests appear on average per minute as
compared to 4 requests in the low intensity scenario. Since the maximum
time for each request to be served is 15 minutes, the urgency increases. The
online tabu search algorithm (Table 6.35) performs 14.97% worse than the
static algorithm (Table 6.34). This indicates, that the optimization poten-
tial decreases compared to the low intensity scenario where the competitive
analysis of the online algorithm resulted in a gap of 34.41%.

Tabu Search (a priori)
Lead Time Tardiness Quality Runtime
(minutes) (penalty) (total) (minutes)

Instance 1 5364.30 0.04 5364.34 145.18
Instance 2 5444.51 1.90 5446.41 167.05
Instance 3 5257.40 10.85 5268.25 108.00
Instance 4 4772.34 7.11 4779.45 76.46
Instance 5 4661.58 0.19 4661.77 73.42
Instance 6 5270.83 3.16 5273.99 123.08
Instance 7 4748.94 0.00 4748.94 76.07
Average 5074.27 3.32 5077.59 109.89
Stdev 331.83 4.18 332.41 37.15

Table 6.34: Lead time and tardiness results for the ad-hoc tabu search on
the high intensity test instances with all requests known in advance.

Comparing the planning tabu search algorithm to the priority policies
does not produce such a clear picture for the high intensity as in the low
intensity scenarios. Both the evolved linear and tree policies show comparable
performance as the planning algorithm. While the linear policy (Table 6.39)
produced 0.69% worse performance, the tree policy (Table 6.40) achieved
0.34% better performance compared to the planning algorithm. The simple
policies were not able to achieve feasible solutions and had a high tardiness
penalty resulting from the high urgency of the requests. The evolved tree
policy achieved 99.9992% better solution quality than the the FCFS policy
(Table 6.36), 99.9993% than the EDD policy (Table 6.37), and 99.9111%
than the NN policy (Table 6.38).

The statistical analysis comparing the policies for the high intensity sce-
nario is listed in Table 6.41. The effect on the used policy on the achieved
solution quality could be confirmed. The results of all policies can be distin-
guished in a pairwise comparison with a significance level of p < 0.05 except
the FCFS / EDD policies as well as the Linear / Tree policies.
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Tabu Search (ad hoc)
Lead Time Tardiness Quality Runtime
(minutes) (penalty) (total) (minutes)

Instance 1 6077.08 11.16 6088.24 (+13.49%) 56.42
Instance 2 6269.93 6.14 6276.07 (+15.23%) 52.59
Instance 3 5958.74 0.04 5958.78 (+13.11%) 58.88
Instance 4 5623.37 1.20 5624.57 (+17.68%) 49.82
Instance 5 5442.03 0.00 5442.03 (+16.74%) 56.84
Instance 6 5917.73 0.13 5917.86 (+12.21%) 60.86
Instance 7 5554.13 0.73 5554.86 (+16.97%) 98.98
Average 5834.72 2.77 5837.49 (+14.97%) 62.06
Stdev 302.22 4.29 304.96 16.70

Table 6.35: Lead time and tardiness results for the ad-hoc tabu search on the
high intensity test instances. The quality is compared to the a-priori tabu
search (Table 6.34).

FCFS
Lead Time Tardiness Quality Runtime
(minutes) (penalty) (total) (minutes)

Instance 1 68496.73 8.8E+8 8.8E+8 (+1.4E+7%) 0.98
Instance 2 62283.36 7.2E+8 7.2E+8 (+1.2E+7%) 1.11
Instance 3 80463.06 8.4E+8 8.4E+8 (+1.4E+7%) 1.06
Instance 4 37968.70 5.5E+8 5.5E+8 (+9.8E+6%) 0.99
Instance 5 37188.25 6.6E+8 6.6E+8 (+1.2E+7%) 0.81
Instance 6 77682.23 8.7E+8 8.7E+8 (+1.5E+7%) 0.93
Instance 7 42646.58 8.1E+8 8.1E+8 (+1.5E+7%) 0.60
Average 58104.13 7.6E+8 7.6E+8 (+1.3E+7%) 0.92
Stdev 18666.11 1.2E+8 1.2E+8 0.17

Table 6.36: Lead time and tardiness results for the first come first serve
policy on the high intensity test instances. The quality is compared to the
ad-hoc tabu search (Table 6.35).
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EDD
Lead Time Tardiness Quality Runtime
(minutes) (penalty) (total) (minutes)

Instance 1 67929.05 8.8E+8 8.8E+8 (+1.4E+7%) 0.95
Instance 2 65949.72 7.6E+8 7.6E+8 (+1.2E+7%) 1.12
Instance 3 77237.39 8.5E+8 8.5E+8 (+1.4E+7%) 0.85
Instance 4 39189.79 5.8E+8 5.8E+8 (+1.0E+7%) 0.60
Instance 5 38121.74 7.4E+8 7.4E+8 (+1.4E+7%) 0.57
Instance 6 76331.70 8.7E+8 8.7E+8 (+1.5E+7%) 0.63
Instance 7 42173.65 8.0E+8 8.0E+8 (+1.4E+7%) 0.56
Average 58133.29 7.8E+8 7.8E+8 (+1.3E+7%) 0.76
Stdev 17641.01 1.0E+8 1.0E+8 0.22

Table 6.37: Lead time and tardiness results for the earliest due date policy
on the high intensity test instances. The quality is compared to the ad-hoc
tabu search (Table 6.35).

NN
Lead Time Tardiness Quality Runtime
(minutes) (penalty) (total) (minutes)

Instance 1 6959.14 8.2E+6 8.2E+6 (+1.3E+5%) 0.60
Instance 2 7349.36 9.1E+6 9.1E+6 (+1.4E+5%) 0.91
Instance 3 7303.37 6.1E+6 6.1E+6 (+1.0E+5%) 0.86
Instance 4 6886.02 6.4E+6 6.4E+6 (+1.1E+5%) 0.88
Instance 5 6216.72 1.5E+5 1.6E+5 (+2.7E+3%) 0.94
Instance 6 7188.67 1.1E+7 1.1E+7 (+1.9E+5%) 0.77
Instance 7 6623.19 4.7E+6 4.7E+6 (+8.4E+4%) 1.14
Average 6932.35 6.5E+6 6.5E+6 (+1.1E+5%) 0.87
Stdev 405.76 3.5E+6 3.5E+6 0.17

Table 6.38: Lead time and tardiness results for the nearest neighbor policy
on the high intensity test instances. The quality is compared to the ad-hoc
tabu search (Table 6.35).
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Linear
Lead Time Tardiness Quality Runtime
(minutes) (penalty) (total) (minutes)

Instance 1 5896.75 0.00 5896.75 (-3.15%) 0.85
Instance 2 6398.23 34.85 6433.08 (+2.50%) 0.66
Instance 3 5968.89 0.00 5968.89 (+0.17%) 0.61
Instance 4 5667.32 0.02 5667.34 (+0.76%) 1.06
Instance 5 5551.68 0.00 5551.68 (+2.01%) 0.94
Instance 6 5822.69 0.00 5822.69 (-1.61%) 0.72
Instance 7 5744.79 57.56 5802.35 (+4.46%) 0.95
Average 5864.34 13.20 5877.54 (+0.69%) 0.83
Stdev 273.75 23.48 281.77 0.17

Table 6.39: Lead time and tardiness results for the evolved linear policy on
the high intensity test instances. The quality is compared to the ad-hoc
tabu search (Table 6.35). On the training instances, a gap of 1.60% to the
planning algorithm was achieved.

Tree
Lead Time Tardiness Quality Runtime
(minutes) (penalty) (total) (minutes)

Instance 1 5988.15 0.15 5988.30 (-1.64%) 0.47
Instance 2 6191.53 0.16 6191.69 (-1.34%) 0.47
Instance 3 5878.62 0.00 5878.62 (-1.35%) 0.50
Instance 4 5588.90 3.91 5592.81 (-0.56%) 0.58
Instance 5 5384.35 0.00 5384.35 (-1.06%) 0.53
Instance 6 5956.87 0.00 5956.87 (+0.66%) 0.48
Instance 7 5732.33 0.00 5732.33 (+3.19%) 0.53
Average 5817.25 0.60 5817.85 (-0.34%) 0.51
Stdev 270.59 1.46 270.10 0.04

Table 6.40: Lead time and tardiness results for the evolved tree policy on
the high intensity test instances. The quality is compared to the ad-hoc
tabu search (Table 6.35). On the training instances, a gap of -0.27% to the
planning algorithm was achieved.
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H0 Ha Samples p-Value Result
µ̃1 = µ̃2 =
µ̃3 = µ̃4 = µ̃5

¬H0 Quality of the
policies:

FCFS
(x̃1 = 8.1E + 08)
EDD
(x̃2 = 8.0E + 08)
NN
(x̃3 = 6.4E + 06)
Linear
(x̃4 = 5822.69)
Tree
(x̃5 = 5878.62)

4.017e-05 Reject H0

µ̃D = 0 µ̃D 6= 0 Post-hoc pairwise
comparisons:
FCFS / EDD 0.469 Not Reject H0

FCFS / NN 0.047 Reject H0

FCFS / Linear 0.047 Reject H0

FCFS / Tree 0.047 Reject H0

EDD / NN 0.047 Reject H0

EDD / Linear 0.047 Reject H0

EDD / Tree 0.047 Reject H0

NN / Linear 0.047 Reject H0

EDD / Tree 0.047 Reject H0

Linear / Tree 0.469 Not Reject H0

Table 6.41: Statistical analysis of the different policies for the high intensity
scenario. A Friedman test was used to test if any median of the qualities
achieved by the policies differ. For a post-hoc analysis the Wilcoxon signed
rank test was applied and the p-values were adjusted using Hochberg’s pro-
cedure. A significance level of p < 0.05 was used.
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6.5 Evaluation of Generated Waiting Strate-

gies and the Influence of Problem Prop-

erties

The different waiting strategies as well as the direct policy search, as de-
scribed in Section 4.4, has been implemented in HeuristicLab. The imple-
mentation is based on the generic pickup and delivery simulation optimiza-
tion model presented in Section 3.1.2. The aim is to evaluate the performance
of the different general waiting heuristics as well as the generated specialized
policies on a set of benchmark instances with different spatial and temporal
characteristics as well as different degrees of dynamism.

The test setup consists of dynamic PDPTW instances that have been
proposed by Pankratz (2005) which are derived from the static pickup and
delivery instances provided by Li and Lim (2001) which in turn are based
on the classical Solomon benchmark instances for the vehicle routing prob-
lem with time windows proposed by Solomon (1987). Each of the instances
contains 50 dynamically appearing requests.

The 56 different instances are split into different classes which differ in
terms of geographical properties and time window properties. In terms of
geographical properties, the test set contains clustered, random and mixed
locations of transportation requests. The instances also have different time
window properties. Some instances have large time windows, others have
small time windows. Each instance class represents a combination of these
properties, which results in the naming scheme. For example, the instance
class C1 contains clustered (C is clustered, R is random, RC is mixed) in-
stances with tight time windows (1 is tight, 2 is large).

Class Training Test
C1 5 4
C2 4 4
R1 6 6
R2 5 5
RC1 4 4
RC2 4 4
Total 28 27

Table 6.42: Number of training and test instances for each problem class

The individual classes contain 8-12 problem instances that have similar
properties. From each class, half of the instances are used as the test set and
the other 4-6 instances as the training set. The training set is used during the
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direct policy search and is regarded as historical data to derive knowledge
about future demands in the form of stochastic or intensity information.
The test set is used to compare the different policies on previously unseen
instances. The number of instances for each class is listed in Table 6.42.

In the training phase, no static customers are considered which means
that all requests appear dynamically during the planning process. In total,
there are 28 training instances in 6 different classes. In the test phase, the
different waiting policies are evaluated on the remaining 27 instances with
different degree of dynamism ranging from 0% static customers to 90% static
customers in steps of 10%. This results in a total of 270 test instances with
varying degree of dynamism. Ten independent test runs are performed for
each instance. The static customers are chosen randomly according to a
uniform distribution for each run.

For each policy, the average values in terms of vehicles, distance, and
solution quality are reported over all runs. Additionally, the policies are
grouped according to their temporal and spatial characteristics as well as
to the degree of dynamism to analyze the influence on the potential savings
achieved by anticipatory waiting.

6.5.1 Training and Test Results

In the training phase, the Stochastic and Intensity policies are parametrized
on the 28 training instances as outlined in Section 4.4.3. For route cal-
culation, the push forward insertion heuristic is applied. The results on the
training instances are listed in Table 6.43. The specialized policies performed
best while the Variable policy was the best general heuristic. The Intensity
policy performed 4.69% while the Stochastic policy performed 1.14% better
than the Variable policy.

The performance of the different policies is evaluated on 270 previously
unseen instances in the test phase, that have similar characteristics as the
training instances. In the test phase, a tabu search heuristic is applied for
route calculation. The average results of the different waiting policies on the
test set are listed in Table 6.44. The specialized Intensity strategy performed
best and achieved 0.70% better results than the second best Variable strategy.

To test the results for statistical relevance, a multi-sample statistical anal-
ysis was performed where each sample represents the average of the 10 test
runs for each of the test instances leading to a sample size of 270 for each
waiting policy. After the basic effect of the applied waiting policy on the
achieved quality was confirmed (see Table 6.45), a post-hoc analysis was
performed with pairwise comparison of the policies (see Table 6.46).
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It can be stated that the Intensity and Variable policies perform sig-
nificantly better than not applying a waiting policy (DriveFirst) while the
Depot policy performs significantly worse. For all other policies, no signifi-
cant difference could be identified as opposed to not waiting. In the context
of this multiple comparison, it cannot be stated that a single policy performs
better than all other policies. However, the Intensity and Variable strate-
gies perform significantly better than all other policies. In addition to the
full pairwise analysis of all policies, a single comparison between these two
policies without considering the other policies results in the Intensity policy
performing better than the Variable with a significance of p = 0.01201.

Training Set
Distance Fleet Costs

(km) (count) (Euro)
DriveFirst 2324.86 22.63 70213.75
Depot 2343.91 22.96 71232.79 (+1.45%)
WaitFirst 2280.64 22.97 71191.75 (+1.39%)
DW 2294.57 22.84 70805.68 (+0.84%)
Location 2257.18 22.79 70612.74 (+0.57%)
MaxDistance 2296.36 22.50 69785.25 (-0.61%)
ADW 2257.48 22.44 69590.81 (-0.89%)
Distance 2221.29 22.07 68421.29 (-2.55%)
Variable 2170.14 21.60 66970.14 (-4.62%)
Stochastic 2205.86 21.33 66205.86 (-5.71%)
Intensity 2165.72 20.56 63832.39 (-9.09%)

Table 6.43: Average results of the waiting policies in the training phase
on the 28 training instances. The relative savings compared to not waiting
(DriveFirst) are listed and the policies are ordered according to the achieved
quality.
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Test Set
Distance Fleet Costs

(km) (count) (Euro)
DriveFirst 1980.94 17.89 55659.83
WaitFirst 1959.53 18.37 57059.53 (+2.51%)
Depot 2005.70 18.31 56947.92 (+2.31%)
DW 1940.37 17.98 55879.25 (+0.39%)
MaxDistance 1937.82 17.92 55683.38 (+0.04%)
Location 1925.70 17.85 55464.59 (-0.35%)
ADW 1931.04 17.76 55223.26 (-0.78%)
Stochastic 1933.76 17.65 54895.98 (-1.37%)
Distance 1909.11 17.53 54493.56 (-2.10%)
Variable 1898.53 17.19 53481.87 (-3.91%)
Intensity 1910.73 17.07 53107.40 (-4.59%)

Table 6.44: Average results of the waiting policies in the test phase on the
270 test instances. The relative savings compared to not waiting (DriveFirst)
are listed and the policies are ordered according to the achieved quality.
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H0 Ha Samples p-Value Result
µ̃1 = µ̃2 =
µ̃3 = µ̃4 =
µ̃5 = µ̃6 =
µ̃7 = µ̃8 =
µ̃9 = µ̃10 =
µ̃11

¬H0 Quality of the
policies:

DriveFirst
(x̃1 = 52365.72)
WaitFirst
(x̃2 = 54740.63)
Depot
(x̃3 = 53981.25)
DW
(x̃4 = 53933.29)
Location
(x̃5 = 53321.15)
MaxDistance
(x̃6 = 53040.49)
ADW
(x̃7 = 52824.63)
Distance
(x̃8 = 52694.68)
Stochastic
(x̃9 = 52205.13)
Variable
(x̃10 = 50697.27)
Intensity
(x̃11 = 50693.84)

2.2e-16 Reject H0

Table 6.45: Statistical analysis of the different policies on the 270 test in-
stances. A Friedman test was used to test if any median of the qualities
achieved by the policies differ with a significance level of p < 0.05.
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ADW Int- Depot Drive- Dist- DW Loc- MaxD- Stoch- Var-
ensity First ance ation istance astic iable

Intensity 2E-16 - - - - - - - - -
Depot 4E-12 2E-16 - - - - - - - -
DriveFirst 0.6464 2E-16 7E-11 - - - - - - -
Distance 1E-03 2E-08 6E-13 0.0589 - - - - - -
DW 2E-11 2E-16 8E-06 0.9826 2E-12 - - - - -
Location 0.9826 7E-16 7E-07 0.9826 2E-14 0.5382 - - - -
MaxDistance 7E-03 2E-16 1E-06 0.9826 2E-16 0.9826 0.1574 - - -
Stochastic 0.9826 4E-14 2E-16 0.7211 0.9826 3E-05 0.136 4E-03 - -
Variable 2E-16 0.2902 2E-16 1E-11 1E-08 2E-16 2E-16 2E-16 8E-07 -
WaitFirst 1E-09 2E-16 0.9826 0.0516 2E-16 3E-06 2E-16 5E-15 2E-09 2E-16

Table 6.46: Post-hoc pairwise comparison of the policies on the 270 test
instances with a a significance level of p < 0.05. The Wilcoxon signed rank
test was applied and the p-values were adjusted using Hochberg’s procedure.
Significant results are highlighted in bold.
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6.5.2 Influence of Spatial and Temporal Properties

The test set consisted of instances with different spatial and temporal proper-
ties. Concretely, in terms of spatial properties, the performance on instances
with clustered (Table 6.47), randomly (Table 6.48), and mixed (Table 6.49)
geographically distributed customers while in terms of temporal properties,
the performance on instances with tight (Table 6.50) and large (Table 6.51)
time windows was evaluated.

The Intensity strategy performed best in all comparisons except the
mixed instances where the Variable strategy performed 0.76% better. For
the clustered instances, 11.71% savings were achieved by the best policy com-
pared to 2.24% for the random and 2.27% for the mixed instances. In terms
of time windows, the largest savings for instances with small time windows
were 3.13% while for large time windows they were 7.14%.

Clustered Test Instances
Distance Fleet Costs

(km) (count) (Euro)
DriveFirst 1627.57 16.46 51018.82
Depot 1621.58 16.36 50709.08 (-0.61%)
Stochastic 1516.06 15.72 48676.06 (-4.59%)
ADW 1520.52 15.65 48466.77 (-5.00%)
DW 1518.53 15.60 48311.03 (-5.31%)
WaitFirst 1495.09 15.23 47170.09 (-7.54%)
MaxDistance 1501.44 15.13 46880.19 (-8.11%)
Location 1476.62 14.98 46420.37 (-9.01%)
Variable 1466.85 14.73 45664.35 (-10.50%)
Distance 1465.20 14.72 45613.95 (-10.59%)
Intensity 1467.71 14.53 45046.46 (-11.71%)

Table 6.47: Average results of the waiting policies on the 80 test instances
with geographically clustered customers. The relative savings compared to
not waiting (DriveFirst) are listed and the policies are ordered according to
the achieved quality.
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Random Test Instances
Distance Fleet Costs

(km) (count) (Euro)
DriveFirst 1942.07 18.35 56978.43
WaitFirst 1975.54 19.67 60988.27 (+7.04%)
Location 1949.84 19.19 59533.48 (+4.48%)
MaxDistance 1950.08 19.16 59419.17 (+4.28%)
DW 1941.17 18.93 58722.99 (+3.06%)
Depot 1965.87 18.73 58169.50 (+2.09%)
Distance 1922.24 18.69 57981.34 (+1.76%)
ADW 1928.19 18.59 57687.28 (+1.24%)
Stochastic 1943.62 18.40 57157.26 (+0.31%)
Variable 1907.24 18.19 56490.88 (-0.86%)
Intensity 1913.56 17.93 55703.56 (-2.24%)

Table 6.48: Average results of the waiting policies on the 110 test instances
with geographically randomly distributed customers. The relative savings
compared to not waiting (DriveFirst) are listed and the policies are ordered
according to the achieved quality.

Mixed Test Instances
Distance Fleet Costs

(km) (count) (Euro)
DriveFirst 2387.76 18.70 58487.76
WaitFirst 2401.95 19.72 61546.95 (+5.23%)
Depot 2444.57 19.69 61507.07 (+5.16%)
DW 2361.09 19.06 59537.34 (+1.79%)
MaxDistance 2357.35 19.00 59349.85 (+1.47%)
Location 2341.58 18.86 58914.08 (+0.73%)
ADW 2345.48 18.75 58591.73 (+0.18%)
Distance 2334.97 18.75 58577.47 (+0.15%)
Stochastic 2337.89 18.56 58006.64 (-0.82%)
Intensity 2349.87 18.42 57598.62 (-1.52%)
Variable 2318.24 18.28 57161.99 (-2.27%)

Table 6.49: Average results of the waiting policies on the 80 test instances
with both geographically randomly distributed and clustered customers. The
relative savings compared to not waiting (DriveFirst) are listed and the poli-
cies are ordered according to the achieved quality.
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Small TW Test Instances
Distance Fleet Costs

(km) (count) (Euro)
DriveFirst 1918.63 22.19 68473.63
WaitFirst 1974.66 23.29 71844.66 (+4.92%)
Depot 1965.70 23.00 70961.42 (+3.63%)
DW 1935.39 22.58 69668.96 (+1.75%)
MaxDistance 1927.40 22.52 69489.54 (+1.48%)
Location 1924.77 22.42 69186.91 (+1.04%)
Stochastic 1929.94 22.37 69039.94 (+0.83%)
ADW 1917.60 22.31 68836.89 (+0.53%)
Distance 1908.63 22.16 68386.49 (-0.13%)
Variable 1883.39 21.59 66644.82 (-2.67%)
Intensity 1883.23 21.48 66327.52 (-3.13%)

Table 6.50: Average results of the waiting policies on the 140 test instances
with small time windows. The relative savings compared to not waiting
(DriveFirst) are listed and the policies are ordered according to the achieved
quality.

Large TW Test Instances
Distance Fleet Costs

(km) (count) (Euro)
DriveFirst 2048.04 13.27 41860.35
Depot 2048.76 13.27 41856.46 (-0.01%)
WaitFirst 1943.23 13.06 41137.08 (-1.73%)
DW 1945.73 13.03 41028.81 (-1.99%)
MaxDistance 1949.05 12.96 40815.21 (-2.50%)
Location 1926.71 12.92 40686.71 (-2.80%)
ADW 1945.51 12.87 40562.44 (-3.10%)
Stochastic 1937.87 12.58 39664.02 (-5.25%)
Distance 1909.63 12.54 39531.94 (-5.56%)
Variable 1914.84 12.46 39306.38 (-6.10%)
Intensity 1940.35 12.31 38870.35 (-7.14%)

Table 6.51: Average results of the waiting policies on the 130 test instances
with large time windows. The relative savings compared to not waiting
(DriveFirst) are listed and the policies are ordered according to the achieved
quality.
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6.5.3 Influence of Degree of Dynamism

The test set contains instances with different degree of dynamism ranging
from 10% to 100% dynamic customers. The performance of the four best
waiting policies depending on the degree of dynamism is illustrated in Figure
6.2. The Intensity policy performs best in all degree of dynamism except the
lowest one with 10% dynamic customers where the Variable policy performs
0.19% better. The largest potential savings of 5.82% compared to not waiting
(DriveFirst) could be achieved with 60% static customers.
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Figure 6.2: Savings of the four best waiting policies compared to not wait-
ing (DriveFirst) on the test set containing instances with varying degree of
dynamism. Each category (10%-100% dynamic customers) contains 27 test
instances.
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6.6 Benefits of Situational Selection in Envi-

ronments with Changing Uncertainty

The methodology presented in Section 5.2 has been implemented in Heuristi-
cLab combining all algorithmic concepts of the portfolio approach presented
in Section 5.1 into a single optimization environment.

As described in Section 5.2, the multiple scenario algorithm (MSA), the
waiting strategies presented in Section 4.4 (AW ), as well as a purely reactive
planning (AdHoc) are combined to a portfolio. Different weighting functions
are evaluated for the algorithm portfolio which weigh near-term requests dif-
ferently than long-term requests. Portfolios with uniform (PfUniform), linear
(PfLinear), and exponential (PfExpα) weighting functions are investigated.
In terms of exponential weighting, α values of 0.1, 0.5, 1.0, 1.5, and 2.0 are
considered.

The individual heuristics as well as portfolios with different weighting
functions are evaluated on stochastic and dynamic pickup and delivery prob-
lem instances. The instances have been derived from the instances provided
by Pankratz (2005) which have been also used in the previous section. How-
ever, only instances with 100% degree of dynamism are considered. A total
of 27 test instances split in 6 classes are used with clustered (C ), random
(R ), and mixed (RC ) geographically distributed requests as well small ( 1)
and large ( 2) time windows. It is feasible to use only the test instances
as presented in the previous section, since the waiting strategies have been
generated on the remaining 28 training instances which could influence the
results.

Two benchmark sets are derived from these 27 test instances by gen-
erating an appearance probability between 10% and 90% for each request.
An evaluation benchmark set is generated with fixed appearance probabili-
ties which is used during the portfolio design phase (as presented in Section
5.2.3) while a test set with changing appearance probabilities is generated
for evaluating the resulting portfolio (as presented in this section).

For the evaluation set, a fixed appearance probability ranging from 10%
to 90% in steps of 10% was considered for each of the 6 test set classes
leading to a total of 6 ∗ 9 = 54 evaluation classes. Since each class con-
sists of 27 instances, the evaluation set consists of a total of 1458 instances.
The evaluation set was solely used in the portfolio design phase to evaluate
the robustness of the individual policies and to draw conclusions about the
performance profile.

After portfolio design, a set of test instances with changing uncertainty
was generated based on the 27 original test instances. The planning horizon
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is split into three phases for each instance. In the first third of the horizon,
the requests appear with a probability of 90% while in the second third,
the probability is 50%, and in the last third it is 10%. The data quality
thus changes over time. Based on these 27 test instances with changing un-
certainty, the portfolio was compared to the individual policies and different
weighting functions were evaluated. From each of the 27 stochastic instances,
20 fixed samples were created leading to a total of 540 dependent test runs
for each policy.

The overall results are listed in Table 6.52. The MSA was the individual
policy and servers as a baseline for the portfolio as well as the other policies.
The exponential weighting with an α value of 1.5 was the best portfolio
parametrization and achieved a 2.16% saving compared to the MSA.

The results were tested for statistical significance. As listed in Table 6.53,
the used policy has a significant effect on the achieved quality. In a detailed
pairwise comparison that is listed in Table 6.54 it can be observed, that
the portfolio approach significantly outperforms the individual algorithms.
The different weighting parametrization values cannot be significantly dis-
tinguished, except the best (PFExp15 ) and the worst (PFExp01 ).

Overall Results
Distance Fleet Costs

(km) (count) (Euro)
MSA 1760.36 12.53 39338.14
AdHoc 1369.13 14.53 44969.13 (+14.31%)
AW 1302.07 13.79 42657.63 (+8.44%)
PfExp01 1652.81 12.46 39030.58 (-0.78%)
PfUniform 1573.20 12.44 38906.54 (-1.10%)
PfLinear 1597.24 12.36 38675.02 (-1.69%)
PfExp20 1590.28 12.36 38668.05 (-1.70%)
PfExp10 1590.40 12.32 38551.51 (-2.00%)
PfExp05 1596.18 12.32 38546.18 (-2.01%)
PfExp15 1580.92 12.30 38486.47 (-2.16%)

Table 6.52: Average results of the policies on the overall set of test instances
with changing degree of uncertainty. The portfolios with different weighting
functions are listed with a Pf prefix. The results are compared to the overall
best individual heuristic (MSA).
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H0 Ha Samples p-Value Result
µ̃1 = µ̃2 =
µ̃3 = µ̃4 =
µ̃5 = µ̃6 =
µ̃7 = µ̃8 =
µ̃9 = µ̃10

¬H0 Quality of the
policies:

AdHoc
(x̃1 = 42977.33)
AW
(x̃2 = 40299.32)
MSA
(x̃3 = 37710.34)
PfLinear
(x̃4 = 37068.85)
PfUniform
(x̃5 = 37160.09)
PfExp01
(x̃6 = 37295.69)
PfExp05
(x̃7 = 37109.65)
PfExp10
(x̃8 = 36916.71)
PfExp15
(x̃9 = 37076.29)
PfExp20
(x̃10 = 37169.94)

2.2e-16 Reject H0

Table 6.53: Statistical analysis of the different policies on the 540 test runs.
A Friedman test was used to test if any median of the qualities achieved by
the policies differ with a significance level of p < 0.05.

AdHoc AW MSA PfExp01 PfExp05 PfExp10 PfExp15 PfExp20 PfLinear
AW 7E-16 - - - - - - - -
MSA 2E-16 4E-14 - - - - - - -
PfExp01 2E-16 2E-16 0.37078 - - - - - -
PfExp05 2E-16 2E-16 1E-04 0.12315 - - - - -
PfExp10 2E-16 2E-16 2E-04 0.06321 0.86264 - - - -
PfExp15 2E-16 2E-16 5E-05 0.02614 0.86264 0.86264 - - -
PfExp20 2E-16 2E-16 7E-04 0.28216 0.86264 0.86264 0.86264 - -
PfLinear 2E-16 2E-16 1E-03 0.60437 0.86264 0.86264 0.86264 0.86264 -
PfUniform 2E-16 2E-16 0.05785 0.86264 0.86264 0.86264 0.86264 0.86264 0.86264

Table 6.54: Post-hoc pairwise comparison of the policies on the 540 test
runs with a a significance level of p < 0.05. The Wilcoxon signed rank
test was applied and the p-values were adjusted using Hochberg’s procedure.
Significant results are highlighted in bold.
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6.6.1 Detailed Results per Instance Class

Since the performance profiles presented in Section 5.2 differ quite strongly
for the different instance classes, a detailed consideration of the results for
each class makes sense. Again, the results are compared to the best individual
policy which is the MSA.

Results for the clustered instances with small time windows (C1) are
listed in Table 6.55. The Portfolio approaches cannot outperform the best
individual heuristic (AW) in that case. A similar picture is drawn for the
clustered instances with large time windows (C2) as listed in Table 6.56 while
the AW clearly outperforms the best overall heuristic which is the MSA.

The results for the random instances with small time windows (R1) are
listed in Table 6.57 and the instances with large time windows (R2) in Table
6.58. Results for the mixed instances with small time windows (RC1) are
presented in Table 6.59 and the instances with large time windows (RC2) are
listed in Table 6.60. For the instances other than C1 and C2, the situation
changes and the portfolio approach gains a clear advantage compared to the
best individual heuristic.

In general, the PfExp15 is the best weighting strategy especially for large
time windows. However, in instances with small time windows, the PfExp05
strategy outperforms the PfExp15 strategy by 0.36%. For large time win-
dows, the PfExp15 has an advantage of 1.57% compared to the PfExp05
strategy leading to better overall results.

The results illustrate the importance of a differentiated view in terms
of problem characteristics. When selecting the best individual policy per
instance class (AW for the clustered and MSA for the remaining instances),
the advantage of the PfExp15 portfolio approach decreases to of 0.63%. If
the best weighting function is selected per class (Linear for C1 and C2,
PfExp05 for R1 and RC1, and PfExp15 for R2 and RC2), the advantage of
the dynamic portfolio compared to a static selection based on the instance
class increases to 1.06%.
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Class C1
Distance Fleet Costs

(km) (count) (Euro)
MSA 1551.02 19.39 59713.52
AdHoc 1448.74 20.29 62311.24 (+4.35%)
PfExp01 1407.07 18.65 57357.07 (-3.95%)
AW 1365.74 18.61 57203.24 (-4.20%)
PfExp20 1365.74 18.61 57203.24 (-4.20%)
PfExp05 1365.74 18.61 57203.24 (-4.20%)
PfExp15 1365.74 18.61 57203.24 (-4.20%)
PfUniform 1365.73 18.61 57203.23 (-4.20%)
PfExp10 1365.72 18.61 57203.22 (-4.20%)
PfLinear 1365.69 18.61 57203.19 (-4.20%)

Table 6.55: Average results of the policies on the C1 instances with changing
degree of uncertainty. The portfolios with different weighting functions are
listed with a Pf prefix. The results are compared to the overall best single-
algorithm heuristic (MSA).

Class C2
Distance Fleet Costs

(km) (count) (Euro)
MSA 1560.94 8.64 27473.44
AdHoc 1070.03 9.60 29870.03 (+8.72%)
PfExp01 1087.63 9.29 28950.13 (+5.37%)
AW 881.53 8.34 25894.03 (-5.75%)
PfExp15 878.89 8.31 25816.39 (-6.03%)
PfExp20 878.56 8.31 25816.06 (-6.03%)
PfExp10 878.48 8.31 25815.98 (-6.03%)
PfExp05 878.48 8.31 25815.98 (-6.03%)
PfUniform 878.48 8.31 25815.98 (-6.03%)
PfLinear 879.08 8.29 25741.58 (-6.30%)

Table 6.56: Average results of the policies on the C2 instances with changing
degree of uncertainty. The portfolios with different weighting functions are
listed with a Pf prefix. The results are compared to the overall best single-
algorithm heuristic (MSA).
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Class R1
Distance Fleet Costs

(km) (count) (Euro)
MSA 1266.75 13.30 41166.75
AdHoc 1118.06 14.80 45518.06 (+10.57%)
AW 1112.93 14.63 44987.93 (+9.28%)
PfUniform 1247.77 13.52 41797.77 (+1.53%)
PfExp20 1244.49 13.38 41369.49 (+0.49%)
PfLinear 1253.29 13.34 41278.29 (+0.27%)
PfExp15 1236.63 13.27 41046.63 (-0.29%)
PfExp01 1244.16 13.25 40994.16 (-0.42%)
PfExp10 1240.48 13.24 40965.48 (-0.49%)
PfExp05 1234.84 13.21 40859.84 (-0.75%)

Table 6.57: Average results of the policies on the R1 instances with changing
degree of uncertainty. The portfolios with different weighting functions are
listed with a Pf prefix. The results are compared to the overall best single-
algorithm heuristic (MSA).

Class R2
Distance Fleet Costs

(km) (count) (Euro)
MSA 2048.40 8.21 26678.40
AdHoc 1175.69 10.60 32975.69 (+23.60%)
AW 1103.69 9.44 29423.69 (+10.29%)
PfUniform 1803.67 8.55 27453.67 (+2.91%)
PfExp05 1930.62 8.33 26920.62 (+0.91%)
PfExp20 1884.93 8.33 26874.93 (+0.74%)
PfLinear 1908.13 8.29 26778.13 (+0.37%)
PfExp01 2007.53 8.24 26727.53 (+0.18%)
PfExp10 1883.10 8.17 26393.10 (-1.07%)
PfExp15 1876.62 8.12 26236.62 (-1.66%)

Table 6.58: Average results of the policies on the R2 instances with changing
degree of uncertainty. The portfolios with different weighting functions are
listed with a Pf prefix. The results are compared to the overall best single-
algorithm heuristic (MSA).
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Class RC1
Distance Fleet Costs

(km) (count) (Euro)
MSA 1724.29 16.36 50811.79
AW 1837.85 20.55 63487.85 (+24.95%)
AdHoc 1831.92 20.55 63481.92 (+24.94%)
PfExp10 1741.37 16.29 50603.87 (-0.41%)
PfUniform 1720.81 16.19 50283.31 (-1.04%)
PfExp01 1729.43 16.16 50216.93 (-1.17%)
PfExp15 1701.85 16.15 50151.85 (-1.30%)
PfLinear 1728.12 16.13 50103.12 (-1.39%)
PfExp20 1716.66 16.09 49979.16 (-1.64%)
PfExp05 1712.14 16.04 49824.64 (-1.94%)

Table 6.59: Average results of the policies on the RC1 instances with chang-
ing degree of uncertainty. The portfolios with different weighting functions
are listed with a Pf prefix. The results are compared to the overall best
single-algorithm heuristic (MSA).

Class RC2
Distance Fleet Costs

(km) (count) (Euro)
MSA 2585.55 9.95 32435.55
AdHoc 1744.20 12.21 38381.70 (+18.33%)
AW 1654.85 11.81 37092.35 (+14.36%)
PfLinear 2543.41 10.03 32618.41 (+0.56%)
PfExp05 2552.35 9.95 32402.35 (-0.10%)
PfExp20 2550.51 9.94 32363.01 (-0.22%)
PfUniform 2527.86 9.93 32302.86 (-0.41%)
PfExp10 2535.00 9.88 32160.00 (-0.85%)
PfExp01 2556.66 9.83 32031.66 (-1.25%)
PfExp15 2523.98 9.76 31811.48 (-1.92%)

Table 6.60: Average results of the policies on the RC2 instances with chang-
ing degree of uncertainty. The portfolios with different weighting functions
are listed with a Pf prefix. The results are compared to the overall best
single-algorithm heuristic (MSA).
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Chapter 7

Conclusions and Outlook

The dynamic vehicle routing problem remains a challenging combinatorial
optimization problem which requires specialized algorithmic approaches in-
corporating knowledge about the problem structure and future events. When
developing algorithmic strategies, a compromise has to be made between ro-
bustness and specialization according to the no free lunch theorem (Wolpert
and Macready, 1997). This thesis has investigated research directions aim-
ing to overcome this issue by presenting a methodology which combines ideas
from several related areas with the main vision of a decision support system
that semi-automatically adapts its algorithmic strategies.

7.1 Summary of Main Achievements

The main step beyond the current state-of-the art made in this thesis is the
semi-automated adaption of heuristic methods for dynamic vehicle routing
problems considering potentially changing problem structures and charac-
teristics. By combining several specialized heuristics to a portfolio, the pre-
sented algorithmic framework enables a specialization to the problem struc-
ture while being robust in terms of changing characteristics.

Three essential building blocks of an adaptive algorithmic framework for
dynamic vehicle routing have been identified while these topics are closely
related. Rich variants of vehicle routing problems are modeled using sim-
ulation capturing the dynamic interactions and stochastic influence factors.
Based on a simulation model and training data, specialized policies are gen-
erated in a semi-automated way. Multiple specialized policies are combined
to an algorithm portfolio and selected according to the problem character-
istics. These building blocks enable the modeling of rich variants and the
semi-automated adaption of the algorithmic strategies on a meta-level.
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7.1.1 Simulation Optimization of Production and Lo-
gistic Scenarios

A generic simulation optimization modeling framework for dynamic vehicle
routing problems has been presented with two specializations for pickup and
delivery and inventory routing problems. The simulation model captures the
dynamic interactions as well as the stochastic influence factors and serves as a
basis for manual and semi-automated algorithm design. A realistic problem
model with rich side-constraints enables the transfer of the findings back
into practice. In particular, three practical case-studies of production and
logistic scenarios have been presented and the findings can be summarized
as following:

• The simulation optimization of the transport activities within cold
charge steel production based on a scenario of a steel plant has yielded
valuable insights in terms of potential improvements of the slab han-
dling process. The stacking and shuffling operations have been identi-
fied as a main bottleneck. Additionally, dynamically arriving informa-
tion from upstream and downstream processes has a significant effect
on the solution quality. As a result, an integrated optimization ap-
proach should be investigated combining scheduling, transport, and
storage assignment.

• The integrated optimization of warehousing and transport activities
based on a scenario of one of the worlds largest supplier of firefighting
vehicles has been investigated. For that purpose, a warehousing sim-
ulation, a storage assignment optimization, and a routing simulation
optimization model have been coupled to study the interrelations be-
tween the individual sub-activities within material handling. The pick-
ing schedule influences the efficiency of the storage assignment strat-
egy as well as the in-house transport and is thus of major importance.
By considering the down-stream transport to the workstations already
while picking the items and accepting a slight decrease in the efficiency
of the warehouse activities, an overall increase of the material handling
efficiency could be observed. This again highlights the importance of
integrated optimization approaches.

• A simulation-based optimization approach has been applied based on
an inventory routing scenario of an Austrian retailer who delivers fast-
moving consumer goods to supermarkets. A novel aspect has been
the consideration of mixed scenarios where only part of the customers
are switched to a vendor-managed inventory while the other customers
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retain a threshold-based order strategy. The application of simulation
optimization as a scenario technique has yielded insights in terms of ex-
ogenous and endogenous influence factors on the efficiency of a vendor-
managed inventory. The main savings potential lies in smoothing fluc-
tuating demand patterns by distributing replenishments more equally
and as a result lowering the peak resource utilization. The simulation-
based sensitivity analysis has revealed that the service quality and the
demand distribution have the largest impact on the potential savings.

7.1.2 Algorithmic Generation of Specialized Routing
Policies

An algorithmic framework for the semi-automated generation of specialized
policies using a black-box simulation model and training data has been
proposed. Heuristic policies have been automatically adapted and gener-
ated based on direct policy search and reinforcement learning. The semi-
automated generation of policies combines the ability of human experts to
define algorithmic building blocks and the robustness of evolutionary algo-
rithms to adapt and assemble them in superior ways. Routing policies have
been generated for different variants of dynamic vehicle routing problems
and their potential to perform well on previously unseen instances that have
similar characteristics as the training data has been confirmed. This ability
of a semi-automated specialization to problem characteristics and to gener-
ate re-usable heuristics in an offline training phase is an essential building
block of a system adapting to its problem environment. Important design
decisions are the policy representation, the learning approach, and the search
algorithm. The generation of three particular routing policies embedded in
a heuristic framework has been investigated:

• Replenishment policies for inventory routing scenarios have been gen-
erated that are specialized to different scenarios. By integrating the
refill policies into a heuristic framework, the inherent problem com-
plexity of the high-dimensional scenario, which has been derived from
real-world data, could be mitigated. The reduction in complexity has
been achieved by combining several approximations. A two-stage ap-
proach has been used to divide the inventory replenishment from the
routing decisions. The inventory replenishment decisions are based on
abstract features that have been defined by a domain expert which
are combined to a parametrized policy. The study clearly illustrated
the potential of applying direct policy search and integrating the re-
sulting policies in a heuristic framework to optimize highly complex
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scenarios. Furthermore, an investigation of local optima has been pre-
sented indicating a multi-modal and globally non-convex structure of
the parameter landscape.

• Dispatching policies for dial-a-ride problems have been evolved that al-
low an autonomous operation of vehicles in an agent-based simulation
environment. The evolved policies have been interpreted and the most
impactful domain features have been identified which allows a feedback
loop to the policy design phase. Two different policy representations
have been compared while a tree representation has performed slightly
better than a linear representation. Compared to a planning approach,
the dispatching policies have performed poorer in low intensity while
they performed comparably well in high intensity scenarios. In both
cases, they have required a significantly less runtime during online op-
eration. The computational effort is transferred to the offline training
phase. These findings indicate, that specialized dispatching policies are
especially applicable in highly volatile environments where a reactive
acting and a quick response time is required.

• Waiting policies for pickup and delivery problems have been generated
with the aim of anticipating future requests by distributing the wait-
ing time based on problem characteristics. The generated specialized
policies have outperformed the general heuristics that are designed to
work well regarding a large range of problem characteristics. However,
spatial and temporal problem characteristics have a large impact on
the savings potential of anticipatory waiting. Especially geographical
clustering of requests and large time windows have been identified as
beneficial properties. Applying specialized waiting strategies is bene-
ficial in cases where the potential savings are comparably large where
additional optimization potential compared to general heuristics can
be exploited. These results clearly illustrate the need for combining
different solution methods based on the problem characteristics.

7.1.3 Dynamic Situational Selection of Routing Poli-
cies

An algorithm selection framework based on a portfolio of specialized policies
has been presented combining all methodological developments of this thesis
towards the goal of adaptive decision support systems. By integrating algo-
rithm selection and simulation optimization, a dynamic situational selection
of specialized routing policies has been achieved. Two possible extensions
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with learning capabilities have been presented for automated portfolio de-
sign and building knowledge about the mapping between problem charac-
teristics and algorithm performance. Three important design decisions have
been identified for applying the framework to a particular application area.
The problem characterization, the portfolio design, and the problem to al-
gorithm mapping aspects are specialized based on the generic framework.
A particular case-study of an environment with changing characteristics has
been presented to illustrate the potential of the methodology:

• A dynamic pickup and delivery problem with stochastic requests has
been investigated where the appearance probabilities of the requests
changes over time. In a robustness analysis it has been identified, that
the performance of the individual policies depends on spatial and tem-
poral characteristics of the problem instance as well as the uncertainty
in terms of the appearance of requests. Furthermore, it has been ob-
served that the policies complement each other and have individual
strengths and weaknesses depending on these problem characteristics.
These insights were incorporated in the portfolio design combining sev-
eral specialized heuristics and deriving a set of selection rules. In partic-
ular, semi-automatically generated waiting policies have been combined
with human-designed heuristics known from the literature. The portfo-
lio approach has clearly outperformed each individual heuristic on the
overall instance set. The policies have complemented each other espe-
cially in terms of spatial and temporal characteristics and the dynamic
selection has revealed additional optimization potential. The highly
specialized generated policies have complemented the human-designed
heuristics which are designed for robust behavior in a large number of
cases. By combining several policies to a portfolio a better performance
could by achieved than by each individual heuristic.

7.2 Research Directions

Important algorithmic building blocks of a decision support system that is
adaptive in terms of problem characteristics on a meta-level have been high-
lighted in this thesis. While the potential of the methodology has been il-
lustrated and a semi-automated adaption of algorithmic strategies has been
accomplished, there are several open issues to reach the goal of a self-adaptive
decision support system which autonomously learns within its routing envi-
ronment:

193



• It is clear that the presented case-study for a portfolio-based algo-
rithm selection merely scratched the surface of the possibilities the
methodological framework offers. Several research directions that are
important for automated algorithm selection have been outlined in-
cluding fitness landscape analysis for problem characterization, policy
generation for portfolio design, machine learning for mapping problem
characteristics to the algorithm space, and selecting multiple policies:

In terms of problem characterization, the investigation of fitness
landscapes of dynamic vehicle routing problem is an open issue. Few
work exists on fitness landscape analysis for dynamic problems (such as
Richter (2009)) and it is certainty an interesting research direction to
investigate the fitness landscape for dynamic vehicle routing problems.
New insights on the problem structure could lead to a better under-
standing about the links between problem characteristics and algorithm
performance.

Another potentially fruitful direction is to apply machine learning
within online systems. One possibility for integration is to incorporate
an automated portfolio extension element that explores new unseen
problem characteristics and automatically extends the portfolio with
newly generated policies. Another possibility is a learning element
which derives knowledge on the mapping between problem character-
istics and algorithm performance based on feedback during operation
and constantly adapts the selection rules.

While in the presented case-study only a single algorithm running
on a single computer has been selected, in principle multiple policies
can be selected at once to be executed in parallel. This would allow
the utilization of parallel computing infrastructures such as clusters or
multi-core processors. It would be required to derive mapping knowl-
edge about a set of selected algorithms which are executed in parallel.

• The methodology presented in this thesis worked on the meta-level by
generating policies and selecting among them. One open issue is the
incorporation of self-adaptive behavior within the policies itself on the
algorithm level. A fruitful research direction to be integrated into the
methodological framework is the investigation of metaheuristics in dy-
namic environments (Alba et al., 2012). An example is adapting certain
algorithm parameters such as the mutation rate when the environment
is changing.

• The interpretation of the evolved policies remains a difficult issue even
though the proposed methodology is based on white-box techniques.
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A promising research direction towards the understanding of the struc-
ture of the policy space is fitness landscape analysis revealing features
such as plateaus, ruggedness, and distribution of local optima. The
findings regarding the meta-level landscape can be linked to the fitness
landscape of the underlying optimization problem in terms of common
features as highlighted by Burke et al. (2013). A preliminary study in-
vestigating the properties of parameter landscapes has been presented
in Section 4.2.3 including only a rather small number of local optima.
Advanced fitness landscape analysis methods require the exploration
of a multitude of solution candidates leading to a high computational
complexity since each evaluation requires a simulation run. Cloud com-
puting resources could be utilized to perform more extensive studies of
the policy space.

• A large potential has been identified in the presented case studies in
production and logistics in terms of integrated problem formulations.
It was illustrated, that the combination of multiple optimization and
simulation components can provide a holistic view on the whole process.
In that context, an adaptive algorithmic framework for dynamic vehicle
routing could be an important building block of such an optimization
network. Whenever decisions about related activities such as storage
assignment or scheduling are made, the routing environment might
change requiring a constant adaption to the new conditions.

Summarizing, the potential of policy generation and algorithm selection
performed on a meta-level based on a realistic simulation model has been
clearly identified in the presented case studies. Raising the abstraction to
automatically generated and adapting portfolios bears optimization poten-
tial compared to human-designed algorithms. However, to reach the vision of
a self-adaptive decision support system that autonomously learns and adapts
in changing environments, a fundamental understanding of problem charac-
teristics as well as the incorporation of machine learning is required which
leads to interesting research directions based on the presented algorithmic
framework.
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Pillac, V., Guéret, C., and Medaglia, A. L. (2012b). An event-driven opti-
mization framework for dynamic vehicle routing. Decision Support Sys-
tems.

Pisinger, D. and Ropke, S. (2010). Large neighborhood search. In Handbook
of metaheuristics, pages 399–419. Springer.

Pitzer, E., Beham, A., and Affenzeller, M. (2014). Correlation of problem
hardness and fitness landscapes in the quadratic assignment problem. In
Advanced Methods and Applications in Computational Intelligence, pages
165–195. Springer.

Pitzer, E., Beham, A., Affenzeller, M., Heiss, H., and Vorderwinkler, M.
(2011). Production fine planning using a solution archive of priority rules.
In Logistics and Industrial Informatics (LINDI), 2011 3rd IEEE Interna-
tional Symposium on, pages 111–116. IEEE.

Pitzer, E., Vonolfen, S., Beham, A., Affenzeller, M., Bolshakov, V., and
Merkuryeva, G. (2012). Structural analysis of vehicle routing problems
using general fitness landscape analysis and problem specific measures.
In 14th International Asia Pacific Conference on Computer Aided System
Theory, pages 36–38.

Polacek, M., Hartl, R. F., Doerner, K., and Reimann, M. (2004). A variable
neighborhood search for the multi depot vehicle routing problem with time
windows. Journal of heuristics, 10(6):613–627.

Potvin, J.-Y. and Bengio, S. (1996). The vehicle routing problem with
time windows part ii: genetic search. INFORMS journal on Computing,
8(2):165–172.

Powell, W. B. (2007). Approximate Dynamic Programming: Solving the
curses of dimensionality, volume 703. John Wiley & Sons.

Powell, W. B. (2012). Perspectives of approximate dynamic programming.
Annals of Operations Research, pages 1–38.

Powell, W. B., Sheffi, Y., Nickerson, K. S., Butterbaugh, K., and Atherton, S.
(1988). Maximizing profits for north american van lines’ truckload division:
A new framework for pricing and operations. Interfaces, 18(1):21–41.

210



Powell, W. B., Simao, H. P., and Bouzaiene-Ayari, B. (2012). Approximate
dynamic programming in transportation and logistics: a unified frame-
work. EURO Journal on Transportation and Logistics, 1(3):237–284.

Psaraftis, H. (1988). Dynamic vehicle routing problems. In Vehicle Routing:
Methods and Studies, pages 223–249. Elsevier Science Publishers.

Psaraftis, H. N. (1995). Dynamic vehicle routing: Status and prospects.
annals of Operations Research, 61(1):143–164.

Pureza, V. and Laporte, G. (2008). Waiting and buffering strategies for
the dynamic pickup and delivery problem with time windows. INFOR:
Information Systems and Operational Research, 46(3):165–176.

R Core Team (2013). R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria.

Rice, J. R. (1976). The algorithm selection problem. Advances in Computers,
15:65–118.

Richter, A. (2005). Dynamische Tourenplanung: Modifikation von klas-
sischen Heuristiken für das Dynamische Rundreiseproblem (DTSP) und
das Dynamische Tourenplanungsproblem (DVRP) mit der Möglichkeit der
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