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Abstract

The field of optimization has a wide range of applications in the real world. The
operation of trucks, ships, cranes, production lines, hospitals, or warehouses
results in many decision situations that affect efficiencies, business capabil-
ities, and costs. Deterministic and stochastic models formalize the decision
situations as well as their objectives. Exact and heuristic techniques are em-
ployed to solve these models efficiently. The resulting solutions are then used
to derive the respective decisions. A large range of such solving algorithms are
available, but which outperform each other in different situations. It is thus a
major problem to decide which algorithm instance should be applied to solve
a specific model.

It is the goal of this thesis to devise and evaluate methods that are able
to solve this so called algorithm selection problem. We will evaluate whether
an improved solving algorithm can be found that reuses existing approaches.
The goal is to evaluate such an algorithm when applied to well-known models
and evaluate its performance. In this light, research and development efforts
from three domains are described and studied.

First, fitness landscape analysis is a method applicable to characterize mod-
els and their instances through a set of features. We will provide an overview on
high-level characteristics that influence the performance of solving algorithms.
In this thesis a new method termed directed walk and new features are devised,
different variants thereof are analyzed, and new ideas for algorithms are given.

Second, the algorithm selection problem is solved in two case studies. Sev-
eral thousand runs have been performed on a wide range of different benchmark
instances. Thereby, the performance of a range of algorithms is recorded. In
these two studies we will evaluate a classification-based approach to the al-
gorithm selection problem. Thereby, we will compare the performances of
algorithms and relate those to the landscape characteristics. We will show
that a combined approach performs better than an individual algorithm.

Third, the general research model of operations research is introduced and
it is discussed how such results can be transferred to other models and domains.
Thereby, we discuss the steps involved to move from a real-world problem to a
scientific model and further to a solution through an efficient solver. Finally,
we introduce software systems that support such tasks and which have been

created by the author in the course of his studies.
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Kurzfassung

Optimierungsalgorithmen finden vielfach Anwendung bei Planungs- und Steue-
rungsaufgaben. Im Betrieb von Lastkraftwagen, Shiffen, Kranen, Produktions-
linien, Spitdlern oder Lagerhauser sind Entscheidungen zu treffen, die die Effi-
zienz, Handlungsmoglichkeiten und Kosten beeinflussen. Deterministische und
stochastische Modelle formalisieren diese Entscheidungssituationen und deren
Ziele. Exakte und heuristische Ansétze werden zur effizienten Losung solcher
Modelle eingesetzt und entsprechende Entscheidungen werden aus deren Lo-
sungen abgeleitet. Fine Vielzahl unterschiedlicher Algorithmen zur Lésungsfin-
dung sind verfiighar, iibertreffen sich jedoch gegenseitig bei unterschiedlichen
Problemen. Es ist daher entscheidend den richtigen Algorithmus auszuwéhlen.

Ziel dieser Arbeit ist es, Methoden die das sogenannte Algorithmus Aus-
wahlproblem l6sen, zu entwickeln und zu evaluieren. Wir werden verbesserte
Methoden auf Basis bestehender Algorithmen entwicklen und in der Anwen-
dung auf bekannte Modelle untersuchen. In dieser Hinsicht werden Forschungs-
und Entwicklungstéatigkeiten aus drei Bereichen zusammengefiihrt.

Zuerst wird das Gebiet der Fitnesslandschaftsanalyse vorgestellt und wie
damit Modelleinstanzen durch Merkmale beschrieben werden. Nach einem
Uberblick iiber Landschaftsaspekte und deren Einfliisse auf das Leistungsver-
halten von Algorithmen, werden neue Methoden und Merkmale vorgestellt und

analysiert. Aufbauend darauf werden Ideen fiir neue Algorithmen diskutiert.

Im zweiten Teil der Arbeit wird das Algorithmus Auswahlproblem in zwei
Fallstudien gelost. Mehrere tausend Versuche wurden hierfiir auf einer breiten
Palette von Modellinstanzen durchgefiihrt. Aus dem beobachteten Konvergenz-
verhalten vieler Algorithmen wird in den beiden Fallbeispielen ein klassifikati-
onsbasierter Ansatz zur Losung des Auswahlproblems evaluiert. Die Resultate
aus den Versuchen werden vergleichend gegeniibergestellt und Zusammenhénge
mit Landschaftseigenschaften untersucht. Wir werden zeigen, dass ein kombi-
nierter Ansatz in der Lage ist einzelne Algorithmen zu iibertreffen.

Im dritten Teil der Arbeit wird, anhand einem allgemeinen Vorgehensmo-
dell, diskutiert wie sich dies auf andere Modelle und Doménen tibertragen lasst.
Dabei werden Entscheidungen beschrieben, die fiir die Uberfithrung einer ech-
ten Entscheidungssituation in ein wissenschaftliches Modell notwendig sind.
Zum Schlufs werden Softwaresysteme vorgestellt, die solche Entscheidungen

unterstitzen und die vom Autor wahrend seines Studiums erstellt wurden.
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1 Introduction

“The step from the plus to the
comma version finally seemed to
climb to the top of mount

nonsense |..|”

H-G. Beyer and H-P. Schwefel
[BS02]

Heuristic problem solving is essential in many fields of application. From
finding a path between A and B, deciding on the next of a number of tasks,
selecting several from a range of options, or identifying patterns in data. There
are optimization problems at the heart of many decision situations.

Determining good facility locations is a central problem when a business is
expanding or new businesses are formed. There are multiple approaches how
to model and solve such problems. The capacitated plant location problem
[Sr195] describes the minimization of costs when depots are opened in a set
of possible locations to serve a range of customers. Two types of costs exist,
on the one hand, opening a depot at a location creates installation costs. On
the other hand, service costs arise when customers are served. In such a case
where facilities exchange goods with each other, assignment problems may be
used to model the corresponding decisions [[KXB57, RS75, PHGZ10].

The vehicle routing problem is a core problem in truck dispatching scenarios
[TV14]. Tt describes a minimization of resources, e.g. cost, time, or distance,
of several vehicles’ tours, where each vehicle usually starts from and returns
to the same depot after servicing a range of sites. Advanced applications such
as the location routing problem combine the choice of tours with the choice of
where to put the depots as introduced just before [PP14]. Inventory routing
problems combine an optimization of tours with the additional decision on
determining which goods are to be serviced, thus managing the inventory of
the sites [CCL13, VAB"13]. There is a rich literature of potential applications
in many areas such as health care [SDH11], intralogistics [VBI 13|, as well as
solution approaches [AD04, VBAT12, VCGP14].

Scheduling problems are at the heart of planning operations in manufac-
turing or service industry [Pinl6]. Scheduling describes a minimization, for
instance of the completion time or tardiness of a range of activities. The activ-

ities require certain renewable or non-renewable resources while they are being



executed. Additionally, there may be dependencies to other activities that
must have been completed earlier [HB10]. Applications for scheduling prob-
lems arise in health care [BDBV04], production [VW07, HKB"18, HBR"19],
or in computing environments [NCAT1].

These and many other problems are in the class of NP-hard problems,
meaning that there is no polynomial time algorithm that guarantees finding
the optimal solution. The exponential growth of the problems’ complexity
creates barriers for solving larger and larger instances and problem specific
heuristics may need to be created. For example, to identify a good round-trip
between a number of cities one could use a heuristic to choose a starting city,
e.g. the one that is farthest away from all others and then use a heuristic
to choose a connecting city, e.g. the one that is closest. A round trip can
then be created by applying these heuristics until all cities are connected. The
heuristics include problem specific parameters (i.e. distance) in their decision
making. Path problems that are not described by a distance (alone) cannot be
solved by these heuristics. For simple problems, such heuristics may already
perform very well. However, problems, especially in the real world, can become
increasingly complex and sometimes it can be a challenge to find a feasible
solution.

Metaheuristics on the other hand are not specific to a certain problem, they
make use of heuristics in that they apply them according to a certain strategy.
Often these heuristics are then called operators. Genetic algorithms (GA) are a
family of metaheuristics that use the heuristic operations crossover, mutation,
and selection in order to update a population of solutions [Hol75, Mic99].
GAs also describe what these heuristics should actually do and specify some
requirements, e.g. “crossover should take two parent solutions and produce a
new child solution that consists, at best, only of parts that are present in the
given parent solutions”. However, not all metaheuristics may be described in
such a general way. Some methods depend on a specific solution encoding.
For instance, earlier evolution strategies (ES) by Rechenberg and Schwefel
[Rec73, BSO2] still describe a general concept of adapting the strength of a
mutation over the course of the search. Newer variants of ES such as CMA-
ES [HOO1] specify a detailed adaption strategy, but restricted to the solution
space of real-valued vectors. Such metaheuristics can be described as being
at least “encoding specific”, because they still work for a large range of (real-
valued) problems. A more in-depth discussion on metaheuristics is given in
Section 2.2.



1 INTRODUCTION

Many heuristic operators such as the ones mentioned above have been
created, some work very well, some work very fast, some work only on some
problems, and others work only in combination with certain other heuristic op-
erators. The introduction of metaheuristic algorithms has mitigated, but not
solved the problem of identifying “the right” heuristic operator. In addition,
while we have highlighted that metaheuristics are more generally applicable,
we have to state, that the performance of metaheuristics is again highly prob-
lem dependent. A metaheuristic that achieves good performance on routing
problems may perform poorly on assignment problems. It can be observed, as
also shown later in this thesis, that performance varies even between problem
instances, i.e. different parameterizations of a problem. Related to these obser-
vations is the theorem that has been formulated by David Wolpert and William
Macready and which has been termed “no free lunch” theorem [WM97]. In this
well-known work, Wolpert and Macready state that the average performance
of any algorithm over all problems is equal.

In the light of this background, the scientific community has started to
work on new approaches that attempt to identify the concrete subsets for
which certain algorithms are better suited than others. These approaches try
to identify patterns in the way algorithms work and patterns in the way the
problem instances are shaped. By “overlapping” these two patterns it is hoped
to capture what human optimization experts describe as experience when they
attempt to choose suitable methods and parameters. In identifying a rela-
tionship among problems, among algorithms, and between problems and algo-
rithms new insight shall be gained that will potentially also reveal unexplored
areas of algorithmic strategies. The foundation for these new developments
date back to John R. Rice [Ric76] and the algorithm selection problem (ASP)
that will be introduced in more detail later. So far the approaches that are
pursued and discussed in the scientific community that attempt to solve the
“adaptation problem” of algorithms to problems are:

e Metaoptimization
e Hyperheuristics
e Algorithm Selection

Metaoptimization is the attempt to optimize the parameters of metaheuris-
tics using another metaheuristic [BI12|. The search space of such a meta-
optimizer is the parameter configuration space of the underlying metaheuris-
tic. Methods have been described to perform metaoptimization [HHLBII,

3



BBLP05, HHLBS09]. One well-known software package that performs this
task is called irace and developed among others by Manuel Lopez-Ibénez
[LIDLSB11]. Metaoptimization is a computationally intensive offline approach
and itself subject to the problem of parameterization [DCDS17].

The idea of hyperheuristics is similar to metaoptimization, but focuses on
choosing or generating heuristics instead of an adaption of numerical parame-
ters. Hyperheuristics can be applied online or offline [BGH"13|. In an online
application the hyperheuristic chooses or generates heuristics during the course
of the search, while in an offline application heuristics are chosen or generated
on a set of training instances. For instance, the genetic programming approach
that the author has presented at IPDPS in 2008 may be viewed as an offline
hyperheuristic approach [BWWAOg].

Algorithm selection and hyperheuristics are also closely linked together.
The problem of choosing among a set of heuristics those that should be applied
can be seen as solving an algorithm selection problem. An approach based on
the ASP is to memorize the performance data of past experiments, e.g. in the
form of a database, and identify a best match with a previously observed case
to decide on a new and unseen situation [BAW17]. This may be less useful
during the course of the search, but rather before the start of the search.

Summarizing these developments, the field of heuristic optimization has
created a large range of different methods with different levels of abstractions
and performance. The thesis at hand describes research efforts in the category
of algorithm selection based approaches. It is stated how fitness landscape
analysis (FLA) can be seen as a method for identifying problem character-
istics and describes and evaluates machine learning approaches for pattern
identification. Finally, an algorithm selection approach is introduced, tested,
and the observed results are discussed.

A short note on the wording and the terms that are being used throughout
the thesis: Heuristic algorithms and metaheuristics can be summarized as
being approrimate algorithms in contrast to exact or complete algorithms. The
term “heuristic optimization algorithm” may refer to both a simple heuristic,
as well as a complex metaheuristic. The term heuristic may be used instead
of approximate. Thus, the term heuristic may be used as adjective as well as
noun. The term “approximate” has not been picked up in a major proportion

of the scientific literature that discusses these approaches.



1 INTRODUCTION

1.1 Motivation and Goals

Since genetic algorithms [Hol75], evolution strategies [Rec73|, and simulated
annealing [[XGV&3| have been introduced a plethora of further metaheuristic
algorithms has emerged. Today, the scientific community knows about different
algorithm such as ant colony optimization [DD99], particle swarm optimization
[KKE95], tabu search [Glo86], scatter search [Glo99|, variable neighborhood
search [HMO1], large neighborhood search [PR10]|, parameter-less population
pyramid [GP14], PILOT method [VFDO05], greedy randomized adaptive search
procedure [FR95], non-dominated sorting genetic algorithm [DPAT02], and
strength pareto evolutionary algorithm [ZL.T01]| to name just a few. While a
variety of algorithms may be regarded positively, the disadvantage is that one
has to choose a concrete implementation of a fully parameterized algorithm
for solving a concrete instances of a certain problem. A rigorous mathematical
analysis of this methods could reveal several characteristics that would allow
making a good choice given a certain problem instance. However, the analysis
is complicated by a range of, ironically desired, properties that are often sought
in the creation of metaheuristic algorithms:

e Stochasticity increases the robustness of metaheuristics
e Parameters enable to adapt the metaheuristic to differences in the prob-
lems

e Metaheuristics are applicable to a wide range of different problems

1.1.1 Challenges and Limitations for Metaheuristics Research

After a phase similar to a cambrian explosion ([CM03]) of, in this case, meta-
heuristic methods, in recent years critical articles have emerged that question
whether some of the proposed novel methods are only metaphorically different
and based on the same or highly similar underlying principles [Sorl5]. Some
methods like harmony search |[GIKLO1] have even caused open dispute in the
scientific literature [Wey12]. More recently, the intelligent water drop algo-
rithm has been rigorously analyzed and is claimed to be a special case of ant
colony optimization which was introduced much earlier [CVDS19]. Still, the
scientific community is looking for new problem-solving concepts to further
this field and solve real-world problems better and faster than before. Re-
search on portfolio-based approaches that include a range of algorithms and

a selector that returns a suitable algorithm instance constitutes a promising
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direction for future research. Nevertheless, there are still open challenges that

demand further research and to which this thesis may contribute:

1. Feature Design and Landscape Analysis
2. Algorithm Selection
3. Visualization and Analysis

The first challenge is to describe the state of the dynamic system that is
comprised by the application of algorithms to solve problems and the resulting
performance that is observed. We need a better understanding of that system
and what variables influence the dynamic in what way. In this thesis, like in
many related work, it is sought to obtain features from static observations, but
also from such dynamic processes to describe the system. Section 3 describes
directed walks and some landscape characteristics derived from those.

The second challenge is to identify, study, and analyze models that can be
used in algorithm selection and the performance of a portfolio in comparison
to individual algorithms. These use the features as inputs and aim to predict
the performance of a range of algorithms whereupon the best may be selected.
Specifically, in Section 4 of this thesis a k-nearest-neighbor model is evaluated
in two case studies from the domain of assignment problems.

Additionally, in Sections 3 and 4 we will also explore different ways to
analyze and visualize results. We will devise a new visualization for showing
the best algorithm instances in the algorithm selection case studies.

However, still there are several general limitations that may not be over-
come. One such limitation concerns the amount of dimensions on which algo-

rithms compete with each other [Ric76, BBO6]:

1. efficiency - concerns the runtime of an algorithm

2. reliability - concerns the quality of the achieved solution

3. robustness - concerns an algorithm’s ability to achieve good quality among
a range of problems

4. simplicity - concerns the complexity of an algorithm’s implementation

It is important to state that not all of these characteristics can be mea-
sured on the algorithm itself, but have to be evaluated in the context of a
concrete implementation, potentially using a certain framework. So, a genetic
algorithm implemented using e.g. HeuristicLab [Wag09, WKB™14] must be

compared to a genetic algorithm implemented using e.g. the DEAP framework
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[FDGT12] as if they were separate algorithms. The point is that we cannot
compare algorithms directly in a way that would lead to conclusions such as
“tabu search outperforms genetic algorithms”. First we have to acknowledge
that the genetic algorithm is not a testable entity, but rather a conceptual
framework - which is the case for almost all metaheuristics. Second we must
acknowledge that we can test only when we have specified all parameters of an
algorithm, leading to the comparison between algorithm instances rather than
between algorithms themselves. Third we recognize that implementations in
programming languages of these instances may be different potentially leading
to different properties. Fourth we experience that any implementation of an al-
gorithm instance can only be run on certain hardware. For instance, simplicity
of an algorithm is a property of the implementation, but efficiency, reliability,
and robustness are properties of the implementation being executed on some
hardware. These are not challenges that we may overcome in this thesis, but
limitations that are accepted in this work.

1.1.2 Intended Contribution to the Field of Metaheuristics

For those researchers that seek to solve optimization problems, the current
state of research is difficult to comprehend and understand. Each new pub-
lished method is often stated to be better than the ones it compares against
on the problem instances it compares them on. It is hardly possible to com-
pare against all methods due to the vast number of them and the scattered
implementations.

The motivation for this thesis roots in the high potential of applying meta-
heuristic optimization in practice. The trend to apply artificial intelligence
(AI) methods in practice is becoming ever stronger. Metaheuristics are a
highly promising branch of Al in that they can deliver high quality solutions
to real-world problems in short time. Decision scenarios such as in production
or logistics planning, and operational decision situations can be supported by
metaheuristic optimization. Still, the requirement of human experts in the
application of these techniques presents a stumbling block and slows down its
adoption in the real world. My motivation is to support the step of choosing
a suitable algorithm that can solve a certain problem efficiently.

The goal of this thesis is to develop and evaluate methods with which it is
possible to perform automated choices for solving a certain new and unforseen

problem instance given a range of different algorithms. The resulting approach
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should be applicable in automated decision making (ADM) scenarios where
human observation and control is at least partly unavailable. The vision is
that we can devise a system that learns over time, much like a human expert,
and can make better and better choices on solving a new unknown problem
instance with a range of methods that are at its disposal. When an unknown
problem instance arrives, we want to be able to quickly determine a good
parametrized algorithm in that sense that we can maximize the performance
dimensions that we have specified above. In order to do this we have to treat
problem instances not as independent from each other, but by having some sort
of similarity which correlates with the performance of successful algorithmic

approaches.

1.2 Relevant Research Projects

The methods and results described in this thesis would not have been possible
without the knowledge and expertise acquired in several research projects that
I was engaged in. Among these, the Josef Ressel Centre for Heuristic Opti-
mization (Heureka!) and the K-Project Heuristic Optimization in Production
and Logistics (HOPL) have to be mentioned. These projects were devoted to
both methodological research and real-world applications.

In recent years, I have received grants for research projects, such as “Inte-
grated Methods for Robust Production Planning and Control (SimGenOpt2)”
in the 19" call “Produktion der Zukunft” (engl. production of the future) and
“Digitale Methoden fiir verbesserte Personalqualifizierungsstrategien (Opti-
mal Workforce)” in the call “Innovatives Oberosterreich 2020: Digitalisierung”
(engl. innovative Upper Austria 2020: digitalization). Among other indus-
trial branches the steel industry has been a fruitful ground for optimization.
During HOPL we implemented algorithms that optimize the dispatching of
cranes, tractors, and straddle carriers. The digitalization of the production in-
dustry under the term “Industry 4.0” is an ongoing process and computational
intelligence methods are part of this transformation.

In several of the research projects decision making optimization algorithms
were created that run unobserved by humans on servers, machines, or other
hardware. It is my personal conviction that this trend will continue in the
future. In Section 6.2, I will provide an outlook and discuss briefly the ramifi-
cations of these developments on the real world and its current limitations.



2 Foundations

“The random number seed is the
only random element during the

optimization run.”

Thomas Bartz-Beielstein [BB06]

In this section, five parts are to be discussed that form the basis of this
thesis. It must be noted that algorithm selection requires the consideration
of many different aspects within applied optimization. An in-depth discussion
of each of the involved parts is out of the scope of this thesis. The broader
view and the discussion and presentation of the involved methods and domains
should however be a valuable contribution to anyone seeking to continue and
extend the work described here.

1. The first part is related to the problems that are to be studied. The
problems are introduced together with some practical applications.

2. In the second section heuristic methods are examined more closely. The
similarities and differences between metaheuristics are going to be high-
lighted and well-known algorithms are introduced.

3. The third part is dedicated to fitness landscape analysis (FLA) and how
it is used to characterize and relate problems (resp. the induced fitness
landscapes) to each other.

4. The fourth part concerns the performance measurement of algorithms.
How can we record and represent performance and how can we compare

algorithms based on their performances?

5. The fifth part is concerned with algorithm selection problems themselves
and the respective solution approaches.



2.1 Assignment Problems

2.1 Assignment Problems

Assignment problems are relevant in the real world, because often in our life
and in business operations we assign items from one set to items from another.
For instance, support tickets are assigned to members of an I'T department,
medications are put in storage bins of refrigerated warehouses, steel slabs are
stacked in open yards, kitchen utensils, herbs, ingredientc, etc. are distributed
among drawers and cupboards in our kitchens, employees are given a desk in
an office. Thus, the entities are often named workers, facilities, equipments,
jobs on the one hand and tasks, locations, and resources on the other hand. In
terms of the mathematics the name is irrelevant, but it is important to note
that there are two distinct sets of items.

A solution to an assignment problem then defines a relation between items
of the first set to items of the second set. In some problem definitions given
below the relation has some requirements that it needs to fulfill, e.g. bijective,
injective, or surjective constraints. For instance, in case of a bijection each
element of set one must be paired with exactly one element of set two and vice
versa. Such an assignment solution is expressed in terms of the pairings. For
instance, each possible pairing might be described by a variable that is 0 if
the pairing is absent and 1 if it is present. Finally, there exists an objective
function that maps the solution into the domain of real numbers and which
must be minimized or maximized. In the following some well-known definitions

of assignment problems are given.

2.1.1 Linear Assignment Problem

The linear assignment problem (LAP) is not NP-hard. It can be solved to op-
timality in polynomial time using the so called Hungarian algorithm [I[<uh55].
The problem can be described as assigning N independent workers to /N inde-
pendent tasks. An N x N cost matrix C' with elements ¢;; describes resources
(i.e. time, money) that worker ¢ would consume when completing task j. The
goal is to find a permutation 7 of the numbers 1, .., N with 7(7) denoting the
element at position ¢ so that the following objective is achieved:

N
min E Cir (i)
i=1

10
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2.1.2 Quadratic Assignment Problem

The quadratic assignment problem (QAP) is NP-hard [KKB57]. It is an exten-
sion to the LAP. In this model N facilities are assigned to N locations such that
the facilities that are frequently communicating lie closer together. A weight
matrix W with elements w;; describes the strength of the exchange between
facilities ¢ and j while the distance matrix D with elements d;, describes the
distance between locations ¢t and s. The goal is to find a permutation 7 of all
elements in the domain D = [1; N| with 7(¢) denoting the element at position
i so that the following objective is achieved:

N N
min Y > " wi; - de(iyn(s) (2.1)

i=1 j=1
This is the purely quadratic assignment problem, if a linear term is present

in form of the cost matrix C' with elements ¢;; describing the cost of installing
facility ¢ in location j the objective function becomes

N N
i=1 j=1

But it is often difficult to describe the installation costs and the costs
arising out of the strength-distance product in terms of a common domain,
i.e. currency and thus the simpler objective is the more commonly known
and studied one. The QAP, as can be seen in equation (2.1), does not define
constraints. It can be written as an integer programming problem, which
introduces those constraints that would otherwise be satisfied with 7© being a

permutation (in equations (2.4) and (2.5)):

N N N N
minz Z Z Z Tij * Tis * Wik, + djs (2.3)

N
st.Y z;=1 Vje{l,. N} (2.4)
=1
N
Y ay=1 Vie{l,.,N} (2.5)
j=1
zi; €{0,1} Vie{l,...N}Aje{l,..,M} (2.6)

11
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Another aspect of the quadratic assignment problem is that it generalizes
the well-known traveling salesman problem (TSP) [ABCCO07|. The path of the
salesman can be represented by constructing a special flow matrix, as shown
below. This flow of unit strength visits all “facilities” exactly once.

0 10 --- 0 0]
001 --00
000 0 1
100 --- 00

2.1.3 Generalized Assignment Problem

The LAP and QAP both consider a “1-to-1 assignment”, that is, each worker
is assigned exactly one task and each task is assigned to exactly one worker.
The generalized assignment problem (GAP) relaxes this requirement and al-
lows multiple (or no) tasks respectively facilities to be assigned to one worker
respectively location. It introduces capacities and demands that limit the as-
signment of one to the other. The GAP can be said to model W workers that
are assigned T tasks. Worker 7 is equipped with a capacity of b; of a certain
resource (e.g. time, financial budget) and requires r;; units of that resource
to complete task k. The assignment of task k£ to worker ¢ also incurs a cost
Cik. Similar to the QAP the GAP is NP-hard. The problem can be described
mathematically as [RS75]:

W oT
min Z Z ik * Ciks (2.7)

=1 k=1
T

Sty wgra <b Vie{l,.., W} (2.8)

k=1

w
Y =1 Vke{l,.,T} (2.9)

=1
g €{0,1} Vie{l,. . . Winke{l,. . T} (2.10)

The objective in equation (2.7) is to reduce the cost of the assignment.
Constraint (2.8) ensures that the sum of the allotted resources to each worker
does not overbook the available capacity. Constraint (2.9) ensures that each

task is assigned to exactly one worker.

12
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2.1.4 Generalized Quadratic Assignment Problem

The generalized quadratic assignment problem (GQAP) is also NP-hard and
represents “the quadratic extension” of the GAP. It combines the objective
of the QAP (cf. equation (2.3)) with the constraints of the GAP (cf. equa-
tions (2.8) to (2.10)). A slight simplification in the proposed formulation is
that in the GQAP it is assumed that each facility has the same space demand,
regardless of the location. Thus r;; does not have matrix form, but is de-
scribed only as a vector with elements r, although it would not be difficult to
extend the formulation. Also a cost conversion factor e is defined that balances
the importance of the installation costs ¢;; and the costs resulting out of the
strength-distance product. Mathematically, the GQAP can be described as
the following integer programming problem [PHGZ10]:

W oT W oT
minz Z (%k “Cikte- Z Z%k “Tpg  Wip - dks) (2.11)

=1 k=1 r=1 s=1

T
St) wperp <b Vie{l,..,W} (2.12)

k=1

w
d wp=1 Vke{l,.,T} (2.13)

=1
zip€{0,1} Vie{l,.. . Winke{l,.. T} (2.14)

Since only one of the permutation constraints is present, i.e. equation (2.13)
describes that each facility must be assigned exactly one location, the solution
representation cannot be a permutation. The assignment is a, so called, “1:n
assignment” which can be described using an integer vector. In this vector the
index describes the facility and the value describes the location to which this

facility is assigned to.

2.1.5 Benchmark Libraries

Benchmark data are important for the scientific community to compare algo-
rithmic approaches directly with each other on the same problem instances.
However, there are a number of concerns that benchmark libraries should take
into account.

a Coverage: The set of benchmark instances should cover the space of
possible problem instances adequately. The data should not only be

13
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sampled uniformly and independently, but various sampling distributions
and interdependencies should be included. This also includes the size of
the instances. A library consisting only of small problem instances does
not allow exploring the scaling behavior of algorithms.

b Imbalance: The set of benchmark instances should not consist mostly of
instances of the same “type”, but the various types should be represented
rather equally.

For the QAP there have been several benchmark libraries proposed which
will be introduced briefly. Each of those libraries consist of several instances
often with different characteristics. This is important, because as we will
detail and observe later on, different characteristics favor different algorithm
instances.

1. QAPLIB [BKR97| - a collection of problem instances from a wide va-
riety of sources. It includes randomly generated instances as well as
real-world instances such as keyboard layout or hospital location plan-
ning. A wide variety of distributions for the flow and distance matrices
are being used which include sparse and asymmetric instances.

2. DreXX and TaiXXe [DHTT05] - a collection of problem instances from
small to large size that are harder to solve for most metaheuristics.

3. Microarray QAP [dR06] - a collection of real-world instances from
microarray layout problems.

4. TSPLIB [Rei91] - these are instances for the traveling salesman prob-
lem (TSP), but which can be solved in a QAP formulation as described
above. Many of the TSP instances are however much larger than an
average QAP instance. A reason is the different runtime complexities
for computing the fitness. The TSP objective can be computed in lin-
ear time O(n) whereas the QAP objective grows quadratically with the
problem dimension (O(n?)). Thus QAP instances with a size of 100 are
comparable to TSPs with a size of 10,000 complexity-wise.

The QAPLIB is certainly the most elaborate, but also most dated library.
Many of the instances can be solved in reasonable time nowadays by one
method or the other and thus harder to solve instances were introduced more
recently [DHTTO5]. The 137 instances constituting the QAPLIB libary are
summarized in Figure 1 and Table 1.

14
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Figure 1: This histograms shows the frequency of the problem dimensions of
all 137 instances in the QAPLIB. The bin sizes for the dimensions have been

chosen in a logarithmic progression.

Table 1: QAPLIB constitutes of problem instances from a variety of sources

and types. This table shows the number of instances per source and type, the

average dimension of each group and its standard deviation.

Row Labels | # Instances @ Dimension ¢ Dimension
bur 8 26.0 0.0
chr 14 17.6 4.2
els 1 19.0 -
esc 20 30.4 25.9
had 5 16.0 3.2
kra 3 30.7 1.2
lipa-a 8 55.0 24.5
lipa-b 8 55.0 24.5
nug 15 20.3 5.5
rou 3 15.7 4.0
scr 3 15.7 4.0
sko 13 81.1 22.0
ste 3 36.0 0.0
tai-a 13 38.0 27.7
tai-b 13 48.2 40.8
tai-c 2 160.0 135.8
tho 3 73.3 66.6
wil 2 75.0 354
Total 137 40.2 35.3
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2.1.6 Literature Review

The QAP has been used in optimizing keyboard layouts, hospital facility lay-
outs, microarray layouts, electronic wiring, and more [SteG1, Els77, HKOI,
dR06, Ben02|. The problem is also hard to solve even for small and moderate
dimensions. The DreXX instances [DHTT05] are so hard that in a group of 10
different algorithm instances only one is able to achieve the optimum solution
using up to 100,000,000 solution evaluation equivalents. Results will be shown
and analyzed in more detail later in this thesis.

Research has focused on exact and approximate approaches. A common
lower bound that is quick to compute for QAP problem instances is the bound
by Gilmore and Lawler [Gil62, Law63|. Computing the bound involves sorting
the weights and distance matrix in descending and ascending order respectively
and then computing a linear cost matrix. This turns the problem into a linear
assignment problem (LAP) that can be solved efficiently by the Hungarian
algorithm [Kuh55] in O(n?) time. The optimal objective value of this LAP is
then a lower bound for the respective QAP.

Linearizations of the QAP are introduced by Kaufman and Broeckx (KB)
[KB78], as well as Frieze and Yadegar ['Y83|. Further advanced linearizations
are described by Xia and Yuan [XY06]| and Zhang et al. [ZBRMI13].

Due to the difficulty of obtaining good solutions to the QAP using exact
approaches many approximate algorithms have been described. Taillard de-
scribed a tabu search algorithm. He noted that in some instances the search
trajectory of tabu search becomes confined to a sub-optimal region of the
search space. In his “robust tabu search” (RTS) algorithm [Tai91], Taillard de-
scribes an aspiration condition that would diversify the search trajectory after
a number of iterations and thus escape the sub-optimal region. Diversification
has been seen as a key aspect of solving QAP instances as efficient local search
methods are available that may evaluate neighbors in constant time [Tai9l].
Merz and Freisleben [MF00], as well as Drezner |Dre08| and Stiitzle [Stii06]
describe memetic algorithms, respectively perturbation strategies to continue
the search after a local optimum has been reached. The idea of memetic algo-
rithms is to use a population of solutions as a diversifying element.

While the QAP has received much attention in the scientific literature, the
generalized QAP (GQAP) is still fairly unexplored. Nevertheless, heuristic
approaches to solve this problem have been described [CGLMOG, MRST1].
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2.2 Heuristic Optimization Algorithms

It is the nature of heuristic algorithms to choose among a set of alternative
decisions. In the construction of a Hamiltonian cycle a heuristic could make
decisions on the starting point as well as the next point in the cycle. In the
combination of two different paths, cut points have to be chosen and duplicate
or missing stops in the path have to be fixed. In the perturbation of a tour,
a stop has to be removed and inserted between two other stops. Typically,
such decision situations involve choosing one from a set of alternative actions.
Heuristic algorithms then often include randomness in their decisions that
alter an otherwise deterministic ranking. While this makes the algorithms
more complex to analyze, stochastic heuristics can be reapplied in the hope
to identify an improved solution. Stochastic heuristics are thus more robust
in that they can achieve a better average performance if the best of n runs is
used as the final result.

The integration of heuristics into more complex algorithms has been de-
scribed by the term metaheuristics [Tal09]. These algorithms describe a more
general strategy in which individual heuristics are employed. For instance, the
canonical genetic algorithm describes how a population of solutions is evolved
by using selection, crossover, mutation, and replacement heuristics in an iter-
ative manner. Each of these heuristics is described in form of required prop-
erties.

Many metaheuristic algorithms can be seen as anytime algorithms [7i196].
They often iteratively improve solutions and can be interrupted at any time
to return the best solution that has been found so far. In contrast to contract
algorithms, that are given a fixed time, the anytime behavior of heuristic op-
timization algorithms is especially important [DLLIS11|. The computational
budget given to a metaheuristic can be seen as an upper bound and the ap-
plicant of such a method expects to obtain good solutions well before this
bound has been reached. Nevertheless, often in the scientific community these
methods are compared as if they were contract algorithms looking at the final
quality averaged over a number of runs after a fixed budget. This is adequate
if the computational budget of the final application is known, however runtime
requirements and limitations of the computation resources are not always clear
from the beginning and might even change during the process of applying the

algorithm in real-world situations.
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Many metaheuristics are also characterized by offering a range of param-
eters that influence the behavior. Each parameterization essentially describes
a different instance of an algorithm. The distinction between algorithms and
instances in the light of parameters is important as only instances, and even
more strictly only implementations of these instances, can be empirically com-
pared against each other. These parameters serve a number of purposes which

may be classified to

limit the computational budget.

scale the algorithm’s performance to more difficult problems.

define the strategy of a certain heuristic.

balance the interplay of different heuristics.

An important characteristic that distinguishes approximate from exact ap-
proaches is the lack of a guarantee for achieving good solutions. Exact ap-
proaches, also referred to as complete algorithms [HS98, BRO3], eventually
compute the optimal solution given a finite amount of time and memory.
Heuristics can only be said to usually work well, but without proof or guar-
antee and with a possibility of failing to work well. Each application needs
to be studied empirically with respect to achievable solution quality and run-
time. An a priori performance estimation of a certain heuristic applied to a
certain problem is difficult to give. Progress has been made on evaluating the
runtime performance of heuristic algorithms, but still a rigorous mathematical
analysis is bound to simple problems and algorithms. An overview of various
techniques and examples can be found in [LO16].

2.2.1 Real-world Applications

Heuristic and metaheuristic optimization algorithms have been used for some
time successfully in finding good solutions to models that cannot be solved
exactly in reasonable time or that cannot be described in closed mathematical
form. A few problems such as vehicle routing problems (VRP) and its variants
are prime examples where metaheuristics are very good performing algorithms.
Vidal et al. describe a state-of-the-art memetic algorithm for solving VRPs
[VCGP14]. They are able to deliver close to optimal solutions in the benchmark
instances considered using reasonable amounts of computing power. Vonolfen
et al. describe an island-based genetic algorithm variant that is able to achieve
high quality solutions [VABW11]|. Pisinger and Ropke describe an adaptive
large neighborhood search (ALNS) that is applied successfully to VRPs [PRO7].
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A number of challenges arise when approaches are put in operational use,
i.e. when the solution is actually transferred to the real world. Such an

environment is, among others,

e dynamic - in a real-world environment there is continued change. New
conditions may invalidate the optimality of a previous solution. For
instance, an optimal schedule may be invalidated as resource availabilities
or customer demand changes.

e uncertain - data we may have to describe the real-world is not exact.
It may actually be described in terms of a probability distribution and
there may be errors as any distribution we may have deducted is only an
approximation to the true distribution that remains unknown.

e asynchronous - the real world and the model world are typically synchro-
nized periodically. However, as has been stated, the real world changes.
Anything the algorithm assumed about its state at the start of its calcu-
lation may not hold when it is finished. Especially, if the algorithm runs
for a longer time.

e stateful - the real world does not always fulfill simple initial conditions,
e.g. that all vehicles are at a depot, or that all queues are empty. Vehicles
may be on their way to customers and the queue already contains jobs,
some of which are being processed right now. Often it is difficult to
acquire suitable data about this state, because either the rate at which
the state changes is high and no automation exists or because there are
simply no information systems that hold the system state in the required
level of detail.

e disorganized - the execution of a solution in the real world requires coor-
dination. An update to a tour must be communicated to the driver and
errors/misunderstandings may arise during such a communication. This
however can be seen as a special type of uncertainty as has been stated

above.

Challenges such as those arising out of a dynamic and asynchronous en-
vironment may be mitigated somewhat by fast algorithms whether they be
heuristics or exact algorithms. The less time these take to finish, the more
likely initial conditions still hold when the algorithm terminates.

Another possibility to counter these situations could be to consider the
dynamic and stochastic aspects of the real-world within models. This however

comes at the expense of making them harder to solve. For instance, calculating
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the expected tour length of the probabilistic TSP is of complexity O(n?) [Jai85]
as opposed to a complexity of O(n) when calculating the tour length of the
deterministic and linear formulation. In addition, the parameters such as the
probability of a customer appearing or not also have to be given.

In recent years the emerging topic of open ended evolutionary algorithms, of
which ALPS [Hor06] may be a possible candidate, could allow to embed real-
world disturbances as a form of uncontrollable mutation in the evolutionary
process. Thus allowing open ended metaheuristics running in parallel to the
real world and continuously exchanging state and solution information.

Further challenges in the application of heuristic algorithms arise in the
selection problem that has been mentioned earlier. Some algorithms are better
suited than others on different sets of problem instances. However, in the case
of automated decision making or in embedded devices these algorithms run
unobserved. For any designer or developer of that system it is quite difficult to
decide a priori on the exact specification of the algorithm instance that is to be
implemented. Typically, a few alternatives are ranked on a representative set
of instances and then choosing e.g. the one with best average rank or according
to some advanced voting method. Several competitions at conferences such as
GECCO are organized this way. Better results can be achieved if a so called

portfolio of algorithm instances is used.

2.2.2 Categorization of Metaheuristics

There are a variety of heuristic and metaheuristic methods that are created
either with a metaphor or natural process in mind, or with the intention of
achieving a certain goal, i.e. balancing exploration and exploitation. Several
thoughts have been made on categorizing these methods so as to distinguish
them and try to identify similarities and differences. Categories that are de-

scribed in the literature are:

Nature-inspired vs. non-nature inspiration ([BPSVO01, BR0O3, Tal09])
Population-based vs. single-point search (|[BPSV01, BR03, Tal09])
Memory usage vs. memoryless methods ([BPSVO1, BR0O3, Tal09])
One vs. various neighborhood structures ([BPSVO01, BRO3])
Dynamic vs. static objective function ([BPSV01, BRO3])

Trajectory methods vs. discontinuous methods ([BPSVO1])
Deterministic vs. stochastic methods ([Tal09])

Iterative vs. greedy methods ([Tal09])

X NSOt WD
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Category 1 separates methods based on their source of inspiration. It is
not expected that these categories are practically or theoretically relevant.

Category 2 on the other hand introduces a more interesting distinction.
The introduction of a population, i.e. a collection of complete solutions that
are fed into the variegation loop of such metaheuristics requires more memory,
but enables a simultaneous exploration of a larger part of the search space.
Solving certain problems may benefit from such a population.

Category 3 tries to distinguish between methods that memorize certain
aspects of the search. The terminology used (“memory”) however makes it
slightly more difficult to categorize algorithms with respect to this group. All
methods contain some sort of memory, the solution itself that is perturbed
or crossed can be seen as a memory. Also memories come in different forms
such as the previously mentioned population, but also in forms that are not
related to solutions or their components such as a memory on the number
of successful perturbations that have been applied with a certain perturba-
tion strategy. Probably the most precise distinction in this class is based on
whether the Markov property holds as [BRO3| suggests. In [BPSVO1]| simu-
lated annealing and greedy randomized adaptive search procedure (GRASP)
are explicitly stated as memory-less stating that genetic algorithms and lo-
cal search could be seen as memory-based algorithms and that this feature is
“partially present”. This is because several variants of genetic algorithms can
be described as Markov chains [WZ99]. In [Tal09] no formal description is
given, but again local search, GRASP and simulated annealing are listed as
representatives of memory-less methods.

Category 4 introduces a distinction on the amounts of neighborhoods that
are used. A neighborhood is a concept that relates solutions to each other.
The neighborhood can be described as a function N : S — P(s) from the space
of solutions S to its powerset (assuming discrete solution spaces). Neighbor-
hoods can also be seen as graphs where a change is the transition along a
single edge in the graph. The use of just one such graph limits the ability
of metaheuristics to explore the search space. This is mostly relevant for al-
gorithms that iteratively improve solutions through small changes. For other
strategies it may not be a relevant classification. The crossover heuristic in ge-
netic algorithms is problematic to classify correctly here. Basically, it creates
an extended graph that not only contains the solutions, but also all tuples of
solutions. Also, construction-based metaheuristics such as GRASP or ACO
can only be classified here with respect to the local search strategy that they
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use. The construction part does not make use of the neighborhood concept,
respectively it uses a concept of neighborhood on parts of a solution.

The distinction in Category 5 is not seen as a nature of the problem, but
rather of the algorithm to modify the objective function. Only few methods
currently exist that add their own bias to the objective value, e.g. guided local
search (GLS) is mentioned by [BPSV01|. However, more recent approaches
would include methods that make use of metamodeling techniques which ap-
proximate the fitness function with simpler mathematical models dynamically
during the search [[XLL13]. In these approaches the objective value is not mod-
ified, but rather approximated with a change in the approximation at certain
points in the search process.

In Category 6 the distinction is done between methods that iteratively
perform only small changes to those that perform large changes, potentially
combining parts of different solutions. While methods that can be classified
as single-point search strategies (cf. Category 2) can fall into either class,
population-based strategies are typically discontinuous methods [BPSV01].

The use of randomness in the search is the distinguishing criterion in Cat-
egory 7. Deterministic algorithms would always return the same result given
the same input, however almost all metaheuristics are stochastic algorithms.

Finally, Category 8 separates methods that construct solutions vs those
that improve solutions iteratively. The term “greedy” as used by Talbi [Tal09]
is probably not the best choice here as it is also used for strategies which de-
terministically choose the best among a certain ranking. In addition there are
methods that are both constructing solutions and iteratively improving them.
The aforementioned GRASP alternates between a constructive approach to

build a complete solution and then an iterative method to improve it.
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Apart from a conceptual presentation of different algorithm strategies, cat-
egorizing algorithms is an attempt to describe a relationship between algo-
rithms. If two algorithms are put in the same categories potentially, there’s
some similarity to how they operate. It also carries the hope that some as-
pects of the observed performances may be present in one form, but not in the
other. We may hope to find a certain range of problems which are, e.g. suited
for population-based methods and where single-point methods converge to so-
lutions of worse quality or vice-versa. As was already stated, some of these
classifiers that have been mentioned are probably more likely to yield a signif-
icant distinction in the results than others. Overall however, it is questionable
whether such categories are really useful in determining suitable algorithms.
Metaheuristics are algorithms that carry the term “meta” in the name for the
reason of being more widely applicable and for the reason of performing well
in a range of problems. Also, they contain parameters that allows tuning the
performance.

While comparing algorithms conceptually is an interesting task in itself,
algorithms, or rather specific parameterized instances of algorithms are com-
pared regarding their observed performance. The question then is which dif-
ference in performance is statistically significant (given a reasonable number
of samples). Another form of significance can be attributed to the impact of
the solution in the real-world. If cost savings or performance improvements in
the real-world are rather low a performance difference is not relevant from the
point of the real-world application. Often a major break-through in a field is
only achieved when a major improvement is made and this means when it has
a very high impact on the real-world.

Overall, the more interesting question beyond the comparison of algorithms
is why a certain algorithm instance performs better than another and which
aspects of the algorithms are responsible for the difference in performance. Is
the population necessary, because diversification is needed, respectively, is a
stronger perturbation necessary in trajectory-based methods? In doing that
the hope is to learn about what strategies and ideas that these algorithms
are composed of are responsible for the performance such that these can be
composed of to form new algorithms that do not yet exist. We will further

discuss this point and related methods in Section 2.3.
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2.2.3 Further Classifications

In the aforementioned classes we can see that algorithms are characterized
by certain variation concepts. A more complex classification system could be
created considering their presence in the considered methods. In general, we
can identify three different concepts:

e Solution assembly - better solutions can be described as the combination
of the parts of other, primarily good, solutions

e Solution construction - better solutions can be created by iteratively
picking the right solution component

e Solution perturbation - better solutions can be achieved by making changes
to their components

It is visible that the solution itself is seen as an “arrangement” of smaller
components. The identification of the best arrangement is the task of the
heuristic or metaheuristic algorithm. In the assembly concept, it is further
assumed that there exists a (hierarchical) structure among these components
that can be discovered to identify cohesive parts and thus reduce the space of
component arrangements.

In addition to variation, metaheuristics also define a selection and a memo-
rization concept. Both concepts are used to compare solutions with each other.
In general at some point an algorithm needs to make a decision which one of a
number of solutions is the more favorable choice. The solution can then take
part in a variation process or be memorized for use in a future variation step.

The following concepts can be defined:

e Random - no preference or bias, all solutions are equal

e Probabilistic - solution properties have a stochastic influence; for in-
stance, probability of selection depends on the quality of solutions

e Deterministic - solution properties have a deterministic influence; for

instance, the best or most diverse solution is selected or memorized

These selection or memorization concepts can be applied on the quality of
a solution, but also on other characteristics, such as the similarity to other
solutions or the actuality of a solution, i.e. the iteration in which it has been

created.
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2.2.4 Variants of Metaheuristics

The variety of metaheuristic algorithms presently known is quite large. The in-
troduction of new algorithms is still a goal of the research community, however
often they are specialized algorithms tailored to a specific or a set of problems
or to a specific solution encoding. In general, these algorithms can be classified
into algorithms for single-objective problems and those that consider multiple
objectives. While both classes share the same variation concepts, they differ
in the details of the selection concepts that are used. In single-objective algo-
rithms the identification of a “better” solution is achieved by a simple < or >
comparison between two fitness values. In multi-objective algorithms concepts
such as Pareto dominance in combination with crowding have been defined to
create a ranking [DPAT02]. A further complication arises when multi-objective
algorithms are compared with respect to their performance. Since the result
of a multi-objective algorithm is a set of solutions, the comparison has to
be done between sets. In this thesis, only single-objective problems are be-
ing treated, leaving the difficulties arising in multi-objective optimization for
future researchers to solve.

In attempting to identify common concepts and common strategies among
metaheuristics it can be observed that the variety in the details is quite large,
although many common elements are present. The challenges that these algo-
rithms attempt to solve can be summarized as the following questions.

How to achieve a good balance between intensification and exploration?

How to escape from local optima?

How to maintain diversity in a population of solutions?

How to adapt solution variation or sampling over the course of the search?

Simple algorithmic frameworks such as low-level local search ignore most of
these questions. The goal of such algorithms is to find local optima as quickly
as possible. Thus, they are often used as part of metaheuristics, as low-level
local search is often a very effective method. The above mentioned questions
arise when such a simple approach is not good enough and when algorithms
are sought that perform better.

For instance, exploratory aspects have to be integrated into advanced algo-
rithms in order to locate new and different solutions and thus also poten-
tially better solutions. It is however not known in advance and also dif-

ferent from problem to problem whether such better solutions are located
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Algorithm 1 Generalized Evolutionary Algorithm Framework
1: procedure EA()

2: pop + Sample() > Initialize the population
3: while not Terminate() do

4: nextgen < []

5: while Incomplete(nextgen) do

6: parents < Selection(pop)

7 offspring + Crossover(parents)

8: Mutate(offspring)

9: if Accept(parents, offspring) then

10: nextgen <+ offspring > Add offspring to next generation
11: end if

12: end while

13: pop <« Replace(pop, nextgen)

14: end while
15: return pop
16: end procedure

rather close to other good solutions and thus are clustered in some region
or whether they are scattered over the whole search space. The question
on how to escape local optima is, essential for single-solution metaheuris-
tics, while for population-based metaheuristics the question of diversity in the
population is more relevant. It would be highly desirable that metaheuris-
tics learn something about the problem they are solving and exploit that
knowledge in the course of the search. In the following, several variants of

metaheuristics are described that provide different answers to these questions.

Evolutionary Algorithms

The class or framework of evolutionary algorithms (EA) comprises iterative
improvement methods that usually maintain a population of solutions. A
generalized framework for EAs is given in Algorithm 1. A set of functions,
e.g., Crossover, Mutate, etc., need to be defined such that this algorithm may
be applied to solve optimization problems. The description in Algorithm 1 is
generalized and includes several variants such as offspring selection.

Genetic algorithms (GA) [[Ho0l92, Mic99, AWWBO09| are population-based
and problem independent metaheuristics. They combine the assembly varia-
tion concept in form of a crossover heuristic with the perturbation concept
in form of a mutation heuristic. The population is the variation pool from

which solutions are selected. Selection is usually probabilistic with determin-
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istic memorization. The GA gradually shifts the balance from exploration to
intensification. As the population converges and become more and more sim-
ilar a high sampling probability is spread over fewer solutions and thus this
reduced space can be explored more exhaustively.

A theoretical background in form of the schema theorem [Hol92] exists for
the so called canonical GA that describes that the defined length of schemas
of above average fitness becomes larger over time. A schema is a mask that
matches a subset of the solution space. This mask has wildcards (#) that
may match all possible manifestations of a solution component and defined
positions that match only a single manifestation. For instance the schema
H =#, 1, 0, #, # matches all binary strings that have a 1 at the 2"¢ and
a 0 at the 3" position. Each schema H has a defined length d(H) that is the
difference between the last defined position and the first defined position. The
fitness f(H) is the average fitness of all solutions that match the schema.

GAs are nowadays applied to a large set of problems extending to different
solution encodings. Both crossover and mutation can be described on a very
general level. These heuristics have been defined for real and integer vectors,
permutations, lists of lists, as well as for specific problems. A number of
variations have been introduced in order to scale the performance of genetic

algorithms. These performance improvements are dedicated to

e reduce the computation time.
e achieve better solutions.
e solver larger problems.

For instance, an island version or coarse-grained parallel variant was intro-
duced to segregate the population into smaller sub-populations that frequently
exchange solutions in a phase called “migration”, but otherwise each island runs
a variation loop of its own. This can be parallelized such that computation
time can be reduced, but also achieves somewhat better solutions as diversity
might be maintained longer [AT01, AIb05, ALN13].

Other variants of genetic algorithms such as offspring selection genetic algo-
rithm (OSGA) [AW03, AWWB09] attempt to mitigate the problem of prema-
ture convergence. Premature convergence occurs when the algorithm loses di-
versity in its population and thus the relevant genetic information to assemble
good solutions. Instead of comparing a new solution to the whole population
it is only compared against the parent solutions. When an improvement in

the combination of the genetic information of two parents, regardless of their
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quality can be made, the solution is considered a worthy successor. OSGA
then puts a requirement of allowing only worthy successors to enter the varia-
tion pool of the next generation. This creates a less competitive environment
for offspring solutions and thus also diversity is reduced slower. On the other
hand converge may be slowed as well. Similar concepts to offspring selection
have been described as upward-mobility- and brood-selection [Alt94].

Evolution strategies (ES) [Rec73, BS02, HOO1] are a family of problem
independent metaheuristics. They are similar to local search, and in fact
(141)-ES can be seen as a very strict specialization of local search, that in
early formulations considered only the perturbation variation concept in form
of mutation. ES specialize in adapting the strength of the perturbation de-
pending on the state of the search. Also a population is introduced and later
on, a recombination heuristic was added that describes an assembly concept.
ES distinguish two types of recombination: (a) discrete and (b) intermediate.
Discrete recombination is similar to the crossover heuristic, but is described
more generally with an arbitrary number of parents. Intermediate recombi-
nation is a special case in which a centroid solution is computed among the
parents. Selection may be deterministic (the best n) or random, while mem-
orization is deterministic based on either the quality (called plus selection) or
actuality of solutions (called comma selection).

While ES are considered problem independent, much of the research has
been performed on real-valued problems and thus ES have not been as widely
adopted as genetic algorithms. Nevertheless, the continued focus on real vec-
tor solutions has led to the development of advanced algorithms (or specific
adaptation strategies). Covariance Matrix Adaptation ES (CMA-ES) is widely
considered to be a state of the art solver for real-valued problems [HOO01].

Scatter search (SS) [Glo99] is another evolutionary algorithm that is based
on a combination of the assembly and perturbation variation concepts. It
maintains two distinct populations that serve the explicit purpose of intensi-
fying, respectively diversifying the search. Subsets are created between these
two populations as well as between the solutions among a population. A new
assembly variation called path relinking is introduced that samples not only
a single solution out of the “assembly space”, but explores a path between
two solutions by iteratively adding components of the second solution to the
first. Solutions will also undergo a number of strictly improving perturbations.
Thus, in scatter search solution variation is not purely random, but greedy.
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Swarm Intelligence

Cellular algorithms such as cellular genetic algorithm (¢cGA) [ADO08] impose
a certain structure on the population, but are otherwise similar to non-cellular
evolutionary algorithms. Instead of allowing arbitrary pairings and mating
pools to form, the cGA aligns individuals on a grid. Mating is then restricted
to only those individuals in neighboring cells. Thus, the propagation of genetic
information in the population has swarm-like behavior.

Other swarm algorithms such as particle swarm optimization (PSO) [KE95]
typically operate in a space of solutions where the concept of direction exists.
For instance, a point in a real-valued search space may be perturbed by moving
it along a certain direction. In PSO the direction and the size of the change
along the direction are two properties of a particle that are adapted during
the run. PSO uses directional information towards the best point found so
far and the best position of each particle. There are applications of PSO to
combinatorial search spaces, e.g. random key encodings [Bea94].

Ant colony optimization (ACO) [DD99] is based on the collective behavior
of ants. In more technical terms, an adaptive construction heuristic is de-
scribed with a simple probabilistic adoption strategy. In each decision step
an influencing weight is introduced that exerts a certain bias favoring deci-
sions that have led to good solutions in previous iterations. In each iter-
ation of the metaheuristic a collective of solutions is built by applying the
construction heuristic. Then, the best solution is analyzed and the bias is
slightly increased for all decisions that would reconstruct the observed so-
lution and the process starts over. The method that exerts the bias can
also be seen as a form of memory. In the case of ACO this is usually en-
coded in form of a matrix which represents the probability of choosing the
options given in the columns having already chosen the option given in the row.

Neighborhood Strategies and Memory-based Methods

Variable neighborhood descent (VND) as well as variable neighborhood
search (VNS) [MH97] are both algorithms that can been seen as a direct spe-
cialization of local search. These algorithms specialize in making use of mul-
tiple and different perturbation heuristics that are applied one after another
repeatedly in order to find better local optima. In VNS the different perturba-
tion heuristics are to diversify the search and explore new parts of the search
space while in VND these are used for intensification.
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Algorithm 2 Iterated Local Search Framework, adapted from [LMS10]
1: procedure ILS()

2: sol + Sample() > Initialize the solution
3: history < InitHistory(sol) > Initialize the search history
4: Localsearch(sol, history)

5: while not Terminate() do

6: sol’ <— Perturb(sol, history)

7 Localsearch(sol’, history)

8: if Accept(sol’, history) then

9: sol « sol’

10: end if

11: UpdateHistory(history, sol)

12: end while

13: return sol

14: end procedure

VNS and VND are also very similar to iterated local search (ILS) [LMS10].
ILS can be viewed as a more general algorithmic description of which VNS
would be a specialization. There is on the one hand the iterated local search
algorithm that can be summarized as alternating between a perturbation phase
and a local search phase. On the other hand, many algorithm variants such as
VNS, VND, and ILS fit into a more general local search framework. A pseudo-
code of that framework is shown in Algorithm 2. Any trajectory-based method
can be used within the local search phase, typically a low-level local search as
outlined in Algorithm 3 is used. Similar for perturbation, although exploiting
multiple neighborhoods in a structured way would classify the algorithm as
VNS. Finally, an acceptance criterion decides whether the next iteration is
based on the just found solution.

Also introduced in the ILS framework is a memory component, i.e. in
form of the history. This object is initialized, queried, and updated in various
operators of the algorithm. Naturally, the use of memory creates more complex
interactions and dependencies in the algorithm and between operators. For
instance, some operator, e.g. Perturb, writes something into the history, while
another, e.g. Localsearch, reads it.

Tabu search (TS) [Glo&6] is such a “memory-driven” algorithm and makes
extensive use of the search history. This metaheuristic extends the best-
improvement local search framework in that it remembers previously changed
solution components and allows reverting those changes only if a certain as-

piration condition is met. Typically, these conditions state that a substantial
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Algorithm 3 Low-Level Trajectory-based Search Framework

1: procedure LLTSF()
2: sol + Sample() > Initialize the solution

history < InitHistory(sol) > Initialize the search history
while not Terminate() do
N <+ Neighborhood(sol) > Efficient partial evaluation of moves
move < Select (N, history)
UpdateHistory(history, sol, move)
Apply(sol, move)

end while
10: return sol
11: end procedure

improvement needs to be achieved. Often tabu search is implemented as a fully
deterministic algorithm, only the initial solution, which could also be seen as
input, may be randomly sampled. TS is often described to employ determin-
istic selection and exhaustive enumeration of the neighborhood. It describes
several memories such as short-term, medium-term, and long-term to provide
trade-off between exploitation and exploration of the search space. Basically,
it can be fit into the local search framework shown in Algorithm 2. However,
tabu search uses a much smaller part of the framework and due to the inter-
actions with the search history, operators are more tightly integrated. Tabu
search may be better fit into a low-level trajectory-based search framework as
shown in Algorithm 3.

Such low-level trajectory-based search algorithms may be employed in form
of Localsearch operators within the iterated local search framework. These
algorithms are more low-level than other metaheuristics as the move object
describes changes to solution components rather than full solutions and often
an efficient delta calculation is required to calculate the fitness of the change
in shorter time than that of the whole solution. Otherwise, the exhaustive
enumeration of the neighborhood is a costly endeavor. In an implementation
also the enumeration of Neighborhood and the selection of the next move
(Select) are tightly integrated in that both are performed simultaneously.
However, the generic overall definition does not put into question that tabu
search is a metaheuristic.
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2.3 Fitness Landscapes

Fitness landscapes are, among others, of primary interest in the analysis of
algorithm performance. Properties such as the modality of a landscape, its
ruggedness or deceptive properties for greedy search algorithms are to be mea-
sured and analyzed. The typical mental models that are used to describe fit-
ness landscapes seek to invoke images of riffs, cliffs, valleys, peaks, and other
characteristics. But while these properties may indeed be present in fitness
landscapes, their detection is difficult and their relation to search performance
is still to be explored in more depth. Formally, a fitness landscape is given by
the triple (S, N, f) where S is the space of solutions, N is the neighborhood
relation between the solutions in S and f is the function that assigns each
solution a fitness value, i.e. the “height” in the landscape.

An example of a fitness landscape is shown in Figure 2. For higher di-
mensional problems or in non-metric search space such figures can hardly be
shown in such a comprehensive state anymore. The function that generated
that landscape is given in Equation (2.15).

T *

Fl,y) = cos® (L) sinl(a) - sin(y) - 20 - (27— ) - (y — 27) 2,y € [0;27]

(2.15)

™

Figure 2: shows an exemplary fitness landscape of two continuous variables.

The height of the landscape is the function’s value that is to be maximized.
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It may seem as if finding minima in this landscape is harder than iden-
tifying maxima due to the number of minima. In 1000 runs of a CMA-ES
algorithm instance with initial o = %’T and a population size of 10 the algo-
rithm does converge in 50 generations to one of the four minima in nearly
all of the runs. The minima are found in = (60%, 25%, 5%, 10%) in order of
best to worst minima of the cases using uniformly distributed random starting
points. When maximizing the landscape with the same algorithm instance the
global optimum is found in 69% of the runs. The 2" highest peak however
is achieved in only 19% of the runs and in 11% of the runs the search con-
verged into one of the flat area in the front of Figure 2. So number of local
optima does have an effect, but it also depends on how bad these local optima
are. In the case of maximization, the presence of the rather flat area is also
a challenge. Ideally, one would say that a negative correlation between the
quality of a local optimum and its basin of attraction contributes to search
difficulty [PAB10|. Basins of attraction are however difficult to approximate
in large search spaces with many local optima. A suitable model to describe
the landscape in terms of optima and basins is given in the form of local op-
tima networks (LON) [OVDT14]. In a LON a large basin may be apparent
as a strong edge from a given node (=local optimum) to itself. Local optima
networks are described in more detail later in this chapter.

Fitness landscape analysis has the goal of describing this and other land-
scapes with respect to several categories that are believed to have influence
on algorithm performance. The community talks about categories such as
ruggedness, modality, neutrality, deceptiveness, and others that are on the one
hand difficult to define formally and on the other hand not independent to
each other. These terms must be seen as high-level concepts that are linked
with several concrete measurements.

2.3.1 Ruggedness

The literature is quite wordy when it comes to definitions on ruggedness. Here
we review several defining statements that have been made by various authors

that have done work in the field of fitness landscapes.

e “In essence, it can be described as the frequency of changes in slope from
“up-hill” to “down-hill” or simply the number of local optima.” [PA12]
e “A fitness landscape is said to be rugged if the landscape consists of many

peaks, and if there is low correlation between neighboring points” [MF00)|

33



2.3 Fitness Landscapes

e “[..] whether the selective surface or fitness landscape is smooth, contain-
ing a single global fitness optimum, or rugged, where selective constraints
on differing mutational trajectories create multiple local fitness optima”
[KST1]

e “In a rugged landscape, the fitnesses of neighbouring solutions are less
correlated and thus, it is harder for a search method to infer a search
direction from previous solution quality” [MGA17]

e “[..] It is said that a landscape is rugged if the number of local optima
is high. The fitness distribution specified another property of landscape
ruggedness that relates to the variety of landscape forms such as ridges,
cliffs, peaks and others.” [VEMO3]

e “Generally, the degree of ruggedness can be estimated from the average of
fitness correlations between parents and offspring or the fitness distance
autocorrelation function obtained by using a random walk.” [Kat14]

e “The number of local optima is a measure for the ruggedness of land-
scape.” [Sta02]

From this sample of statements on the concept of ruggedness we can extract
that there are actually two interesting properties. One is related to the change
of fitness in the neighborhood while the other, rather clearly defined, is the
number of local optima in the landscape. These properties are somewhat
correlated, though one could have very high change in fitness and still have
only single extreme point in the landscape and on the other hand have multiple
optima, but a rather constant change in neighboring fitness.

But fitness landscape is not only concerned with a conceptual descrip-
tion and thus measures are defined that should relate to these concepts. Low
and high values of these measures should represent a rugged or, its oppo-
site, smooth landscape. Among the most well-known measures that relate
to ruggedness are the autocorrelation coefficient (§) and the autocorrelation
length (1) [CLA12]. The autocorrelation length conjecture [Sta02| states that a
higher & or [ describe a smoother landscape which in turn should correlate with
a lower amount of local optima. However, in their analysis on the QAPLIB
Chicano et al. observe that

“l..] the autocorrelation length conjecture can be applied only when the
comparison is performed over instances with the same size n and, in general, it
is not true that the higher the value of [ the easier to solve the instance, since
the largest instances are usually the most difficult ones and have the highest
value for [ (and £). A good indicator of the difficulty of an instance could be
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the pair (n, [).” [CLA12]

One of the reasons for this result is that autocorrelation does not consider
the extent of a change. Every move is of unit size regardless of the dimension.
However, the effect becomes smaller when swapping a constant number of
items in a permutation that grows with problem dimension. If we are able to
express the change’s “strength” we can normalize these measures in a way that
it becomes independent of the problem dimension.

In addition to autocorrelation the literature discusses a number of features
coming from an information theoretic analysis of the quality trail resulting
from a certain walk in the landscape. The features that have been introduced
by Vassilev et. al [VEMO0] are

e Information Content

e Partial Information Content
e Information Stability

e Density Basin Information

More formally as Vassilev states [VEFMO0]|, these features are defined over
a sequence of fitness values T' = { f;}}_, as obtained from a walk on the land-
scape. This sequence can be transformed into a string S(g) = $18283...8,
where s; € {\,,—, /'}. These characters represent a downhill move (), a
neutral move with respect to € (—), and an uphill move () respectively. The
symbols can be combined to 9 different shapes or symbols by considering two
subsequent characters s;s;,1 as given in Table 2.

Table 2: The combination of characters from the set {\,, —, 7} to symbols.

A e 0 V4
NN N [N
= =2\ | == | =
AN A= 7

Vassilev further introduces the frequency of such a symbol in the resulting

"L je. the relative frequency of symbol s appearing among

string as Ps; =
all symbols n in string S [VFMO00|. The symbols are then grouped into two
mutually exclusive sets. The first set, denoted A in Equation (2.16), contains
all symbols where both characters are not alike. In contrast, the second set,
denoted B in Equation (2.17), contains the remaining symbols, i.e. those where
both are alike.
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A= DN NN = N S (2.16)
B={\N\o == (2.17)

The information content is then computed as the entropy with respect
to symbols of set A (cf. Equation (2.18)) while density basin information is
computed with respect to symbols of set B (cf. Equation (2.19)).

Partial information content is slightly different to the other two. It is
obtained by constructing a reduced sequence S’(¢) = s;55...5, with only those
characters s; # 0 A s; # S;11. The reduced string S’(g) thus consists only of
N and N\, symbols and has a length of u. Partial information content is
then the ratio of the lengths of S" and S (Equation (2.20)) [VEMO0]. Finally,
information stability is the highest epsilon for which the landscape becomes
completely flat, i.e. the largest difference between any consecutive values in T
(Equation 2.21) [VEMO0].

InformationContent: H(e) = Z (P, -logg(Py)) (2.18)
acA

DensityBasinInformation: H(e) = Z (P, - logs(Py)) (2.19)
beB

PartiallnformationContent: M (e) = a (2.20)

n
InformationStability: max(abs(f; — fi+1)) Vte€[0;n—1] (2.21)

In the further course of this thesis, the feature ic describes the value ob-
tained by Equation (2.18), dbi describes the value obtained by Equation (2.19),
pic describes the value obtained by Equation (2.20) all with e = 0, while is
describes the value obtained by Equation (2.21).

Information Analysis Example

An example shall be given in the following. Consider the sequence of fitness
values (1,2,1,3,2,4,2,1,1,2,4,4,3,1) which is translated into the following se-
quence of characters (/N \,/"\\\—,""—=\\\). We can then compute
the frequency of the symbols as given in Table 3. Then the information char-
acteristic analysis results in the values given in Equations (2.22)-(2.25).
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Table 3: Resulting symbol frequencies from the example in the text.

Symbol | Frequency P;
N— 1 0.083
N 2 0.16
=N\ 1 0.083

A -
- 1 0.083
N\ 3 0.25
S 1 0.083
N\ 2 0.16

B —— 0 0
AN 1 0.083

i 1 1 2 3
dbi: — L 1 ! +2-1 2 ~ 0.4603 (2.23)
1: 19 083 19 0g3 19 ~ U. .

pic: — ~ 0.6154 (2.24)
is:2 (2.25)

In summary, the main idea of information analysis features is to compute
the entropy of various shapes in overlapping subsections of the quality trail. An
uphill move followed by a downhill move would be seen as a sign of ruggedness,
whereas two succeeding uphill moves would be seen as a sign of smoothness.
Two consecutive moves that do not appear to change the solution quality would
be seen as an indication of neutrality. The parameter £ controls the degree to
which changes will appear neutral and thus gradually flattens the landscape if
increased. For each of the features mentioned above there exists an ¢ such that
the feature becomes maximal. This is then called the “peak” of the feature and
may also be used to characterise the landscape. Figure 3 shows these features
as functions of different e-levels.

2.3.2 Modality and Funnels

It has been mentioned previously that a multi-modal landscape is perceived to
be also rugged. In that sense multi-modality was synonym for the presence of
multiple local optima. However, local optima are defined always with respect

to a certain neighborhood. In the domain of continuous function optimization
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Information Analysis
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Figure 3: This chart shows the features information content, partial informa-
tion content, and density basin information depending on the € level. Informa-
tion stability is the € right before entropy becomes 0, i.e., the landscape would
appear flat. All features, except partial information content reach a peak when
the entropy is maximized. [Pit13]

we can best observe that functions generate different landscapes at different
resolutions. Figure 4 presents three different views of the one dimensional
Griewank function [Gri8l]. The resolution is increased each time by an order
of magnitude. There are many local optima in the Griewank landscape in
Figure 4a and thus it would be regarded as highly multi modal and also rugged,
however, all of these optima are part of one bigger basin shape. To describe
such an aspect of “modality” in fitness landscapes the term “funnel” was coined.
According to Ochoa and Veerapen [OV17] the origin lies within the protein
folding community. They cite Doye et al. as

“A key concept that has arisen within the protein folding commu-
nity is that of a funnel consisting of a set of downhill pathways that
converge on a single low-energy minimum.” [DMW99]

Malan and Engelbrecht give a very compact description “a funnel in a land-
scape is a global basin shape that consists of clustered local optima” [ME14D]
which is in turn derived from Sutton et al. [SWLHO06]. Kerschke et al. also note
that “it is not exactly defined what constitutes a funnel structure.” [KPWT15]
but further note that “the distribution of optima and the correlation of their
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Figure 4: Different views of the one dimensional Griewank test function with
different levels of detail. A global shape is visible when viewed on a coarse
level of details, at an intermediate level of detail it is difficult to determine
a global optimal solution and on a very fine level the function is smooth and
local optima should be attained quickly.

objective value” influence the notion of a funnel. In the case of Griewank we
may not notice a clustering of local optima as they’re uniformly distributed,
but we may observe a global basin shape and thus a correlation between quality
of local optima and distance to global optimum. In the landscape generated
by a moderate view of the landscape (cf. Figure 4b) however the global basin
disappears and we would conclude that there are multiple funnels.

Another example is given by a visualization of the solution space of the
two dimensional Rastrigin function as shown in Figure 5. In two dimensions
the numerous local optima and the high ruggedness of the landscape are easily
visible. The landscape is thus considered to be highly rugged. However, it is
also apparent that there exists a global structure in form of a paraboloid, that
the optimum lies in the center of that paraboloid, and that there does not exist
a second such structure with a barrier in between them [ME14b].

A measure that describes the extent of modality and the presence of multi-
ple funnels is called the dispersion metric (DM) [LW06|. The idea is to capture
an unbiased sample of the solution space (S) and relate the pair-wise distances
among all solutions in the sample to the pair-wise distances between only the
best solutions (S*). Lunacek and Whitley described this in form of a plot
that shows dispersion among the best, e.g. 10% over an increasing number
of sampled solutions [LW06|, while Malan and Engelbrecht describe a single
measure of difference [ME14b]:
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Rastrigin function
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Figure 5: Visualization of the solution space of the two dimensional Rastrigin
test function.
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The idea of the difference is that negative values indicate that the aver-
age pair-wise distance of the best solutions is smaller than that between all
solutions in S and thus that the better ones are clustered. Positive values on
the other hand indicate the presence of multiple funnels as the average pair-
wise distance between the best solutions is larger and thus fewer solutions are
spread out over a larger range.

Further methods for analyzing funnels such as measures derived from nearest-
better clustering heuristics are described by Kerschke et al. [KPWT15]. They
propose five different measures based on a nearest neighbor distance. Similarly
to the dispersion metric the features are computed comparing two sets, one
that considers the whole population and another that considers distances only
to better neighbors.

2.3.3 Deceptiveness

This concept is not necessarily a property of the landscape alone, but includes
the exploration strategy of a certain algorithm. A landscape is deceptive if

better solutions are found at an increasing distance to the global optimum or
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to solutions of a certain desired quality. For a sufficiently greedy strategy it is
thus highly unlikely to locate the global optimum and it will be trapped in an
inferior part of the solution space.

One measure introduced in the literature to describe the extent of decep-
tiveness of a certain landscape is called the fitness-distance correlation or FDC.

The FDC describes the correlation between the fitness of solutions and its
distance to a certain desired solution, e.g. the global optimum. A highly posi-
tive correlation coefficient indicates that better solutions are also closer to the
desired solution. Thus, a simple greedy strategy should be sufficient to even-
tually sample the desired solution. On the other hand a negative correlation
coefficient indicates that the desired solution may not be reached as the chance

to sample it decreases with increasing distance.

2.3.4 Isotropy

Isotropy is often an assumption in the study of fitness landscapes. Currently,
only little research has been attempted in describing isotropy. Anisotropic
landscapes would be for example rugged in a certain part of the solution space
and appear smooth in another part.

A simple example of anisotropic landscapes that appear in practice may
be seen in the form of constrained optimization problems. Such a problem
parts the solution space into a set of feasible solutions and a set of infeasible
solutions. Depending on the type of penalization used the infeasible solution
space may appear smooth in comparison to the feasible space and overall there

may be a steep cliff between these two regions.

2.3.5 Separability

Finally, not necessarily a property of the landscape, but nonetheless impor-
tant in the context of studying algorithm performance on landscapes is the
concept of separability. A fitness landscape may be considered separable if a
solution can be found by considering to optimize each dimension regardless
of the others. The aforementioned Rastrigin function is separable. For each
dimension the global optimum is always at 0 regardless of the values of the
other dimensions. A separable function thus may also be considered as highly

isotropic.
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2.4 Landscape Analysis

In general we distinguish between exploratory and exact landscape analysis.
Although the literature on exploratory analysis is concerned mostly with the
study of real-valued solution spaces, in this thesis I think of it as a more general
term that applies to all solution spaces. Exploratory (fitness) landscape anal-
ysis (ELA) relies on drawing samples from the fitness landscape and analyzing
those samples. Thus, research is concerned on the one hand with sampling
strategies and on the other hand with analysis methods that calculate features
out of those samples. The term ELA has been coined by Mersmann et al.
and also linked with specific features [MBT"11]. Some of those features are
natural to apply to problems in the continuous domain and are not as easily
transferred to combinatorial search spaces in general.

In exploratory analysis, the fitness function is viewed as a black box. The
solution encoding is known, and a certain neighborhood relation is assumed,
but the landscape heights, gradients, etc. have to uncovered. For this purpose
several sampling techniques are described [MBT" 11, PA12], including but not
limited to random and adaptive walks, up/down walks, or neutral walks. The
results of such walks are paths through the fitness landscape which are subject
to further analysis. Sometimes only a collection of samples without the notion
of connectedness in a path are analyzed and instead relying on some sort of
distance.

In exact analysis, the fitness function is a white box. It is mathemati-
cally proven that for a certain type of function and/or neighborhood relations
certain properties exist. For instance, it has been shown to compute the av-
erage quality f(s) of all neighboring solutions s € N(x) to a solution z for
all problems that may be decomposed into, so called, elementary landscapes
[WSHO08, CWAT1]. In another result, it has been shown that the autocorrela-
tion coefficient and the correlation length can be computed exactly in O(n®)
for any instance of the QAP using a “swap2” neighborhood [CLA12].

While exact analysis are helpful and the results show potential to strongly
influence new and improved methods, their application is often limited. Some-
times findings can be applied to single problem definitions only, sometimes
they are more broader applicable. In this context, the elementary landscape
decomposition, as mentioned above, shows great potential in that it seeks to
formalize theories that hold for a larger class of optimization problems. In this

thesis the focus is on exploratory analysis as it is more generally applicable.
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In exploratory landscape analysis, characteristics of the landscape are esti-
mated with the use of samples. Three different approaches can be distinguished
in the way the samples are retrieved. On the one hand, a set of solutions are
sampled from the solution space based on a random element, e.g. using a
latin-hypercube sampling strategy [MBT"11]. T call this approach bag anal-
ysis, because essentially, the result is a “bag of solutions” and there is no a
priori known relation between these solutions. On the other hand, trajecto-
ries or paths of solutions are created by sampling a starting solution and then
progressively sampling from the neighborhoods. A number of these, so called,
“walks” have been described in the literature [PA12]. I call this approach path
analysis in this thesis as the sequence of the sampled solutions is important
and this characteristic of the sampling process is exploited in the features that
are calculated. Finally, network analysis considers not only a single path, but
all pairwise interactions and thus approximates the landscape by a graph. In
the following these approaches are detailed.

2.4.1 Bag Analysis

The most well-known example of ELA using a bag analysis approach is de-
scribed by Mersmann et al. [MBT711]. Here I just briefly summarize the
approach. The bag of solutions that is obtained by latin-hypercube sampling
is termed D?® and consists of a vector of solutions and a corresponding vector
of fitness values. It is argued that the size of the sampled bag should depend
on the dimensionality of the problem to “account for the increasing problem
complexity” [MBT"11]. There are 50 features which fall into six categories:

e Convexity - to which degree a linear combination of the input vector
agrees with a linear combination of the fitness

e Fitness-distribution - skewness and kurtosis of the fitness values as well
as an estimation of the number of peaks

e Levelset - quality of various classifiers from discriminating bad solutions
from good ones using a certain threshold

e Meta-Model - quality of linear and quadratic regression models for pre-
dicting the fitness values

e Local search - measures basin size and local optima clusters based on
Nelder-Mead local search

e Curvature - features based on the estimated gradients

Some of these features are more complex to compute than others. For
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instance, fitness-distribution can be calculated rather easily, but local search
features are more expensive. It has been shown that, in the continuous domain,

this approach results in features suitable for algorithm selection [BMTP12].

2.4.2 Path Analysis

A number of different walks have been introduced in path analysis that should

briefly be reviewed here:

Random Walk : The random walk is a sampling strategy in which the next
sample is a randomly chosen neighbor of the current sample. It is very simple,
but requires a larger number of samples and often leads to poor characteri-
zations [ME14a, BWA18|. A variant called progressive random walk [MIE144a]
was introduced for continuous problems, in which a certain “sampling direc-
tion” is enforced. The trajectory forms a wiggly path that bounces off at
the domain limits. Progressive walks cover a bigger part of the search space

without increasing step size too much.

Adaptive Walk : In the adaptive walk sampling strategy the next sample is
chosen to be the best neighbor out of the neighborhood’s randomly chosen sub-
set. Adaptive walks are computationally more intensive as multiple neighbors
need to be evaluated which are then also often discarded in the analysis.

Up/Down Walk : These walks are similar to adaptive walks, but whenever
the current sample cannot be improved in quality, it reverses the search direc-
tion and instead focuses on deteriorating the sample’s quality until no further
deterioration is possible in which case the process is reversed again [PA12].

Neutral Walk : These walks attempt to explore the neutrality of a certain
landscape. As introduced by [RS01] the walk starts with a randomly sampled
configuration. It progresses by sampling from the set of neighbors that have
the same fitness and which also increase distance to the starting solution over
the distance from the current solution.

As [PA12] summarizes nicely, there are two requirements for these kinds
of walks: (1) A neighborhood function N, and (2) a selection strategy ¢ for
choosing a successor. The result is a sequence {x;}, of solutions with x; 1, =
C((N(z;)) and we analyze the resulting sequence of fitness values {f;}7, =

{f<xz) =1
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Both bag and path analysis provide some low level characterizations which
in turn may explain higher level characteristics which are relevant to optimiza-
tion algorithms. The downside of bag analysis is, that space-filling designs such
as latin-hypercube sampling are difficult to realize in general for combinato-
rial search spaces. The downside of path analysis is that each of these walks
needs to be computed independently and thus a lof of samples need to be
drawn. Also, adaptive, up/down, and neutral walks use subsets of the neigh-
borhood which are more expensive to analyze. In addition, the subset size is
a parameter of the walk which in turn increases complexity as the number of
neighboring solutions in the subset has to be determined through experimen-
tation. A further disadvantage, as has been noted already is that the evaluated
neighbors are discarded from the analysis. For a difficult and long-to-evaluate
simulation-based optimization problem, the number of solutions that we may
sample and evaluate is highly limited and every solution is valuable. Also some
walks, e.g. that make use of direction, can be used only in search spaces where
such a concept is available. In Section 3 a new walk is introduced that features

attributes from at least three of the above walks.

2.4.3 Network Analysis

A recent method of fitness landscape analysis is to generate so called local
optima networks (LON) [OVDT14]. A local optima network is a graph of
the solution space that includes solutions as their nodes and edges describe
transition probabilities between those solutions. Naturally, if the whole solu-
tion space is considered, the graph would contain an extremely large number of
nodes as often solution spaces grow exponentially with the problem dimension.
Thus, the graph considers only local optima. This is a reasonable limitation as
any solution that is not a local optima is undesired in that it can be improved
through a small change. The same cannot be said about local optima for which
there is no improving step within the neighborhood and a larger change need
to be made, before a better solution could be achieved.

Generating a local optima network is usually performed by sampling local
optima through repeatedly applying local search algorithms. This is of course
a computationally very challenging effort. There are two types of edges de-
scribed [OVDT14]: (1) basin-transition edges and (2) escape edges (introduced
in [VDOT12]). The edge weight e;; in both describes the probability that a

random walk moves between the local optima’s basins of attraction. Basin-
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transition edges describe this probability as the average connectedness between
solutions of basin 7 to solutions of basin j. Typically, two solutions are con-
nected with strength Wll if one solution is within the neighborhood of another,
where |[A| denotes the size of the neighborhood. Escape edges describe this
probability in terms of the ratio of solutions with distance < D to basin 7 are
part of basin j. Escape edges are somewhat faster to compute as they do not
require to enumerate the basins of attraction. The details on how to compute
these edges are given in the respective references. An efficient implementation
is described by [Fiel8].

A number of measures from the domain of graph analysis are then com-
puted from such a LON such as eigenvector centrality or clustering coefficients.
These measures describe the structure of the graph and thus the structure of
the local optima given a certain neighborhood [DVOT14].

2.4.4 Summary and Outlook

In this chapter, the fitness landscape was formally introduced, the motivation
for its analysis was described and the methods were examined in more detail.
Several possible short comings within the state of the art were mentioned that
should be improved. Among others we would like to have a unified sampling
strategy in order to minimize the computational overhead of different walks.
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2.5 Performance Analysis

Metaheuristics are often compared within two domains. In a fized-budget anal-
ysis we can limit their budget and measure the quality achieved when this
budget is used up, while in a fized-target analysis we can define a target qual-
ity and measure the required budget to achieve or surpass that target. Often
the former is chosen, however it is suggested, the latter leads to better inter-
pretable results. Among others, the performance with respect to a required
budget, i.e., runtime, is “quantitatively interpretable”, e.g. “algorithm A is
two times better than B if it is able to achieve the same target in half the
time” [HAMT16]. In addition, the domain of runtime is rather stable and its
influences are known, while the domain of target or fitness values may change
from one problem instance to another. For example, fitness values could be
expressed in units of time in one problem instance and units of distance in
another. Runtime, expressed, e.g., as elapsed wall clock time is influenced
by implementation aspects such as programming language and parallelization,
and hardware aspects. In order to have a more robust estimator of runtime, it
is suggested to use calls to the fitness function as approximation of the runtime
performance [HAMT16].

Thus, newer works compare the expected runtime (ERT) among various
algorithm instances competing against each other and on various targets. This
gives a good overview of how fast a method may be able to reach a certain
goal. Along with the ERT is the empirical cumulative distribution function
(ECDF) that is used to plot the results against each other. This provides a
graphical way to compare performance. Additionally, there are box-plots for
fixed-budget comparisons.

As has been described in section 1.1 comparison of heuristic and meta-

heuristic algorithms concerns several dimensions [Ric76, BB06]:

1. efficiency - concerns the runtime of an algorithm

2. reliability - concerns the quality of the achieved solution

3. robustness - concerns an algorithm’s ability to achieve good quality among
a range of problems

4. simplicity - concerns the complexity of an algorithm’s implementation

Efficiency, reliability, and robustness are certainly among the most interest-
ing and relevant when comparing heuristic optimization algorithms. Simplicity

is a property that is often neglected, because the implementation is already
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available prior to being able to test it. When comparing heuristic optimiza-
tion algorithms, we would seek an algorithm that delivers the best value, in
terms of solution quality, given the least computational effort over the most
instances of a given optimization problem. Alas, the no-free-lunch (NFL) the-
orem states that we should not expect to find one algorithm that excels in
all of these dimensions. But that we will rather find certain algorithms out-
performing each other in different ranges of these dimensions. For instance,
algorithm A outperforms algorithm B on a set of problem instances P,, but
the opposite is observed for the set of problem instances P,. Or, even more
interleaved, algorithm A may outperform algorithm B only during the first 5
seconds, after which algorithm B finds solutions with better quality.

To conduct a well made comparison is quite often a complex task. First,
one has to obtain an executable implementation of all methods that are com-
pared against, otherwise relying only on published results, most likely executed
under different conditions. Then, the (hyper-)parameters of the selected algo-
rithms have to be chosen. This often constitutes a computationally intensive
precursory study in which some of the problem instances are chosen for “hyper-
parameter optimization”. Then, the selected algorithms are compared among
a set of test problem instances. The significance of such a study is increased

when the experiment

e makes use of a diverse range of benchmark instances. [SMvHI11]

e gives each method the same computational time, making use of restart
strategies for methods that are not able to utilize a large amount of
computational time in one run. [HAMT 6]

e includes a wide range of published algorithms.

e includes an explanation on the choice of algorithm instances, i.e. param-
eterizations of algorithms.

e includes a high number of repetitions to account for stochastic effects.

It is rather simple to compare algorithms with respect to runtime when
a target quality has been defined. All algorithms can be run on the same
machine and a stop watch is used to detect when the target quality has been
reached. We say "rather simple", because if parallelism is introduced then the
machine introduces a larger bias with respect to the degree of parallelism that
it supports. In addition, if targets are not defined a priori, but the analysis
should be done a posteriori with a range of targets, then all algorithms have

to keep a logbook of which quality was achieved at which time.
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Similar challenges arise when algorithms are compared with respect to
achievable quality given a certain computational budget. Again, the simple
case would be to run algorithms until the budget limit and then compare the
quality. However, if the budget limit for an application may change (e.g. be-
cause computational power grows) again the aforementioned loghook has to
be kept in order to perform analysis a posteriori.

In both cases a high number of repetitions have to be performed in order
to have a reasonable estimation on an average over the runtime or the quality.
Naturally, a high number of repetitions requires high amounts of computational
power and if the gap is very small, a clear winner may not be identified. Thus
often statistical tests are performed in order to determine if one is significantly
better than the other. These tests have their own problems with respect to a
misuse and overestimation of p-values [SF'12, HHL"15].

But to describe the complexity of the algorithm is the fuzziest of all dimen-
sions. There exists complexity measures of algorithms, such as lines-of-code
(LOC), McCabe [McC76], ete. that attempt to describe one view on algorithm
complexity. But algorithm complexity is by itself a multi-dimensional measure

and concrete measures capture a few dimensions only.

2.5.1 Quality Distribution

The calculation of descriptive statistics on the achieved quality after a defined
computational budget such as best, worst, and average quality together with
the standard deviation are often listed in research papers. Sometimes it is the
only type of analysis of the obtained results and given in tabular form or in
box plots.

Analyzing and comparing final quality distributions is the most common
way of evaluating metaheuristic performance. However it suffers from several

drawbacks:

e Quality distributions show only a snapshot of the performance after a
fixed computational budget. Properties of the search behavior such as
convergence speed are neglected.

e Fair comparisons should be done using the same amount of computa-
tional budget for each algorithm instance. This is not always easy to
achieve and may require retesting when only the final results have been
recorded.

e The researcher defers the definition of meaningful target values to those

49



2.5 Performance Analysis

ECDF

08+

0,61

041

Probability to reach target 6922

0,2+

0,1 1 10 100 1000 10000

time [ms]

Figure 6: Empirical Cumulative Distribution Function (ECDF) generated as
a result of a run-length analysis. An ILS is applied to the had20 QAPLIB
instance 100 times with the target set to the global optimum.

that interpret the results. But the question of what constitutes a mean-
ingful improvement or target has to be answered before conducting the
experiment, potentially in collaboration with the creator of the problem
instance.

2.5.2 Run-length Distribution

The idea to describe algorithm performance by treating the run-time towards
a target as a random variable was present in [FRS94|, but first described
formally in [HS98]. They coined the term “run-length distribution” (RLD)
which allows arbitrary cost models such as function evaluations to be used
instead of limiting it to elapsed wall-clock time. The RLD of an algorithm
instance can be computed for every pair of problem instance and target value.
RLD plots show the percentage to achieve a certain target on a certain problem
instance as a function of the run-length. To compute and visualize the run-
length distribution several tools have been described.
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Time-to-target (TTT) Plots have been described in [ARR07] and a perl
program has been published to generate these plots. The required data for
TTT plots are individual runs that record the time a certain target was
reached. The script that generates these plots also fits a shifted exponential
distribution to the data which approximates the observed data.

Comparing Continuous Optimizers (Coco) is a set of tools to con-
duct experiments and process results achieved on instances of the black-box-

optimization-benchmark suite (BBOB) which are discussed at conferences such

as GECCO or CEC [FR14].

HeuristicLab features a “Run-length Distribution View” which is a GUI-
based tool that analyzes the convergence graphs present in Run objects which
are created from algorithms implemented in HeuristicLab [WKB™14]. It al-
lows to group runs by parameters, has the possibility to define the targets a
posteriori and allows comparing among multiple problem instances for which a
best-known value is available. This tool also calculates the expected run-time

(ERT) for each instance of algorithm, problem, and target value similar to
[HAFRO09].
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2.6 Algorithm Selection

The algorithm selection problem (ASP) [Ric76] was introduced to formalize
the problem of choosing a set of algorithms suitable for some specific task
when several such algorithms are available and not one specific algorithm out-
performs all others, i.e., achieves the best result in shortest time.

Kotthoff wrote a recent survey on algorithm selection approaches, noting
that while it has been shown that algorithm selection may work well in bench-
mark and competition scenarios, a translation to real-world application sce-
narios is still missing [Kot16]. It is often observed in research works that some
problem instances may be favourably solved by a certain algorithm, while that
same algorithm may exhibit a worse performance on a different set of instances.
In the extreme cases, algorithm performance may range from extremely well
to extremely poor among instances of the same problem. Thus, a major mo-
tivation for the study of fitness landscapes is the ability to relate landscape
structure with algorithm performance. The goal is to detect such structures ef-
ficiently, either before or during the application of algorithms, and then decide
on an effective algorithm. This, so called, algorithm portfolio together with
the recommender or selector is then used to solve instances of the problem.
Examples of such portfolios may be found in the works of Xu et al. [XHHLH0S|
or Smith-Miles et al. [SMJGT09, SNMvHII].

Unfortunately, such portfolios also bear some complexity. First, there is the
challenge of portfolio composition and benchmark instance selection [XHLbH10),
SMvHI1]. Which algorithms should be part of the portfolio and which are
to be excluded? Which problem instances are to be used to benchmark the
algorithms? As Smith-Miles and van Hemert note “ There is nothing meaningful
that will be learned from the meta-data if all instances map to the same region
in feature space [..[, or if all algorithms perform similarly on all instances”
[SMvHTT]. Furthermore, each algorithm may have parameters, which in turn
leads to a large range of possible algorithm instances. However, only fully
parametrized implementations of algorithm instance may be benchmarked on
a range of machines.

Second, there is the challenge of identifying a good selection model to dis-
cern the algorithm instances [SMO8|. This challenge often requires that the
performance of each algorithm (instance) on each problem (instance) from a
training set needs to be known. This requires extensive amounts of computa-

tional resources in benchmarking the algorithm instances on the training set.
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The learning effort put into such a selection model is not to be underestimated.

Third, there is the challenge of orchestration. Algorithm instances may
be run independently of each other or may form a more carefully chosen
schedule [PT09, GS09]. In such a schedule, an algorithm instance uses re-
sults of a previous run instead of restarting from a randomly drawn solution.
In a similar way selective hyper-heuristics are to be seen as dynamically se-
lecting from a set of heuristics and thus implicitly creating such a schedule
[WS11h, BGHT13, SHP15]. Blackboard systems are a slightly different agent-
based approach to hyper-heuristics [GS17] which differ in the way control over
the heuristics/agents is exerted. Also the agents in blackboard systems are
more capable than the heuristics and estimate their contribution to a current
state of the solving process.

Several publications describe methods and software packages have been
made and support researchers in the task of configuring algorithms and prob-
lem instances. First, to find a set of meaningful algorithm instances, one may
either rely on human experience or on a number of published methods and im-
plementations such as SPO Toolbox [BBLP10], ParamILS [HHLBS09|, SMAC
[HHLB11], GGA [AST09], or irace [LIS14, LIDLP*16]. Smith-Miles and van
Hemert have described an approach to evolve a benchmark library of problem
instances [SMvI11]. Xu et al. describe an approach called Hydra to combine
parameter optimization and portfolio building [XHLbH10].

A comparison between two variants of tabu search and two variants of
simulated annealing, all with default parameter settings, has been performed
[[1S14]. The authors evaluated the influence of problem instance size on the
rank of the best algorithm and found out that problem instance type, size,
and runlength of the algorithms have an influence on which algorithm instance
performs best.

In further applications, Liefooghe et al. [LDV 17| describe a study that
evaluates a novel landscape-aware approach to the configuration of algorithms.
They use instances from the NK family of problems and cluster them using
landscape features. They then apply irace to each cluster and devise optimal
configurations for each cluster. Finally, they show that the optimized config-
urations together with a selector may achieve better solutions than a single
baseline configuration optimized on all instances. The authors state that “one
particularly promising idea consists in carefully choosing the instances where
some configuration should race at every iteration based on the features values of
the instances experimented in previous iterations” [LDV " 17|. This strengthens
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the argument that choosing problem instances is an important step [SMvH11].
Bozejko et al. [BGNT19] describe a study on algorithm selection present in
Google’s OR Tools! on the traveling salesperson problem (TSP). The authors
conclude that of the provided choices a single algorithm outperformed all oth-
ers. However, they describe that the “automatic” choice provided by OR Tools
did not select that algorithm. Instead an algorithm was applied that performed
worst among those tested leaving room for improvement [BGNT19]. Kotthoff
et al. [KIKHT15] describe a study of algorithm selection on the TSP. They
apply two well-known algorithms (1) Lin-Kerninghan and (2) EAX both with
a simple restart strategy that they showed improved search performance con-
siderably. They describe that relying on the single best solver EAX+restart as
a probing algorithm that also generates features for a subsequent selection step
enables to make better decisions than running EAX+restart alone [KIKHT15].
These results suggest that an iterative approach to solving instances in terms
of a schedule of algorithms with intermediate steps of analyzing landscapes is
a promising approach. Wagner et al. [WLM 18] describe a study of algorithm
selection on the traveling thief problem (TTP). Finally, the well-known “al-
gorithm selection library” (ASlib) [BKK ™ 16] has to be mentioned; originating
from the domain of satisfiability (SAT) problems it also includes a release of
TSP and TTP.

However, as Kotthoff notes that “Static portfolios are necessarily limited
in their flexibility and diversity.” [[Kot16]. Thus, the future challenge in this
research domain is to create lifelong machine learning systems [SY1.13, SHP15]
that continuously learn and adapt using e.g. reinforcement learning methods.

"https://developers.google.com/optimization/
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3 Exploratory Landscape Analysis

for Combinatorial Problems

“The uses or functions of a screw
driver cannot be algorithmically

enumerated.”

S. Kauffman [[Kaul4]

While many articles have been published on exploratory landscape analysis
(ELA) in continuous search spaces, combinatorial search spaces have received
less attention. A peculiarity of combinatorial search spaces in general is the
difficulty of defining “direction”. In continuous search spaces this concept is
prevalent and exploited heavily. In this section, my intention is to describe
a new kind of walk for exploratory landscape analysis, that, on the one hand
combines properties of walks mentioned in the previous section, and on the
other hand introduces a notion of direction along the edit-distance. These
walks are named “directed walks” [BPWA17, BAW17] accordingly and will be
described and analyzed extensively in this chapter. The directed walk is an-
alyzed extensively on fitness landscapes of the quadratic assignment problem,
but it is a generic method that can be applied to many other combinatorial
landscapes. Directed walks require the presence of a neighborhood relation,
as is mandated by the definition of a fitness landscape itself (cf. page 32). In
addition, a distance function must exist with the property that for any pair
of different solutions, there is at least one neighbor of the first solution with a
strictly smaller distance to the second solution.

In summary, in this section the following contributions are made to the
state of the art, which is also represented in the structure of the respective
subsections:

3.1 Introduce directed walk and additional variants and analyze them on
various benchmark instances of the quadratic assignment problem.

3.2 Introduce additional features and analyze existing features.

3.3 Study the performance of directed walks to identify the instances and
problem classes under a varying effort and with a variety of feature sets.

3.4 Discuss the integration of ELA in metaheuristic algorithms.



3.1 Directed Walks

3.1 Directed Walks

As has been discussed in Section 2.3 several methods exist for sampling and
characterising the search space and a number of different walks has been re-
viewed. The disadvantages have been discussed in that each walk presents its
own picture and that there is considerable sampling effort. In this section, I
want to present a unifying picture by introducing a walk that aims to combine
different aspects of the aforementioned walks into one walk.

The directed walk (dw) provides one sampling strategy that creates suit-
able characteristics. The motivation behind directed walks is that we want
to explore parts of the solution space that are also relevant to optimization
algorithms, while still aiming to cover the search space as a whole. In addi-
tion relevant characteristics of problem instances should be represented with
a range of features.

In the directed walk, one chooses certain start and destination points. To
cover a larger part of the search space, these points should have a high distance
to each other, i.e. the destination should be mostly dissimilar to the starting
point. The directed walk then attempts to draw a path from the starting to
the destination solution which

1. strictly closes distance
2. chooses the best among the alternative neighbors

Thus, directed walks make use of a restricted neighborhood that includes
only those neighbors that are closer to the destination solution. The advantage
of such a neighborhood is its size; it is less than the full neighborhood and fur-
ther reduces in size as the path approaches the destination. The computational
complexity may thus be reduced in contrast to adaptive or up/down walks. In
addition, no parameter is required that would otherwise define the sample size
of the neighborhood, because this is governed by the dissimilarity of the two
solutions. Furthermore, as the best among the alternative neighbors is chosen,
the walk explores parts of the solution space that are of higher quality while,
in contrast to adaptive walks, the bias towards these regions can be controlled
quite well.

A directed walk is based on the path relinking (PR) heuristic that records
its trail. In PR a trajectory is created that links two solutions in the search
space [GLMO0], for instance by making a greedy choice in each step. In Figure 7

an exemplary path is shown. The solutions A and B are initially different in 4
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3 EXPLORATORY LANDSCAPE ANALYSIS

Fitness

Steps

Figure 7: Path relinking between A and B, adapted from [BPWA17].

positions. The path is represented as the three intermediate solutions that link
A and B. On the right of Figure 7, the corresponding fitness chart is shown.
The U-shape is depicted in this chart in that the best-found solution of the
path is the one farthest from both A and B.

The use of path relinking for exploratory landscape walks in the form of
directed walks is described [BAW17|. In Algorithm 4, the directed walk traces
the trajectory between a starting solution sy and a target solution s; [BAW17].
It remembers visited solutions in a trail variable, i.e., a list-like data structure.
Directed walks use a restricted neighborhood N” that consists only of solutions
s’ that are more similar to the target solution s; than the current solution s.
Naturally, this neighborhood becomes smaller and smaller with each step. The
best solution from that restricted neigbhorhood then replaces s before a new
step may be performed. The trail is updated with each new solution and its
associated fitness value. The directed walk ends when s and s; are identical and
the resulting trail is returned. Both solutions sy and s; are part of the trail. In
the case of sy = s; the trail contains only one solution. A potential selection
bias may be introduced in Line 10 of Algorithm 4 when the neighborhood
is generated deterministically and a deterministic policy of selecting among
equally fit candidates is in place. Such a bias could be resolved by randomizing
the neighborhood or using a stochastic selection policy. However, even with a
bias in place, the outcome should not be affected negatively.

The runtime complexity of directed walks is O(n?) with n being the differ-
ence between the starting and the target solution and also the amount of steps
observed in the landscape per walk. This is worse than random walks which

is simply O(n) when n steps are made.
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3.1 Directed Walks

Algorithm 4 Directed Walk

1: procedure DIRECTEDWALK({ s, | s¢)
2 trail < [] > Initialize trail to an empty list
3: S < Sp
4 while true do
5 trail <+ (s,fitness(s))
> Calculate the restricted neighborhood N”™

6: N" + {s' € N(s) | distance(s’, s;) < distance(s,s;)}
7 if N" = () then
8: return trail
9: end if
> Choose the neighboring solution with best fitness
10: § ¢ arg ming-¢c yr fitness(s*)

11: end while

12: end procedure

Generally, a relaxation of directed walks can be thought of in terms of
the restricted neighborhood. Given the definition in Algorithm 4 Line 6 the
neighboorhood consists only of neighbors that strictly close the distance to
the target solution s;. A relaxed neighborhood would include neighbors that
maintain the same distance. However, in this case we may add additional
requirements, for instance that such a “distant neutral move” is also strictly
improving in terms of fitness. We will take a look at using such a relaxation
later in this section when we analyze inverse directed walks.

In the following three variants of directed walks are discussed that differ in
the type of points used as start and destination. In Section 3.1.1 we analyze di-
rected walks between randomly generated solutions. I use the notation (rr)-dw
to denote this variant, which reads: (from randomly sampled to randomly sam-
pled solution)-directed walk. In Section 3.1.2 directed walks between randomly
sampled solutions and a global optimum are analyzed, denoted as (rg)-dw and
in Section 3.1.3 directed walks among local optimal solutions are analyzed, de-
noted as (11)-dw. In Section 3.1.4 we will analyze directed walks between local
optima and a gobal optimum, denoted as (lg)-dw and finally, in Section 3.1.5
we will look at the aforementioned inverse directed walk variant termed (1i)-
dw. Of course, further variants and analysis can be thought of using different
combinations of points. In Section 3.1.6 we will compare directed walks to

other existing walks.
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3 EXPLORATORY LANDSCAPE ANALYSIS

3.1.1 Directed Walks between Random Solutions

Figure 8 shows several trajectories between such randomly generated solutions
in terms of the fitness progress. As the QAP objective is to be minimized,
the trajectory is described by a U-shape. In the plot in Figure 8 the y-axis
shows solution quality and the x-axis shows intermediate solutions as they are
sampled along the trajectory. In the beginning, the restricted neighborhood is
still fairly large and there is likely room for most improvement. Then, usually
a trough follows in which the neighborhood becomes smaller and less improve-
ment is possible. As the intermediate solutions become more similar to the
destination, quality degrades. More and more of the bad solution components
of the randomly generated target solution have to be added. Finally, it reaches
the destination’s fitness which is again of similar quality to the starting solu-
tions given that both are sampled alike.
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3000 A
2750 A

2500 A
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1500

1 1
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Figure 8: The progress of 50 directed walks between randomly generated solu-
tions?on the dre30 instance. Below the frequencies of downward (-1), neutral

(0) and upward (1) slopes are shown.

Another nice property of directed walks is that they can be overlaid as
was done in Figure 8. The overlay still shows essentially the same pattern

as the individual walks. Compared to random walks from randomly sampled

2A biased Fisher-Yates shuffling algorithm is used to create two solutions that do not
share a common element and are thus of maximum distance to each other.
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3.1 Directed Walks

solutions, the overlay would be unlikely to reveal any sort of structure except
for a constant band of best and worst observed fitness in which all the in-
dividual walks wiggle up and down. Directed walks enable us to create an
‘average walk' out of the individual walks and obtain characteristics from this
smoothed combination. A downside here however, is that each path should be
of similar length. This property holds mostly when two randomly generated
solutions are used. The color in Figure 8 and the following figures has been
scaled depending on the quality of the starting solution. We can observe that
for the instance shown there is no visible relation between the initial quality
and the best quality in such walks.

When comparing directed walks among different instances, various patterns
emerge. In Figure 9 two instances from the QAPLIB are compared in terms
of their directed walks. The esc32f instance has a large neutral part which
stems from the fact that it contains several “dummy” facilities that do not
have weights. Reassigning those dummies to different locations does not affect
the objective. In contrast, the tai30a instance is randomly generated and
does not have these dummies. It doesn’t show any amount of neutrality. The
plots reveal these properties very well as can be observed by comparing the

occurrence of neutral moves in Figure 9.
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Figure 9: The progress of 50 directed walks between randomly generated so-
lutions on the tai30a (left) and esc32f (right) instance (QAPLIB). Below the
frequencies of downward (-1), neutral (0) and upward (1) slopes are shown.
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3 EXPLORATORY LANDSCAPE ANALYSIS

3.1.2 Directed Walks between Random and Optimal Solutions

However, analyzing paths between randomly selected solutions is but one pos-
sibility of applying directed walks. Other, potentially interesting points in the
landscape may act as starting or destination points for directed walks, reveal-
ing different characteristics. In Figure 10 the trajectories between randomly
generated solutions and an optimal solution are shown. For this problem in-
stance progress towards the optimum solution is inhibited at about step 20
when no improving move leads closer to the optimum solution. In such a sit-
uation a greedy search would either be in a local optimum or directed away
towards a more distant local optimum. We can hypothesize that such analysis
would enable us to capture deceptiveness of a problem. A lot of degrading
moves in these walks would indicate that the progress towards an optimal
solution cannot rely on the “local gradient”, i.e. an improving move in the
neighborhood. In the opposite case, mostly down-hill moves would indicate
that global optimal solutions can be attained by following improving moves to
some degree.
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Figure 10: The progress of 50 directed walks from a randomly generated so-
lutions towards an optimum on the dre30 instance. Below the frequencies of
downward (-1), neutral (0) and upward (1) slopes are shown.

Again, comparing directed walks among problem instances reveals the in-

stances’ characteristics. In Figure 11 convergence for the esc32f is achieved
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3.1 Directed Walks

much faster, followed by many neutral changes and degrading moves being
delayed than in the tai30a instance where a gradual progress can be observed
that does not involve neutral moves.

Of course, analysis based on optimal solutions are only possible in bench-
mark situations when the problem instances have been solved to optimality.
At this point, naturally, the question emerges if this is useful as it cannot be
applied to new problem instances. It may be useful when the goal is to un-
derstand fitness landscapes better, making heavy use of already well-studied
instances. However, when our goal is to characterize new and previously un-
seen instances, an analysis based on the global optimum is inhibiting. To
resolve this situation, a similar analysis can be made on local optima which
are easier to achieve, even for new instances, and which shall reveal similar
effects. Nevertheless, it has to be mentioned, that the effect is likely less pro-
nounced when the landscape consists of many local optima and the target local
optimum is of bad quality.
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Figure 11: The progress of 50 directed walks from randomly generated so-
lutions towards an optimum on the tai30a (left) and esc32f (right) instance
(QAPLIB). Below the frequencies of downward (-1), neutral (0) and upward
(1) slopes are shown.

3.1.3 Directed Walks between Local Optimal Solutions

Another way of analyzing landscapes is by exploring the paths between local
optimal solutions using directed walks. The “U-shape” that was observed in

walks between randomly generated solutions is flipped upside down for these
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3 EXPLORATORY LANDSCAPE ANALYSIS

kinds of walks. Nevertheless, it is not a priori known to which degree the paths
degrade in fitness. Potentially, this reveals aspects on the steepness of local
optima in the landscape. Because local optima are also valuable solutions, the
analysis of the landscape coincides to some degree with the intent of finding
good solutions.
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Figure 12: The progress of 50 directed walks between local optimal solutions
on the dre30 instance. Below the frequencies of downward (-1), neutral (0)

and upward (1) slopes are shown.

In Figure 12 the paths of directed walks are displayed between two local
optima. The optima have been computed using best-improvement local search
in the swap2 neighborhood. Each local optimum, except for the first and the
last were start and destination in at least two paths. It is rather difficult to
generate an adequate number of local optimum of maximum distance to each
other, thus in this figure some paths terminate before others. It is visible
that only a few of the paths remain well within the range of local optima as
determined by the fitness distribution in the starting points. Most paths have
to cross parts of the search space that are much worse than that.

In Figure 13 a comparison between the ta:30a and the esc32f is performed.
Again, the absence of neutrality in the tai30a is shown in that there are only
improving or degrading moves out of those that are interesting, i.e. best alter-
natives in the path. For the esc32f we can observe a large number of neutral
steps, which probably corresponds to the alignment of all “dummy” facilities,
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3.1 Directed Walks

before a rather wiggly amount of up- and down-hill moves as well as some

neutral moves still need to be made.
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Figure 13: The progress of 50 directed walks between local optima on the
tai30a (left) and esc32f (right) instance (QAPLIB). Below the frequencies of
downward (-1), neutral (0) and upward (1) slopes are shown.

3.1.4 Directed Walks between Local and Global Optimal Solutions

Finally, in the last analysis of directed walk variants in this chapter, local
optima shall be used as starting points and the global optimum is chosen as
destination. This will present insights into the relation among the, arguably,
most interesting points in a fitness landscape. In general, if local optima
are clustered around global optima we would expect to see shorter paths as
these two points share some similarity. On the other hand, in the amount of
degrading moves, we can hypothesize on, e.g. the strength of the perturbation
that we need to made in order to find the global optimum using heuristic
techniques.

In Figure 14 the paths of directed walks are displayed between two local
optima. The optima have been computed using best-improvement local search
in the swap?2 neighborhood. It is visible that only a few of the paths remain
well within the range of local optima as determined by the fitness distribution
in the starting points. Most paths have to cross parts of the search space that
are much worse than that.

In Figure 15 a comparison between the tai30a and the esc32f is performed.

Again, the absence of neutrality in the tai30a is shown in that there are only
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Figure 14: The progress of 50 directed walks between local optima and a
global optimum on the dre30 instance. Below the frequencies of downward
(-1), neutral (0) and upward (1) slopes are shown.

improving or degrading moves out of those that are interesting, i.e. best alter-
natives in the path. For the esc32f we can observe a large number of neutral
steps, which probably corresponds to the alignment of all “dummy” facilities,
before a rather wiggly amount of up- and down-hill moves as well as some
neutral moves still need to be made.

3.1.5 Inverse Directed Walks

In directed walks the goal was to find a path between two, mostly dissimilar,
solutions that connect each other in a best-improvement way. In inverse di-
rected walks, we would instead take one solution with interesting properties
(e.g. locally optimal) and use it to direct the walk away from it under a best-
improvement sampling strategy. We abbreviate this variant as (1i)-dw. Thus,
the walk is constructed by step-wise removal of all components of the start-
ing solution. The walk stops when a solution of maximum dissimilarity has
been reached, which in the case of the QAP takes at most N — 1 steps. The
algorithm description of inverse directed walks is similar to that of directed
walks in Algorithm 4, but inverses the inequality as shown in Equation (3.1).

A schematic example of such a walk is shown in Figure 16.
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Figure 15: The progress of 50 directed walks between local optima and a global
optimum on the tai30a (left) and esc32f (right) instance (QAPLIB). Below
the frequencies of downward (-1), neutral (0) and upward (1) slopes are shown.

N" « {s' € N(s)|dist(s',sq) > dist(s, s0)} (3.1)

Directed walks and also its inverse variant are deterministic algorithms.
The only source of randomness is the starting solution, respectively also the
destination solution in case of regular directed walks. However, these are input
to the algorithm and no further stochastic choices are made. A consequence of
determinism is that there exists only exactly one walk to every solution. But
as there is a form of memory in terms of the starting solution, two walks that
cross each other on the same solution may not continue identically.

However, inverse directed walks would also be possible “between” two so-
lutions. One solution acts as the starting solution, while another acts as a
“repelling” solution. The walk is then confined to keep the unique components
of the starting solution while performing a stepwise replacement of all com-
ponents that are shared with the repelling solution. Thus, an inverse directed
walk can be similarly confined to a sub-space of the search space governed by
two solutions.

In Figure 17 inverse directed walk paths are shown. The characteristic
behavior that can be observed is that walks are able to improve on the local
optima in the first couple of steps, but then gradually degrade in quality as
more and more good properties of the solution have to be replaced by alter-
natives. The possibility of improving on the local search quality in such a

deterministic extension of local search has not yet been explored very much

66



3 EXPLORATORY LANDSCAPE ANALYSIS

Start | 1 | 2 | 3 | 4 | 5 | 6 | 15 possible swaps

K swap(2,3)

Step 1 |T| 3 | 2 | 4 | 5 | 6 | 14 possible swaps A

>< swap(1,4)

Step 2 | 4 | 3 | 2 | 1|5 | 6 | 9 possible swaps

K swap(1,5)

Step 3 | 4 | 3 | 2 | 5 | 1 m 5 possible swaps

><swap<3,6>
3

sepa [a]6]2]5]1]

woumz A~

M

Start  Stepl Step2 Step3  Step4

A\ 4

Figure 16: A schematic example of an inverse directed walk of a discrete
permutation-based encoding with a hypothetical fitness progress on the right.
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Figure 17: The progress of 50 inverse directed walks starting at local optima
on the dre30 instance. Below the frequencies of downward (-1), neutral (0)

and upward (1) slopes are shown.
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in the literature. Typically, a local search is performed and terminated once
a local optima has been reached. However, as Figure 17 shows, a simple in-
verse directed walk could provide an additional improvement over such local
optima in a few steps. In comparison with Figure 12 we observed that the
path between local optima involves the “crossing of a hill”. Thus, improving
solutions to the QAP by means of an exploration path between local optima
is rather difficult. However, exploring the basin around local optima by means

of inverse directed paths may be fruitful.
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Figure 18: The progress of 50 inverse directed walks starting at local optima on
the tai30a (left) and esc32f (right) instance (QAPLIB). Below the frequencies
of downward (-1), neutral (0) and upward (1) slopes are shown.

In Figure 18 inverse directed walks are compared again between a random
instance and one showing a high amount of neutrality. The differences are
very obvious in that the high amount of neutrality enabled the walk to remain
non-improving and non-degrading, i.e. a flat line. The random instance again
does not show any signs of neutrality and degrades very quickly in quality to-
wards the end. The behavior is similar to that observed for the dre30 instance
shown in Figure 17.

Relaxed Inverse Directed Walks

As has been described in the beginning of Section 3.1 a relaxed variant of
inverse directed walk can be created by modifying the requirement that dis-
tance to the starting solution must increase with every step. Instead we would
require, that distance in every step must be non-decreasing. This includes

changes in those components that already differ from the starting solution.
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However, such a walk could run endlessly. Thus it is also required that moves,
that remain at the same distance, must also be strictly improving. If there is
no further move to increase distance and no further improving move in this
relaxed neighborhood, than that solution would be “distant-locally optimal”.
Note however, that such solutions may be rather bad. For instance, consider-
ing the case when local (and global) optima are clustered in the search space
and thus have several components in common. The resulting “distant-locally
optimal” solutions could, by definition, not contain these shared components.
Thus, their fitness would be worse.

If the starting solution and the global optimal solution do not share any
components, then the global optimum could theoretically still be reached by
such a walk. Such a setting might be more successful in cases where the
landscape is considered to be “deceptive” to some degree. Algorithmically,
the relaxed variant of inverse directed walks is similar to the aforementioned
variants, but differs in the calculation of the neighborhood N” as given below.
The disjunction in Equation (3.3) allows additional neighbors.

N« {s' € N(s) | dist(s',sq) > dist(s, so) (3.2)
V [dist(s', so) = dist(s, so) A fit(s'") < fit(s)]} (3.3)

3.1.6 Relation of Directed Walks to Other Existing Walks

As has been said, directed walks aim to combine many attributes of existing
walks, such as exploring better and worse regions of the solution space and
because of its greedy nature also mimic some of the behavior that would likely
be seen by an optimization algorithm. In the following a brief comparison of
directed walks to previously described walks is performed:

Directed vs Up/Down walks: Directed walks explore such up and down
paths in any variant due to the greedy selection in the restricted neighborhood.
The (rg)-dw and potentially (rl])-dw variant focus explicitly on down walks.
But (rr)-dw and (ll)-dw explore into better and worse regions of the search
space. Directed walks thus feature a similar descending and ascending behavior
to up/down walks. Some of the described features, such as up (down) walk
length could also be computed from directed walks.

Directed vs Adaptive walks: Both adaptive and directed walks greedily
choose the neighbor in each step. However, adaptive walks use an unbiased

random sub-sampling of the neighborhood, while directed walks use a struc-
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tured approach. The advantage is that the amount of sub-sampling need not
be determined a priori, but the disadvantage is that, e.g. in (rr)-dw the extent
to which good parts of the search can be explored is limited. Determining the
amount of sub-sampling however is crucial for adaptive walks. An amount too
low would equal a random walk, while an amount too high could limit the
walks ability to explore the search space. If the neighborhood would not be
sub-sampled, adaptive walks would be identical to local search and thus be
easily trapped in a local optimum. Thus, we can argue that characteristic that
surfaces in adaptive walks should also be present in directed walks with the
additional benefit that it is parameterless.

Directed vs Neutral walks: In a landscape with many plateaus, directed
walks will also move along the plateau for some part of their walk. This has
already been shown in some of the previous figures. An (rr)-dw will favor
the plateau over an up-hill move in case only non-improving neighbors are
available. The advantage being that directed walks do not look for plateaus
within solutions of average quality (i.e. the starting points of neutral walks),
but where these appear, e.g. near local optima in (1])-dw.

Directed vs Random walks: Random and directed walks do not share
a lot of common properties. Directed walks do move between randomly se-
lected start points, but in an adaptive respectively greedy manner. Thus, a
random walk would provide a different and unbiased view of the landscape,
and complements the analysis using directed walks.

Directed vs Progressive walks: Directed walks make the notion of
direction available in any search space. The directional vector is obtained in
form of the differences in solution components, i.e. the edit-distance. Thus,
directed walks are not confined to continuous problems and can be used in
many search spaces.
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3.2 Landscape Characteristics from Directed Walks

The quality trails that are produced by directed walks may be analyzed in a
similar way to, for instance, random or adaptive walks. The difference with
directed walks is their length. Directed walks typically have a certain length
and do not run arbitrarily long. We can of course, concatenate the trails to
form one big trail, however, we did observe one repetitive pattern in each
variant of the walk in the previous sections. It may thus be meaningful to
consider the average or median of these individual walks to provide descriptive
characteristics of the respective landscape.

In the following several features are proposed that can be obtained from the
variants of directed walks. These features will then be used later in the thesis in
order to function as characteristics for algorithm selection or otherwise describe
problem instances’ similarities with each other. We can use these features
and project the respective problem instances to low-dimensional spaces which
enables us to visualize the space of problem characteristics. Such visualizations
will be introduced and studied in Section 4.

3.2.1 Curve Analysis

In analysing the curves of directed walks we have come up with three new
characteristics These are based on calculating the differential of these curves,
ie. %. In this case Ay is the difference in fitness while Az is the difference
in solution similarity or “step size”. Three features have been proposed to
describe these trails [BPWA17, BAW17]: Sharpness, bumpiness, flatness. In
the following we will introduce these features more formally. The mathematical
notation used in the description is given in Table 4. The idea is that the trails
we obtain from directed walks may be very characteristic in that for a smooth
landscape we would expect to see a very smooth characteristic, whereas for
rugged landscapes the slope changes often. In neutral landscapes, as we have
seen before, often the case is that the fitness remains constant and thus, not
only does the slope stay constant, it is also horizontal.

In general, we assume the “gradient” of a certain step is given in terms of
the slope induced by the previous and next steps. As shown in Figure 19 the
gradient of r is approximated as given in Equation (3.4). It is calculated for a

step r using the preceding step ¢ and the succeeding step s and defined only
when ¢, s # {}.
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Table 4: Mathematical notation for describing curve analysis based features.

Indices
t Trajectory
q,7, S Steps

Functions and Relations

fit(r) Fitness of step r, fit : S — R

agrad(r) Approximated gradient of step r, agrad : § — R
Approximated change of gradient of step r,

d2
agrad(r) agrad’: S = R
len(t) Length of trajectory ¢, len : 7 — N
Distance (=step size) between step s and step 7,
dx(s,r) )
dr : S8 — R
dy(s,) Fitness difference of step s and step r, dy : S> -+ R
pre(r) Returns the predecessor of r, pre : § — S
suc(r) Returns the successor of r, suc: S — S

Sets and Sequences

T Set of trajectories t € {1,2,...,T}
S Set of steps
Sequence of steps 73,7 € {1,2,...,len(t)} in trajectory ¢,
S
S CsS
Conventions
True =1 A true expression corresponds to an integer of 1

False =0 A false expression corresponds to an integer of 0

dy(pre(r), suc(r))

agrad(r) = dx(pre(r),suc(r))

(3.4)

agrad(suc(r)) — agrad(pre(r))

agrad®(r) = (3.5)

dz(pre(r),suc(r))

Sharpness is the average absolute “gradient” in the quality trail, i.e. the
ratio of the absolute quality difference and the distance between two succeeding
solutions in the trail. This feature should be normalized by a best and worst
quality.
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3 EXPLORATORY LANDSCAPE ANALYSIS

A
Fitness

Steps

Figure 19: Visualization of the approximated gradient in a directed walk

len(t)—1

1 1
h == ) . .
Sharpness T2 len(t) = 2 lagrad(r;)| (3.6)

i=2
Bumpiness is the relative number of “inflection points” to the points visited,
i.e. where the “gradient” changes sign, but is not equal to 0.

len(t)—3
1 1
Bumpiness = T ; on() =5 ; [sen(agrad®(r;)) # sgn(agrad®(ris1))

A sgn(agrad®(r;)) # 0
A sgn(agrad®(riy1)) # 0] (3.7)
Flatness is the relative number of “undulation points” to the points visited,

i.e. the gradient itself as well as its “derivative” are both 0.

len(t)—3
1 1
Flatness = — - ——— d*(r;) =0 3.8
atness = g;len(t) 5 lz:; lagrad®(r;) = 0] (3.8)

These three features describe different aspects of the observed curves and
thus of the underlying problem instances. Especially, flatness is useful to
discern problem instances with a high amount of neutrality.

3.2.2 Information Analysis

In addition previously described features such as those described by Vassilev

et al. [VEFMOO| may also be computed for directed walks. These features are
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3.2 Landscape Characteristics from Directed Walks

information content (ic), partial information content (pic), and density basin
information (dbi) as well as peak values of information content and density
basin information respectively (ic*, dbi*). In Figure 20 a comparison of infor-
mation analysis features is given. The instances shown are dre30 (left), tai30a
(middle), and esc32f (right). The figures depict results of an information
analysis from random-to-random directed walk (rr)-dw (first row), random-
to-global directed walk (rg)-dw (second row), local optimum-to-local optimum
directed walk (I1)-dw (third row), and local optimum-to-global optimum (lg)-
dw (fourth row).

Again, it is easy to distinguish esc32f from the other two, e.g. based on
information content alone. However, despite the notable differences in the
fitness landscapes of dre30 and tai30a the information analysis does not yield
a comparable notable change at first sight. As we have seen in Figures 8 and 10
dre30 did contain neutral areas in the landscape, while a complete absence of
neutrality in tai30a could be observed in Figures 9 and 11. Nevertheless, at
a closer look it can be observed that ic is less for tai30a than for dre30 when
e = 0 in both the (rr)-dw and the (rg)-dw. Also, for (rg)-dw the differences of
pci and dbi between the two problem instances are more pronounced than for
(rr)-dw. Among all the performed variants, the differences between tai30a and
dre30 are most pronounced in (lg)-dw where even the peaks of the ic curves
are rather different. Unfortunately, analysis using the global optimum are only
of theoretical interest as the optimal solution is known a priori only for well
studied problem instances. Nevertheless, we may hypothesize that the fitness
landscapes between these instances differ to a larger degree when approaching
the global optimum and are otherwise somewhat similar.

Due to the stochastic nature of the sampling process in exploratory land-
scape analysis, the obtained features are random variables. Ideally, the ex-
pected value of that variable is the same regardless of the length of the walk.
Longer walks should be able to estimate the expected value to a better preci-
sion as the standard deviation drops. In practice however, we have observed
that shorter walks introduce a notable bias that leads to a different distribution
of the feature variable in comparison to longer walks. Certainly, it has to be
mentioned that such a bias exists mostly for very short walks, but nevertheless
constitutes an undesirable behavior. The box plot in Figure 21 shows the bias
for different walk lengths from 27 to 2!8.

One issue with information analysis features roots in the symmetry of cer-
tain symbols. A random walk is typically not biased in terms of a direction.

74



3 EXPLORATORY LANDSCAPE ANALYSIS

1.0 1.0 1.0
—— dbi —— dbi —— dbi
0.8 1 — ic 0.8 1 — ic 0.8 1 — ic
— pic — pic — pic
0.6 1 0.6 1 0.6 4
0.4 0.4 0.4 4
0.2 1 0.2 1 0.2
0.0 = T T 0.0 = T T T 0.0 T r r
0 200 400 0 20000 40000 60000 0 20 40 60
Epsilon Epsilon Epsilon
1.0 1.0 1.0
— dbi — dbi —— dbi
0.8 1 — ic 0.8 1 — ic 0.8 — ic
— pic — pic — pic
0.6 1 0.6 1 0.6
0.4 4 0.4 0.4
0.2 A g 0.2 A 0.2
0.0 = T T T 0.0 = T T 0.0 = T T T y
0 100 200 300 0 20000 40000 0 10 20 30 40
Epsilon Epsilon Epsilon
1.0 1.0 1.0
—— dbi —— dbi —— dbi
0.8 — ic 0.8 — ic 0.8 — ic
— pic — pic — pic
0.6 1 0.6 1 0.6
0.4 0.4 0.4
0.2- \ 0.2 \ 0.2 \
0.0 = T T T 0.0 = T 7 T 0.0 = T u T
0 100 200 300 0 10000 20000 30000 0 20 40 60
Epsilon Epsilon Epsilon
1.0 1.0 1.0
—— dbi — dbi —— dbi
0.8 1 — ic 0.8 1 — ic 0.8 — ic
— pic — pic — pic
0.6 0.6 0.6
0.4 4 0.4 0.4
0.2 0.2 \ 0.2 \k
0.0 - T T T T 0.0 - T T 0.0 \ T
0 100 200 300 400 0 20000 40000 0 20 40
Epsilon Epsilon Epsilon

Figure 20: The result of an information analysis of directed walks applied to
the QAP problem instances, from left to right: dre30, tai30a, esc32f. From top
to bottom, the information analysis of four types of directed walks are shown:
(rr)-dw, (rg)-dw, (11)-dw, (lg)-dw.
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3.2 Landscape Characteristics from Directed Walks

It moves from one solution to any of its neighbors with equal probability.
Thus, differences in the frequencies of symmetric pairs of symbols are due to
the direction in which the walk progresses and not due to actual landscape
properties. For any symmetric pair, both symbols should occur with equal
probability. If the walk happened to move in the respective other direction by
chance we would observe the corresponding symbol. In that case, any observed
difference in those symbols is thus rather an issue of sampling inaccuracies and
not due to landscape properties. The symmetric symbol pairs are (\,\,, /'),
(\—, =), as well as (,*—,—"). Thus, instead of 9 original symbols we
may only consider 3 symbols that are self-symmetric (N7, /", ——) and the
3 symmetric pairs mentioned above. Figure 21 shows the symmetric informa-
tion content. This and the symmetric density basin information are computed
similarly to Equation (2.18) and (2.19) but using less symbols. The observed
frequencies of the symmetric symbol pairs must be averaged before computing
entropic measures, or otherwise another bias is introduced. The comparison
between regular and symmetric information content is given for different walk
lengths in Figure 21. For each walk length the boxplot is generated by calcu-
lating the features in 100 different runs. Each run is of length 2'® and only
the first 2 values are taken where ¢ is shown on the z-axis. The symmetric IC

often gives better averages with respect to short walks than the regular 1C.
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Figure 21: Comparison of regular and symmetric information content for dre30,
tai30a, esc32f.
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3.3 Application of Exploratory Analysis

3.3 Application of Exploratory Analysis

In this section we will evaluate the application of directed walks on instances
of the quadratic assignment problem. First, we will consider the stability of
the features in terms of their distribution among various walks. Then we will
proceed to evaluate how many walks should be made to gain a reliable estimate.
Next, we will calculate the features for a certain set of problem instances two
times with varying effort. The first time we produce the training data while

the second time we produce the test data.

3.3.1 Evaluation of Feature Stability

In Table 5 several features are listed as obtained from a random walk of length
218 in the swap2 neighborhood. The problem instances are sampled randomly
from QAP libraries described earlier in this thesis. They are reduced to a
dimension of 30 by randomly removing rows and their corresponding columns
from the matrices, thereby ignoring the influence of problem dimension in the
analysis. Despite a wide variety of problem instances, some features result
in a very low variation as determined by the coefficient of variation (o/pu).
Given that the random walk is a stochastic procedure the exact same value
cannot be computed for each feature in each run. For instance, the AC1 - the
autocorrelation given a shift of one step - is very similar for any instance. The
statistical correlation length [Hor96] on the other hand shows a lot of variation,
but also within problem classes. Consider instances of the lipaXXb or dre
generators. The density basin information (dbi) also shows little variation, but
this can be explained given that there are less instances with a lot of neutrality.
It can be seen that for esc32f for instance it is quite a bit lower, but mostly it
is around 0.62. The “peak” features (ic* and dbi*) do not introduce additional
insights as these correlate almost entirely with dbi.

Correlations among those features are shown in Table 6 using Pearson’s R.
The upper diagonal shows the significance of the correlation using a Bonfer-
roni adjustment to account for multiple comparisons®. There are four feature
groups that can be identified from these correlations: (1) acl and corrlen, (2)
ic, pic, H(x), (3) dbi, ic*, dbi*, (4) reg. and div. It is thus a relevant question
to which precision a certain feature needs to be measured in order to rely on
its value. Is a random walk of, e.g. length 10,000 enough?

3Computation has been performed using the R statistical software and the corr.test
function from the psych package
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3 EXPLORATORY LANDSCAPE ANALYSIS

Table 5: Fitness Landscape values for randomly chosen instances of problem
instances from various QAP libraries reduced to size 30.

acl  corrlen ic dbi pic ic* dbi* reg. div. H(X)

drell10-30 | 0.873 40 0.779 0.637 0.425 0.825 0.652 0.001 0.002 0.954
dre30 | 0.867 42 0434 0.621 0.518 0.827 0.650 0.002 0.003 0.664

dre42-30 | 0.868 70 0.456 0.620 0.515 0.828 0.648 0.002 0.003 0.682
RAND-S...ci-30 | 0.885 70 0391 0.624 0.518 0.825 0.652 0.928 0.966 0.631
RAND-S...bl-30 | 0.868 33 0817 0.648 0.390 0.817 0.648 0.000 0.000 0.990
RAND-S...bl-30 | 0.870 36 0.825 0.646 0.336 0.825 0.646 0.000 0.000 0.996
RAND-S...ci-30 | 0.890 76 0.391 0.624 0.519 0826 0.651 0.948 0.973 0.631
RAND-S...ci-30 | 0.890 56 0.391 0.624 0.519 0.825 0.651 0.935 0.968 0.631
RAND-S...bl-30 | 0.871 35 0.707 0.623 0.462 0.825 0.650 0.000 0.000 0.888
RAND-S...ci-30 | 0.877 67 0.391 0.623 0.520 0.827 0.649 0.929 0.963 0.631
esc32a-30 | 0.868 55 0.733 0.628 0.451 0.827 0.649 0.000 0.000 0.912
esc32¢c-30 | 0.875 70 0.826 0.652 0.353 0.826 0.652 0.000 0.000 1.000
esc32d-30 | 0.871 37 0.827 0.650 0.362 0.827 0.650 0.000 0.000 0.999
esc32e-30 | 0.866 38 0.723 0.551 0.225 0.723 0.551 0.000 0.000 0.865
esc32f-30 | 0.866 38 0.723 0.551 0.225 0.723 0.551 0.000 0.000 0.865
esc32h-30 | 0.872 41 0.820 0.647 0.386 0.828 0.647 0.000 0.000 0.992
esc64a-30 | 0.876 56 0.740 0.567 0.236 0.740 0.567 0.000  0.000 0.887
kra32-30 | 0.887 62 0.534 0.617 0.502 0.826 0.651 0.007 0.011 0.744
lipa30b | 0.869 33 0394 0.623 0.522 0826 0.650 0.027 0.049 0.633
lipa40b-30 | 0.875 76 0.393 0.623 0.520 0.827 0.648 0.046 0.082 0.632
lipab0a-30 | 0.871 60 0.482 0.618 0.512 0.828 0.648 0.001 0.002 0.702
lipa60b-30 | 0.872 95 0392 0.623 0.521 0.827 0.648 0.092 0.161 0.631
lipa90b-30 | 0.872 49 0.392 0.623 0.521 0.828 0.647 0.171  0.290 0.631
sko100c-30 | 0.884 56 0.444 0.622 0.512 0826 0.652 0.003 0.005 0.673
sko100d-30 | 0.883 52 0.442 0.622 0.513 0.824 0.654 0.003 0.005 0.672
sko100e-30 | 0.884 62 0.441 0.622 0.513 0.825 0.653 0.003 0.005 0.670
sko100f-30 | 0.881 60 0.442 0.622 0.513 0826 0.653 0.003 0.005 0.672
sko42-30 | 0.879 59 0457 0.620 0.513 0.827 0.650 0.002 0.004 0.683
sko49-30 | 0.878 48 0.453 0.621 0.513 0.827 0.651 0.003 0.004 0.680
sko64-30 | 0.881 48 0443 0.621 0.513 0.826 0.653 0.003 0.005 0.672
ste36a-30 | 0.895 61 0421 0.624 0.512 0.824 0.654 0.019 0.022 0.656
ste36b-30 | 0.901 61 0401 0.626 0.512 0.824 0.655 0.077 0.125 0.640
tail00a-30 | 0.873 35 0392 0.623 0.522 0.827 0.648 0.157 0.269 0.631
tai30b | 0.869 37 0390 0.626 0.514 0.823 0.656 0.997 0.998 0.631
tai35a-30 | 0.868 41 0392 0.623 0.521 0.828 0.648 0.168 0.282 0.631
tai35b-30 | 0.879 50 0.390 0.625 0.515 0.825 0.653 0.990 0.996 0.631
tai40b-30 | 0.872 55 0.390 0.625 0.515 0.825 0.652 0.995 0.997 0.631
tai64c-30 | 0.877 68 0.619 0.440 0.164 0.619 0440 0.116 0.036 0.725
tai80a-30 | 0.873 44 0392 0.623 0.521 0.827 0.649 0.161 0.275 0.631
tai80b-30 | 0.888 69 0.390 0.625 0.516 0.825 0.652 0.984 0.994 0.631
tho30 | 0.880 58 0.394 0.624 0.518 0.825 0.652 0.050 0.080 0.634

tho40-30 | 0.885 68 0.395 0.623 0.520 0.825 0.652 0.042 0.072 0.634
will00-30 | 0.884 79 0.440 0.622 0.513 0.826 0.651 0.004 0.006 0.670
tai45e01-30 | 0.865 39 0445 0.621 0.513 0.827 0.649 0.067 0.097 0.674
tai45e02-30 | 0.868 44 0456 0.621 0.512 0.826 0.651 0.082 0.123 0.682
tai45e04-30 | 0.869 34 0445 0.622 0513 0826 0.650 0.084 0.124 0.674
tai45e05-30 | 0.867 38 0430 0.623 0.515 0826 0.651 0.087 0.131 0.662
tai45e08-30 | 0.864 30 0.447 0.621 0.514 0826 0.650 0.065 0.094 0.675
tai45e09-30 | 0.869 32 0439 0.622 0.514 0825 0.652 0.082 0.122 0.669
tai45e10-30 | 0.869 41 0450 0.621 0.512 0.825 0.651 0.081 0.117 0.678
Coeff. Var. | 0.010 0.289 0.302 0.051 0.193 0.045 0.058 1.833 1.671 0.172
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Table 6: Pearson’s correlation coefficient (R) among features obtained from a
random walk as given in Table 5

acl corrlen ic dbi pic ic*  dbi* reg. div. H(x)
acl | 1.00 o
corrlen | 0.57 1.00
ic | -0.32 -0.28  1.00 okox Hoxk
dbi | 0.05 -0.09 -0.09 1.00 R R ek
pic | 0.24 0.14 -0.78 0.64 1.00 rork ok rork

ic* | 0.10 -0.02 -0.33 096 0.82 1.00 ook
dbi* | 0.14 -0.03 -0.33 096 0.82 1.00 1.00
reg. | 0.26 0.21 -0.39 0.07r 025 011 0.12 1.00 otk
div. | 0.25 019 -043 011 029 0.15 016 0.99 1.00
H(X) | -0.31 -0.30 099 0.04 -070 -0.21 -0.21 -0.38 -0.42 1.00

We will thus perform additional experiments that perform 100 repetitions
on a set of instances with a maximum length of 2'® and then subsample this
by considering the first 2 values only with i € {7,8, ..., 18}.

In Figure 22 a comparison is given among several well-known features col-
lected from walks of different sizes. It is visible that some feature distributions
change notably as the walk length increases. We can hypothesize of two po-
tential reasons for such an observation: On the one hand, it may be that the
feature is biased and that the difference in distributions is not caused by a dif-
ference in the landscape, but on the other hand it may be that the landscape
at a very local level has different properties than on a global level. We do
not aim to further the study with respect to isotropy, but refer to Pitzer who
studied this in more detail [Pit13].

3.3.2 Problem Instance Identification

The motivation for performing landscape analysis is to identify similar problem
instances. But many landscape analysis techniques are stochastic as we have
shown. In this section we analyze how well we are able to reidentify a problem
instance that we have already observed. Thus we design a two-phased test
in which the exploratory landscape procedures are applied on a set P of n
problem instances once in each phase. The first time we obtain our training
data, i.e. the features that we would put in the knowledge base and which are
assumed our true characteristics [BPWA17]. The second time, we obtain our

test data, i.e. the features that we would then compare to the knowledge base.
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Figure 22: Feature distribution of random walks of various lengths (powers of
2) for the dre30 instance.
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In this evaluation, however we posses the additional information that there
is an identical instance in the training and test set. The features of this instance
should thus be very similar, if not identical in both data sets. The evaluation is
thus simple: For each feature vector p corresponding to one problem instance
in our test data we compute the Euclidean distance to all feature vectors in
the training data. We then obtain a ranking by sorting those distances in
ascending order and obtain the rank 7, of the identical twin of p. If the rank
equals 1 we have correctly reidentified the problem instance, but the higher the
rank the worse. A rank of n would be the worst possible case, but a baseline
can be established in form of a random ranking where E[rp] = 3.

Part of the results were already published by Beham et al [BPWA17]|. Here
I present an extended study taking into account additional features, varying
the problem dimensionality and including more of the walks described above.
Similar to the earlier study [BPWA17] the set of problem instances are sampled
randomly from various libraries, i.e. QAPLIB [BKR97|, Drezner [DHTT05],
Microarray [dR06], and Taillard*. From Taillard’s library only 10 instances
are chosen in order to preserve diversity in the set. A downsampling is applied
similar to Beham et al. [BPWA17] where facilities and locations are randomly
discarded from the weights and distances matrix respectively. Thus, we can
create problem instances of the desired size.

The experimental procedure then includes to perform a number of walks on
each of these instances, calculate features and create two independent knowl-
edge bases. The first knowledge base is called “training-kb” and the second
is called “test-kb”. Each consist of the same amount of problem instances,
and associated features obtained from mutually exclusive sets of walks. The
assumption is that the two knowledge bases hold the same information on
each problem instance. However, due to the stochasticity of the exploratory
method this may not always be the case, especially short walks exhibit a larger
distribution of the feature space as shown in Figure 22. Next, the instances
described in the “test-kb” are matched to those present in the “training-kb” as
explained above according to a distance in the described feature vector. This
process is shown in Figure 23. In the following, our sample consists of 20 prob-
lem instances and the sampling is repeated 10 times. Each time a completely
new set of problem instances is sampled and the directed walks are applied
to it. We apply the method to problem instances of sizes d € {20,30,40}
separately and average the results and compare different feature sets.

“http://mistic.heig-vd.ch/taillard/problemes.dir/qap.dir/qap.html
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e SBF consist of only the features sharpness, bumpiness, flatness as have
been described in Equations (3.6) to (3.8).

e RUG consist of features associated with ruggedness acl and corlen.

e TAL consist of features from the information analysis ic, dbi, pic, reg.,
H(X), icx, dbix. It is a combination of IAL _REG which uses the for-
mula as given by [VEMO00], while AL SYM uses the adjustements with

respect to symmetry as introduced and analyzed in Section 3.2.2.

As problem instances are rarely of the same size, thus we have to tailor
the problem instance set. Instances smaller than the observed dimension are
discarded, while larger problem instances are downsampled in an unbiased
manner [BPWAL7].

Table 7 and Table 8 are looking very similar, but measure the accuracy
on two different levels. Table 7 shows results from determining the correct
problem class. As for the definition of such a class, we use the authors /
instance generators that created the problem instances. It is assumed that
these generators should significantly differ from one another, but that multiple
instances of the same class may not be discernible that easily as they are very
similar. Since also, algorithm performance is expected to be rather similar
when a problem instance of the same class respectively generator is observed,
a high accuracy here should be achieved.

Features
(training-kb)

Problem

Instances

Features
(test-kb)

Figure 23: The process of reidentifying problem instances using the stochastic
landscape characteristics is shown graphically. In this figure only a single

ranking is obtained from a single selected problem instance.
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Results in Table 7 show that directed walks are well suited to identify
the right problem class. After 500 paths have been observed, features may
correctly identify the right problem class in nearly all of the cases using various
sets of features. Only the ruggedness-based features are performing not as
good indicating that autocorrelation and correlation length of these paths are
not very good features. The introduced SBF features perform slightly worse
compared to those from information analysis (IAL). A combination of SBF
and TALSYM works best for identifying the correct problem class.

In Table 8 results are shown for the case when the exact same problem
instance needs to be identified. The data shows again that the (1l)-dw and (i)-
dw variant yield the lowest ranks for the feature sets SBF, IAL and especially
the combination SBF and IAL. The problem library consists of on average
100 instances over all dimensions. The task of reidentifying the exact same
problem instance is however considerably more difficult, because instances from
the same class should be rather similar to each other. In comparison the (rr)-
dw variant needs about 4 times more paths to achieve e.g. an average rank of
4. Nevertheless, computationally this is still cheaper as inverse directed walks
are also the most expensive variant. However, considering that such landscape
analysis be integrated into algorithms, we may observe not as many paths
and, this is the most important point, the cost of achieving a local optimum
is part of the search and not part of the landscape analysis. Here, this cost is
added to the analysis method. But, apart from e.g. evolutionary algorithms,
many other algorithms consider local optima as important points in the search
and strive to improve the search by finding better local optima. Thus, this
part of the search cost can be shared with the heuristic approach. In practice
both approaches might benefit, the search algorithm may identify the problem
instance in comparison to previously observed instances and the landscape
analysis might even find new better solutions, for instance using the (li)-dw
variant. Table 9 compares the effort of the different directed walk types. Due
to the added computational effort in determining local optima (7, [, r{)-dw
require significantly more time than simple (rr)-dw. In addition in inverse
directed walks the neighborhood consists of many more members and takes
longer to evaluate.

In comparison we also applied random walks to problem instance identifi-
cation. In Table 10 we observe that random walks are also suited to identify
the correct problem class and problem instance. However, it is visible that
the ruggedness features are rather misleading. The AL feature group alone
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Table 7: Average rank in identifying problem instance classes with various
types of directed walks using a first-improvement neighborhood selection strat-
egy (lower is better). The column headers denote the amount of paths that
have been performed.

Paths ‘ 1 2 5 10 20 50 100 200 500
(rr)-dw
RUG 116 131 102 92 81 6.0 60 48 40
SBF 8.5 7.3 5.3 44 33 22 1.9 1.5 1.2
IALREG 8.5 6.1 43 34 23 18 1.5 1.4 1.2
TALSYM 8.4 7.3 44 35 24 18 1.5 1.3 1.2
IAL 9.1 7.0 47 35 23 19 1.6 1.4 1.2
SBF_RUG 7.8 8.1 51 41 34 24 2.4 2.2 1.3
RUG_TAL 8.7 7.5 45 31 24 20 1.8 1.6 1.2
SBF IAL 8.1 5.7 3.8 29 20 1.5 1.4 1.2 1.1

SBF IALREG 7.5 5.1 35 27 19 14 1.3 1.2 1.1
SBF ITALSYM 7.5 5.6 36 26 19 1.5 1.3 1.2 1.1

(1])-dw

RUG 124 100 106 74 64 58 48 49 36
SBF 7.9 7.0 4.8 46 35 2.3 1.8 1.6 1.3
TALREG 6.8 5.8 3.9 28 22 1.7 1.4 1.1 1.1
TALSYM 70 60 39 30 21 17 14 12 11
TAL 7.2 6.1 4.1 3.0 22 1.7 1.4 1.2 1.1
SBF RUG 8.5 6.4 52 40 3.1 20 2.3 2.2 1.7
RUG TAL 73 61 41 30 21 16 16 14 12
SBF IAL 6.5 5.8 3.8 27 20 15 1.3 1.1 1.1

SBF IALREG 6.1 5.6 36 24 19 14 1.3 1.1 1.1
SBF TALSYM 6.4 5.6 36 25 18 14 1.2 1.1 1.0
(11)-dw

RUG 12.0 104 7.8 59 45 43 54 38 43
SBF 9.5 6.4 59 51 43 3.0 2.3 1.9 1.4
IALREG 6.4 5.0 28 19 14 1.2 1.2 1.0 1.1
TALSYM 6.5 5.3 28 18 15 13 1.2 1.1 1.1
IAL 6.9 5.8 29 18 15 13 1.2 1.1 1.0
SBF RUG 9.7 6.6 4.5 3.7 28 22 2.7 20 2.6
RUG_IAL 6.9 6.0 27 18 14 13 1.4 1.2 1.2
SBF IAL 9.2 5.2 27 17 14 1.2 1.2 1.1 1.0

SBF_IALREG | 89 44 26 17 13 12 11 1.0 10
SBF_ITALSYM | 7.9 50 27 16 14 12 12 10 10
(Ii)-dw

RUG 11.9 10.6 93 80 64 5.1 40 3.8 2.9
SBF 4.7 3.6 29 23 22 1.7 1.5 1.4 1.1
IALREG 4.9 3.3 21 17 13 1.2 1.3 1.1 1.0
TALSYM 3.8 3.3 19 1.7 13 12 1.3 1.1 1.1
IAL 5.0 3.1 21 17 13 1.2 1.3 1.1 1.0
SBF RUG 6.3 5.0 3.7 36 24 20 1.7 1.5 1.4
RUG_IAL 4.9 3.5 22 18 14 13 1.4 1.1 1.1
SBF IAL 4.3 2.5 1.7 15 13 1.2 1.2 1.1 1.0

SBF ITALREG 4.2 2.4 1.7 15 13 1.2 1.2 1.1 1.0
SBF IALSYM 3.3 2.4 16 14 12 1.1 1.3 1.1 1.0
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Table 8: Average rank in identifying problem instances exactly with various
types of directed walks using a first-improvement neighborhood selection strat-
egy (lower is better). The column headers denote the amount of paths that
have been performed.

Paths ‘ 1 2 5 10 20 50 100 200 500
(rr)-dw
RUG 455 44.1 39.1 359 32.7 245 266 22.0 139
SBF 323 274 194 144 114 7.4 5.2 4.2 3.0
IALREG 35.0 259 202 14.1 9.0 7.1 5.2 3.8 2.6
TALSYM 34.8 281 224 15.7 9.9 7.6 5.5 3.9 2.8
TAL 36.3 282 231 16.5 9.9 7.6 5.5 4.0 2.7
SBF_RUG 351 316 223 171 14.8 108 13.8 11.8 5.2
RUG_TAL 36.0 278 224 16.0 10.5 9.1 8.1 7.4 3.6
SBF IAL 33.7 26.0 20.0 13.3 7.7 5.9 4.6 3.5 2.5

SBF IALREG | 31.6 233 16.5 10.6 6.9 5.3 4.2 3.2 2.2
SBF ITALSYM | 32.2 25.8 187 12.2 7.2 5.7 4.4 3.4 2.4

(1])-dw

RUG 436 395 433 300 241 189 191 190 183
SBF 314 24.3 185 14.1 10.9 6.6 4.5 3.6 2.5
TALREG 30.8 246 18.0 13.1 8.4 5.1 4.0 3.1 2.4
TALSYM 286 265 198 145 89 53 42 33 25
IAL 30.6 26.2 20.1 149 9.4 5.3 4.2 3.2 2.6
SBF_RUG 334 255 215 137 106 7.3 98 98 87
RUG TAL 3.1 260 203 144 89 56 63 53 41
SBF IAL 285 227 169 118 7.2 4.3 3.5 2.7 2.2

SBF ITALREG | 28.2 206 14.3 9.7 6.1 3.9 3.2 2.5 2.0
SBF IALSYM | 26.5 223 16.2 11.1 6.7 4.1 3.3 2.8 2.1
(11)-dw

RUG 421 373 313 256 192 139 221 206 209
SBF 439 302 216 178 149 9.7 6.2 4.4 2.6
IALREG 316 21.5 125 8.0 5.6 3.7 2.9 2.2 1.6
TALSYM 31.7 24.0 135 8.5 6.1 3.9 3.2 2.5 1.8
IAL 326 239 138 8.7 5.9 3.8 3.0 2.4 1.6
SBF RUG 414 29.2 220 163 129 88 135 121 11.6
RUG_IAL 316 236 14.0 8.6 6.8 4.4 5.3 4.9 3.9
SBF IAL 40.6 223 13.1 8.1 5.8 3.7 2.9 2.2 1.5

SBF_ITALREG | 389 201 119 78 56 36 27 20 14
SBF_TALSYM | 364 225 128 79 58 38 29 22 16
(Ii)-dw

RUG 41.7 426 32.7 259 241 188 159 144 148
SBF 226 164 105 8.0 5.7 4.3 3.4 2.5 1.8
IALREG 20.8 15.5 7.8 5.0 4.7 3.5 2.8 2.3 1.8
TALSYM 19.0 14.1 6.6 5.0 4.6 3.4 2.7 2.3 1.8
IAL 21.2  14.8 7.4 5.0 4.6 3.4 2.6 2.0 1.6
SBF RUG 273 247 168 129 11.0 9.0 7.4 6.5 7.2
RUG_IAL 21.5 16.5 8.9 5.9 5.4 4.4 3.3 2.4 4.1
SBF IAL 19.1  12.7 6.2 4.4 4.3 3.1 2.3 1.8 1.5

SBF ITALREG | 18.7 13.0 6.2 4.3 4.3 3.3 2.5 1.9 1.6
SBF IALSYM | 17.6 11.9 5.5 4.3 4.1 3.1 2.5 2.0 1.5
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Table 9: Average number of evaluated solution equivalents per path for differ-
ent types of directed walks for problem instances of size 20, 30, and 40 using
a best-improvement selection strategy.

(rr)-dw  (1])-dw (I)-dw (li)-dw
Evaluations 63 174 282 1585
Ratio 1 28 45 25

is much better able to predict the class and also the exact instance than the
RUG or the combination of RUG and IAL. The downside of random walks
is that they need to be quite long and are thus unlikely to be integrated into
metaheuristics. In some ways integrating short random walks may make sense
to escape local optima, but, for instance a walk of length 2! is computationally
wasteful. Thus, random walks will likely be a method for offline analysis.

Table 10: Average problem class and exact instance rank using random walks
of various lengths (lower values are better). The row headers 7,8,9, ... denote
the length of the walk in powers of 2.

Length 2% ‘ 7 8 9 10 11 12 13 14 15 16 17 18
Class Rank
RUG 12,5 122 126 13.8 11.6 10.3 9.5 9.2 8.2 9.5 9.2 8.7

IALREG 5.2 3.6 2.9 2.6 2.2 1.8 1.6 1.3 1.4 1.3 1.2 1.2
TALSYM 5.6 3.8 2.8 2.2 2.0 1.6 1.5 1.4 1.3 1.3 1.2 1.2

IAL 6.1 4.0 3.1 2.6 2.3 1.9 1.6 1.4 1.3 1.3 1.2 1.2
ALL 6.7 5.0 3.6 3.5 2.7 2.5 2.2 1.9 1.7 2.3 2.9 3.3
Exact Rank
RUG 48.1 472  46.6 45.1 40.0 39.2 356 324 29.8 28.1 27.2 27.3

IALREG 221 144 116 9.2 7.0 5.2 4.4 3.7 3.1 2.8 2.6 2.1
IALSYM 22.8 15.0 11.8 8.8 6.7 5.2 4.4 3.7 3.2 2.8 2.6 2.1
IAL 24.7 169 128 9.5 7.4 5.8 4.6 3.8 3.3 3.0 2.6 2.2
ALL 266 206 179 149 10.6 10.7 8.9 8.3 7.0 6.7 8.0 8.8
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Table 11: Average number of evaluated solution equivalents for different types
of random walks for problem instances of size 20, 30, and 40 in comparison to

the number of paths for directed walks.

Directed Walks
Random Walk (rr)y-dw  (t)-dw  ()-dw (li)-dw
Length 2% | Evaluations Paths

7 18 0 0 0 0

8 37 1 0 0 0

9 74 1 0 0 0

10 148 2 1 1 0
11 296 5 2 1 0
12 592 9 3 2 0
13 1183 19 7 4 1
14 2367 38 14 8 1
15 4733 75 27 17 3
16 9466 151 54 34 6
17 18933 301 109 67 12
18 37865 602 218 134 24
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3.4 Integration into Metaheuristic Algorithms

So far landscape analysis has mostly been viewed as a process that is performed
either in advance of problem solving or as an additional task to gain a better
understanding. It is still a rather open topic on how landscape analysis could
be integrated into algorithms. Motivations for an integration would be to
enhance self-adaptive strategies or to provide additional insights instead of
“just” a good solution. Such insights could, for instance, help determine if
another algorithm was probably more suited to solve this instance given a
knowledge base of pas experiments. In this, rather positional and opinionated,
part of the thesis, I want to provide some thoughts and arguments which could
lead to a bigger discussion on potential research questions in this topic.
Previous approaches in landscape analysis have mostly defined new sam-
pling methods, new ways of analyzing those samples, and theoretical and em-
pirical results on which inferences are reasonable from those analyses. However,

the integration into algorithms poses additional challenges, for instance:

1. Trajectory-based methods are often greedy

2. Population-based methods often converge to highly similar solutions
3. Search dynamics may change if ELA results are reintegrated

4. The efficiency of the search may be degraded

For instance, the greediness of sampling typically used in trajectory-based
methods makes it rather difficult to observe characteristics of a random walk.
Or put in other words, it’s highly unlikely to observe a random walk as part of a
problem solving algorithm. We may however experience some form of adaptive
walks, for instance local search as an extreme example of adaptive walks. On
the other hand, local search is rather short and does not extend beyond the
local optimum. But, for instance tabu search or simulated annealing may be
viewed as performing an adaptive walk on the landscape.

Another mentioned challenge is the diversity of solutions in a population.
For instance, to perform directed walks the requirement is that solutions should
be rather dissimilar in order to experience a longer walk that crosses a larger
part of the search space. If mostly similar individuals are used can we still un-
cover relevant landscape properties? However, in a greedy replacement or se-
lection strategy as can be commonly observed in population-based algorithms,
diversity is not preserved very well. And even when diversity respectively its
loss is accounted for, e.g. as in ALPS [Hor06], the variation operators are still

applied to mostly similar individuals.
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Another challenge is how to integrate a walk into the dynamic search pro-
cess of a population-based method. For instance, should solutions found during
directed walks be used in the next variation phase of an algorithm? It could
potentially have a devastating effect by reducing diversity even faster and
thus increasing the rate of premature convergence. Even in trajectory-based
methods, adding, e.g. directed walks is not a simple task, considering that
typically only the current solution is stored. Also, if characteristics are identi-
fied, for instance a high ruggedness, how should the strategy of an algorithm
be adapted? A general answer is difficult to give and depends on the dynamics
of each algorithm (instance).

The efficiency of the search is another concern that is raised by integrating
exploratory methods into metaheuristics. The exploratory walks described
above may require a multitude of evaluations which could otherwise be used
to advance the dynamic search progress. What cost has to be paid in order
to achieve which improvement? How can the user of an optimization method
benefit from additional landcape information that may be obtained along with
the search?

The time has not yet come to provide satisfactory answers to all these
questions. Nevertheless, I hope that this thesis gives at least some insights
on how to progress with this idea. For instance, inverse directed walks may
be useful in memetic algorithms to diversify the population. Inverse directed
walks could expand the population within high quality regions of the search
space or explore into neighboring regions. Additional exploration could be
achieved by performing directed walks towards random solutions. The advan-
tage of embedding such walks is that we may obtain landscape characteristics

in addition to good solutions.
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3.5 Conclusions

In this section we explored a new kind of landscape analysis based on directed
walks which have been first introduced by myself and co-authors in [BPWA17]
and [BAWI17]. These are based on the well-known path relinking heuristic.
Several new variants of directed walks have been introduced in this thesis that
are connecting different types of points and an inverse variant was introduced
which differs significantly from path relinking. In addition, three new features
have been introduced based on the data obtained from directed walks together
with existing features. A bias was found in existing features with respect to
symmetry of up and down walks that has been described and where a remedy
is proposed. It has been shown that the effect of that bias was small however.
A larger study has been conducted on problem instances of the quadratic
assignment problem showing the accuracy of those features as a function of the
amount of data obtained. Finally, the integration of directed walks and thus
of exploratory landscape into the search dynamics of metaheuristic algorithms
has been discussed.

It is shown that directed walks bear some significant costs, potentially even
more than random walks, but may also uncover better solutions. In addition,
directed walks are able to analyze the landscape at neuralgic points such as
local optima which are usually of more relevance to a search algorithm than
an unbiased randomly sampled solution.

The main motivation for the usage of directed walks instead of random,
adaptive or up/down walks as previously introduced is their usability as part
of a dynamic search process. While certainly it may be beneficial to conduct a
random walk in order to escape some region of the search space, these are not
typically included in search algorithms or are only very short. Using typical
search operators to identify landscape feature has not yet been discussed widely
and such “landscape-aware” heuristic methods are yet to emerge on a wider
scale. The next steps would be to develop and describe such methods that are
able to identify good solutions and provide an analysis of the solution space
at the same time. In this regard [BPWA17] was a first attempt which showed
that there are still some challenges that need to be overcome and which have

been discussed in the previous section in more detail.
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“At all levels of organization life
depends on the maintenance of a
certain balance among its

factors.”

Sewall Wright [Wri32]

Assignment problems such as the ones that were described in Section 2.1
come in various forms. An assignment may be made to two groups in which
case a binary choice is made for each item, assignments may be made such
that each item is assigned to exactly one group for which the representation
of a solution as a permutation is quite efficient. Additionally, assignment may
occur such that multiple items are assigned to the same group and not all
group may receive items for which a discrete encoding needs to be used. In
this section we have chosen the quadratic assignment problem (QAP) which
is a representative of the permutation-assignment problem and its generalized
extension the GQAP to which solutions are represented in form of a discrete
encoding and for which the solution space may contain infeasible solutions.

The case studies presented here describe and analyze features of the pre-
sented problems. They consider a certain set of benchmark instances on which
the study is performed and a certain set of algorithm instances that are then
benchmarked. Those results are analyzed in that landscape properties are re-
lated to performance measures and performances among solvers is analyzed.
Finally, a combined algorithmic approach is chosen with a recommender as the
orchestrator that considers all presented algorithms and decides case-by-case,
i.e., for each problem instance, which of these algorithms is to be applied.
Finally, the performance of that combined solver is contrasted with the per-
formance of the individual solvers. We will see that this approach can lead to

improved results as the combination outperforms individual solvers.



4.1 Algorithm Selection for Solving QAPs

4.1 Algorithm Selection for Solving Quadratic
Assignment Problems

In this section I present a summary and extension of the work that has been
done by myself, Michael Affenzeller, and Stefan Wagner and has been presented
at GECCO 2017 [BAW17]|. The main contributions of this part to the state of
the art are:

1. Benchmarking and comparison of a wide range of different metaheuristics

2. Evaluation of an algorithm instance selector

The work described by Beham et al. [BAW17] was distributed such that
Beham devised the methodological approach and scope, devised and imple-
mented the algorithm instances (if not otherwise stated), chose the problem
instances used in the study, and carried out the experiments. Beham imple-
mented and carried out the landscape analysis and generated, and analyzed
the algorithm selection results. Affenzeller and Wagner both contributed with
comments, engaged in discussions, and supported the editing process of the
final text.

4.1.1 Feature Extraction

A work on algorithm selection, typically starts with a description of the fea-
tures which will be used to characterize the problem instances [Ric76]. These
have to be embedded into some vector space in order to allow relating them
to one another. Algorithm instances on the other hand are the inferred or
predicted object and thus do not require such an embedding, although we
have given some thoughts on some categorizations in Section 2. In this study,
we will consider each algorithm instance as a unique entity of which only its
performance is known.

Among the characteristics that are used in this study, we will evaluate
problem specific features which are computed as statistical measures of the
problem data, i.e. the weights and distances matrix of the QAP instances.
But also, sampling specific features are used. Among them we chose well-
known features from the literature as has been described in Section 2.3, but
also new features introduced in Section 3. Problem specific features such as
flow dominance have been suggested in the past [Stii06]. The three different
problem specific characteristics that are considered are dominance, sparsity,

and asymmetry. Given our domain for the permutation D = [1; N] and square
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matrix A = N x N dominance is defined as the coefficient of variation of the
matrix’ values a;;, see Equation (4.1). Sparsity is the relative number of cells
with a value of 0, see Equation (4.2), and asymmetry is the relative number
of symmetric pairs that are not equal (a;; # aj;), see Equation (4.3).

Dominance: _%4 (4.1)
2\
7)) €D XD | ay =0
Sparsity: {G.) € NX' N| aij = 0} (4.2)
2{(%,]) EDXD|i<j/\aij7éaﬂ}
A try: 4.3
symmetry N (N1 (4.3)

In addition we consider features from an exploratory-based approach based

on directed walks as described in Section 3.1.

4.1.2 Algorithm Instances

In the following we will introduce the algorithms and corresponding instances,
some of which have been analyzed in previous studies [BAP15], and which are
also applied in this study [BAW17]:

Robust Tabu Search (3 instances)
Standard Tabu Search (1 instance)
Variable Neighborhood Search (1 instance)
Iterated Genetic Algorithm (1 instance)
Memetic Algorithms (2 instances)
Multi-start Local Search (1 instance)

N Ot W

Random Search (1 instance)

An algorithm instance is created by choosing the respective parameter val-
ues. In this regard we chose to use not only a fixed value parameterization,
but to consider the influence of the problem dimension already in the param-
eterization. For instance, robust tabu search defines an aspiration condition
for which it is a priori meaningful to consider longer aspiration conditions for
larger problems. We define to scale this parameter with the dimension using
a constant factor as weight.

If an algorithm is prone to terminate or converge without exploiting the

computational budget, we chose to implement an independent restart strategy.
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This is often much less of a problem in practical applications when time is a
severely limiting factor, but is common in benchmark scenarios when the con-
vergence behavior is analyzed in more detail. For example, genetic algorithms
converge after a certain number of generations and then continue running, but
with mutation being the most important contributor to the variation process.
At the same time, mutation is applied with low probability, thus the search pro-
cess beyond convergence is somewhat inefficient. In preliminary experiments
on the quadratic assignment problem convergence was observed within a few
hundred generations. Thus, the iterated genetic algorithm makes use of inde-
pendent restarts until the computational budget is exploited. The best quality
achieved in any of the restarted runs is considered the algorithm’s result. Thus
all algorithm instances achieve the same number of evaluated solutions, which
is the runtime measure on which they are compared against.

All algorithm instances in this study have been implemented in C# using
the .NET Framework 4.5 and the HeuristicLab 3.3.13 optimization environ-
ment. Implementing the algorithms in one framework facilitates testing and

benchmarking in that there is a common interface to running each algorithm.

Robust Tabu Search

Robust tabu search (originally called robust taboo search) (RTS) was in-
troduced by Taillard [Tai91]. It is aimed to avoid the cycling effect of standard
tabu search which can be easily observed with very small tabu lists. Due to the
deterministic nature of tabu search (exhaustive neighborhood generation and
greedy neighbor selection) the tabu search trajectory may return to previously
visited solutions in a cyclic way. It can only escape such a cycle when the tabu
list is changed in size or some other forms of aspiration or additional memories
perturb the trajectory.

A description of the algorithm is given in Algorithm 5. In the implementa-
tion used in this study the originally proposed random choice of tabu tenure
in an interval is not used, but the strategy published as code on the author’s
website® has been employed. In RTS the tabu tenure is chosen randomly each
time a move is made. However, the most important new aspect concerns the
introduction of an “alternative aspiration condition” that is aimed to greatly
diversify the search as a kind of long-term memory. This aspiration condition
prioritizes moves that have not been observed in a long time. In preliminary

experiments the distribution parameter of the tabu tenure showed less of an

Shttp://mistic.heig-vd.ch/taillard/codes.dir/tabou_qgap2.c
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effect on the performance and was set maxtenure = 200. However, the alterna-
tive aspiration condition aspfactor, i.e. the iterations before a move becomes
interesting, showed a strong effect on the performance. Thus, we created three
instances and included them in the benchmark:

1. RTS-noasp where aspfactor = oo
2. RTS-20D where aspfactor = 20
3. RTS-100D where aspfactor = 100

Under the setting of aspfactor = oo the aspiration condition does not come
into force and the trajectory is akin to an adaptive walk on the fitness land-
scape. Only the tabu tenure affects the path and contributes to a diversification
of the search. We will see later that this parameterization provided good re-
sults overall. For larger dreXX instances RTS-noasp was the only algorithm
instance to achieve the targets.

In general tabu search is a rather low-level heuristic as can be observed in
the description of Algorithm 5. The tabu and aspiration conditions are highly
complex and the data structure of the tabu “list” also affects the implementa-
tion. In addition, as the tabu list holds often the changes rather than the full
solutions, it is bound stronger to the defined neighborhood. It is thus more
difficult to provide an abstract definition compared to other algorithms. Tabu
search, does not make use of variation heuristics, except an initial solution
generation and is performant due to an efficient delta computation of a move’s
fitness. However, an abstract definition can be achieved on the notion of move
and neighborhood. Nevertheless, the data structure of the tabu list is related
to the move and is more difficult to generalize. In the case of the implemented
algorithm, the tabu list has been implemented as a symmetric matrix that

records the last iteration at which two cities (indices) have been swapped.

Standard Tabu Search

A “standard” tabu search was implemented using a fixed tabu tenure that
was set to a factor of three of the problem dimension. A pseudo code de-
scription is given in Algorithm 6. A simpler aspiration criterion was defined
which allows reverting a move (swapping two cities into places they both oc-
cupied already) when the solution’s quality would be better compared to the
quality recorded at the time the move was added to the tabu list. Thus, an

additional list is used that stores the quality that a future move that reverts
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Algorithm 5 Robust Tabu Search for QAP, adapted from [Tai9l]

1: procedure RTS(] dim, | aspfactor, | maxtenure)

2: asp <« dim - aspfactor
3: tabulist;; < — [dim * (¢ + 1) + j + 1] Vi, j € [1..dim]
4: iter < 0
5: sol +— Sample()
6: fit, bestfit < Evaluate(sol)
7 while not Terminate() do
8: aspired + False
9: next < (0,0)
10: nextfit < oo
11: for i €[1,2,...,dim — 1] do
12: for j€i+1,i+2,...,dim] do
13: q <+ fit + DeltaFit(sol,, )
14: a < tabulist;; < iter A tabulist;; < iter
15: b < tabulist,;; < iter — asp A tabulist;; < iter — asp
16: ¢ < q < bestfit
17: if [(bV ¢) A —aspired] V [(bV ¢) A aspired A ¢ < nextfit]
18: V (a A —b A —¢ A —aspired A ¢ < nextfit) then
19: next < (4, 7)
20: nextfit « ¢
21: if bV ¢ then
22: aspired < True
23: end if
24: end if
25: end for
26: end for
27: if next # (0,0) then
28: (,7) < next
29: (r,s) < (Rand(]0;1]),Rand(]0;1]))
30: tabulist;; < iter + 73 . maxtenure
31: tabulist;; < iter + s% - maxtenure
32: Swap(sol, 4, j)
33: fit < nextfit
34: bestfit <— Minimum(fit, bestfit)
35: end if
36: iter «— iter + 1

37: end while
38: return (sol, fit)
39: end procedure
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this change has to surpass. In addition, the standard aspiration criterion of an
improvement to the best found so far is also enabled.

The STS algorithm is mostly deterministic, as is common for tabu search,
except for a random tie breaking when two or more of the best moves in the
neighborhood would achieve the same fitness. In that case each move is chosen
with the same probability. It also includes a somewhat less-standard element
in that neutral moves are rejected. In some QAP instances moves may not
make any change to the fitness function and would be preferred over a deteri-
orating move. These plateaus may however be quite large as we have seen in
Section 3 and exploration of such plateau is inefficient due to the random move-
ment. Thus, this STS implementation prefers a deterioration over a movement
within the plateau. The tie breaking ensures that plateaus are entered in a
random location, thus the search moves rather along the edge of the plateau.

Variable Neighborhood Search

Variable neighborhood search (VNS) algorithms are a family of local search-
based metaheuristics [MH97]. As has been described in Section 2.2.4 VNS
algorithms alternate between local search and random perturbation of the so-
lution. In the perturbation phase multiple different or growing neighborhoods
are applied. The neighborhood is changed or grows when the algorithm is
repeatedly unsuccessful in obtaining better solutions. In our implementation
VNS is elitistic and thus bases the search on the best solution found so far.
The local search used in this study is based on an exhaustive enumeration of
the swap2 neighborhood. In the perturbation phase k-swaps are performed
where £ is the strategy parameter that is increased by VNS. A maximum of
half the problem dimension was chosen.

A pseudocode description is given in Algorithm 7. The algorithm is less
complex to describe than tabu search, but Swap2Localsearch also bears some
complexity that is described in Algorithm 18 in the appendix. Essentially, it
performs a best-improvement local search and stops when no improving move

in the neighborhood is possible.

Iterated Genetic Algorithm

The genetic algorithm (GA) instance was set to use 1l-elitism, a population
size of 500, 15% mutation probability (swap2), partially-matched crossover
(PMX) [Fog&8|, and tournament selection (group size 3). Convergence is of-
ten very fast and running a genetic algorithm past the point of convergence is
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Algorithm 6 Standard Tabu Search for QAP

1: procedure STS(] dim, | tenurefactor)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

tenure < dim - tenurefactor
sol < Sample()
tabulist;; < if sol[i] = j then 0 else —tenure end
history < []
iter <+ 0
fit, bestfit <~ Evaluate(sol)
while not Terminate() do
next + (0,0)
nextfit < oo
count <1
for i €[1,2,...,dim — 1] do
for jei+1,i+2,...,dim] do
q + fit + DeltaFit(sol,, )
if ¢ = fit then continue end
(r, 8) < (sol[j], sol[i])
istabu < tabulist;, > iter — tenure V tabulist;; > iter — tenure
(b, ¢) + (iter — tabulist,,., iter — tabulist;)
aspired < bestfit > ¢ V history[b] > ¢ V history[c] > ¢
if (—istabu V aspired)
A g < nextfit V (¢ = nextfit A Rand([0; 1[) - count < 1)] then
if ¢ = nextfit then count < count + 1
else if ¢ < nextfit then count + 1 end
next < (i, 5)
nextfit < ¢
end if
end for
end for
if next # (0,0) then
(i,7) < next
(r,8) < (sol[j],sol[d])
tabulist,,., tabulist ;5 < iter
Add(history, Minimum(fit, ¢)) > Prune to length tenure
Swap(sol, i, 5)
fit < nextfit
bestfit < Minimum(fit, bestfit)
end if
iter < iter +1
end while
return (sol, fit)

41: end procedure
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Algorithm 7 Variable Neighborhood Search for QAP

1: procedure VNS(| dim, | nbhoodfactor)
2: K + dim - nbhoodfactor

3: sol <— Sample()
4: (iter, k) < (0,0)
5: fit < bestfit + Evaluate(sol)
6: while not Terminate() do
7 p < Swapk(sol, k)
8: (s,sfit) «+ Swap2Localsearch(dim, p)
9: if sfit < fit then
10: (sol, fit) < (s, sfit)
11: k<+0
12: else
13: k< k+1 mod K
14: end if
15: bestfit +— Minimum(fit, bestfit)
16: iter < iter +1

17: end while
18: return (sol, fit)
19: end procedure

inefficient. In this study the algorithm runs for a fixed number of 200 gener-
ations. Then it is restarted with a fresh population. This so called “iterated”
algorithm continues to run until the total number of evaluated solutions has
been used up. A pseudo code description is given in Algorithm 8.

Memetic Algorithm

The memetic algorithm (MA) introduced in [MEF97] as “Genetic Local
Search (GLS)” and later published in [MF00] builds upon a tighter integration
of crossover and local search. A crossover operator typically retains the infor-
mation when both parents agree on a certain allele, but randomly chooses one
in case of a disagreement. The local search phase of GLS is restricted to only
those positions where the crossover found the parents in disagreement, thus
exploiting only a restricted search space. The instance is configured to use a
population size of 100. Per generation 50 crossovers and 20 mutations (rever-
sal of a range within the permutation) are performed. The local search uses
the swap2 neighborhood in the reduced sub-space given by the two parents.
A pseudocode description is given in Algorithm 9 and follows [MEF97, MEOO].
The method DiversitySelect keeps the best unique solutions. The imple-

mentation is described in the appendix in Algorithm 19.
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Algorithm 8 Iterated Genetic Algorithm for QAP
1: procedure GA(| popsize, | mutprob, | maxgen)

2: pop < Sample(popsize) > Initialize the population
3: best < BestOf(pop)

4: while not Terminate() do

5: for gen in 1..maxgen do

6: parents < TournamentSelect(pop) > 2 - (popsize — 1)
7 nextgen <— PMX(parents) > Partially-Matched Crossover [Fog8§]
8: Swap2(nextgen, mutprob)

9: nextgen < BestOf(pop) > Add elite solution
10: pop < nextgen

11: Update(best, pop)

12: end for

13: pop < Sample(popsize) > Reinitialize
14: end while

15: return best

16: end procedure

Iterated Memetic Algorithm

Another variant of a general memetic algorithm is used that builds upon
the iterated genetic algorithm described above. Instead of a low-probability
random mutation within the swap2 neighborhood, it uses a full local search in
that neighborhood. Because this operation is quite expensive a smaller popu-
lation size of only 50 individuals is used. Elitism is not used and a linear rank
selection is used during parent selection. Convergence is detected when worst
and best quality are equal in which case the algorithm is restarted with a new
population of local optima derived from an equal number of randomly drawn

samples from the whole solution space. A pseudo code description is given in
Algorithm 10.

Multi-start Local Search

Multi-start local search uses the aforementioned local search from randomly
sampled starting solutions. The repeated application of local search from many
different points in the search space is presumed to be effective if there is a high
probability that the global optimum is located in a larger basin of the search
space or when local optima are scattered in the search space. The algorithm
is shown in Algorithm 11.
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Algorithm 9 Genetic Local Search for QAP [MFEF97]
1: procedure GLS(] dim, | #crossovers, | #mutations)

2: pop < Sample() > Initialize the population
3: nextgen < []

4: for p in pop do

5: nextgen <+ Swap2Localsearch(dim, p) > Add to next generation
6: end for

7 (pop, nextgen) < (nextgen, [])

8: while not Terminate() do

9: for c in 1..#crossovers do

10: (p1,p2) < Select(pop)

11: (0,info) < DPX(p1, p2) > Diversity preserving crossover [MF97]
12: nextgen <+ Swap2Localsearch(dim, o, info)

13: end for

14: for m in 1..#mutations do

15: p + Select(pop)
16: 0 + Mutate(p)
17: nextgen "+ Swap2Localsearch(dim, o)
18: end for
19: (pop, nextgen) «+ (DiversitySelect(pop, nextgen),[])

20: end while
21: return pop
22: end procedure

Algorithm 10 Iterated Memetic Algorithm for QAP

1: procedure GA+LS(] dim, | popsize)
2: sample +— Sample(popsize) > Initialize the population

3: best < BestOf(sample)

4: while not Terminate() do

5: pop « Swap2Localsearch(dim, sample)

6: best + BestOf(pop)

T while not Converged() do

8: parents < LinearRankSelect(pop) > 2 - (popsize)
9: offspring <+ PMX(parents) > Partially-Matched Crossover [Fog8§]
10: nextgen < Swap2Localsearch(dim, offspring)

11: pop < nextgen

12: Update(best, pop)
13: end while
14: sample < Sample(popsize) > Resample
15: end while
16: return best

17: end procedure
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Algorithm 11 Multi-start Local Search for QAP

1: procedure MLS(| dim)
2: sol + Sample()
(bestsol, bestfit) < Swap2Localsearch(dim, sol)
while not Terminate() do
(sol, fit) < Swap2Localsearch(dim, Sample())
if fit < bestfit then
bestfit + fit
bestsol <+ sol
end if
10: end while
11: return (bestsol, bestfit)
12: end procedure

Random Search
Random search draws random samples from the solution space with repe-
tition. It remembers the best solution that it has sampled.

4.1.3 Benchmark Data Generation

For this study a total of 47 problem instances were used from the QAPLIB
[BIKRI7], microarray instances [dR06], Drezner’s [DHTTO05|, and Taillard’s
symmetrical and structured QAP instances®. The instances used in the study
were chosen such as to include two or more that are alike and with similar
or a progressing dimensionality in order to simulate prior knowledge in form
of a similar instance present in the database [BAW17]. The instances els19,
esc32a, had20, kra32, and nug30 did not have a similar counterpart. All chosen
problem instances are shown in Table 14 on page 119.

4.1.4 Benchmark Performance Analysis

The performance of metaheuristic algorithms can be measured along multiple
dimensions as outlined in Section 2.5 on page 47. In this study we consider two
measures: (1) the quality of the solution and (2) the runtime of the algorithm.
While the first is simply the solution value, respectively the deviation to the
best-known solution value, the second performance bears more complexity.

When runtime is measured by the elapsed time measured by the so called

Shttp://mistic.heig-vd.ch/taillard/problemes.dir/qap.dir/qap.html
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“wall clock” a fair comparison would require that the experiment is performed
on the same hardware and under the same load. In addition, implementation
details would become relevant as the efficiency of the implementation greatly
determines the elapsed wall clock time. To conduct the thousands of runs
necessary for this study a heterogeneous cluster was available for distributed
computing of the individual runs. Thus it was decided to use the amount
of evaluations as a measure of the runtime. Nevertheless, using evaluations
as measure also requires some considerations. Some of the algorithms make
use of an efficient delta calculation to determine the fitness which takes less
time to evaluate. It was thus decided to use evaluated solution equivalents
hereafter simply denoted as “evaluations”. These are computed by regarding
the fitness function as a summation of NV - N products. A delta calculation
that requires to recompute only 4 of these products [Tai91] is thus equivalent to
4/(N - N) solution evaluations, otherwise put, a full neighborhood evaluation
(neighborhood size is (V- N)/2) is equivalent to 2 full solution evaluations. In
the experiment however sometimes more sums need to be recomputed and it
is always tracked exactly how many of these operations are performed.

The basis for all comparisons is the convergence graph that needs to be
stored in every run. This graph is monotonic and records the timepoints at
which an improving solution is available as well as the quality of that solution.
Based on this data one can attempt post-hoc analysis using fized-budget and
fixed-target comparisons as described in Section 2.5 on page 47.

In Figure 24 the performances of all algorithm instances described in Sec-
tion 4.1.2 can be compared across all benchmark instances for the 1% target.
This target means that the solution has to be at most 1% worse than the best-
known quality for the respective problem instance. It is visible that among
all intances the tabu search variants are dominating for small to medium run-
lengths, but that for larger run-lengths the genetic algorithms and variable
neighborhood starts to dominate. An overall well-performing configuration is
RTS-ASP100D which is “outperformed” after about 200,000 evaluations by the
iterated memetic algorithm. However, to conclude that the other algorithms
are not useful is wrong based on this picture. For individual problem instances
different algorithm instances are effective. In Figure 25 the results show that
RTS-noasp and to a lesser degree STS-3D may solve the dre56 problem instance
to the 1% target within the given limit of solution evaluations. In comparison
in Figure 26 neither RT'S-noasp and STS-3D found the 1% target once in 20

runs.
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of different algorithm instances for the 1% target on the benchmark problem set. [BAW17]
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Figure 25: Runtime analysis of different algorithm instances for the 1% target
on the dre56 problem instance.
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on the tai45e01 problem instance.
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Figure 27: Runtime analysis of different algorithm instances for the 1% target
on the lipab0a problem instance.

On some instances, a clustering of the algorithm instances can be observed
while others show a more pronounced ranking. For instance, as shown in
Figure 27 in lipab0a tabu search variants perform best, followed by VNS and
the iterated memetic algorithm, again followed by the memetic algorithm and
the multi-start local search. In comparison, on the nug30 instance there is
a clear progression of algorithm instances as seen in Figure 28. This has
implications when considering algorithm selection. In the case of the lipab0a
we would be satisfied to get recommended one of the top three algorithm
instances. In the evaluation of the recommendation it was thus decided to
group these instances into performance classes as will be detailed later.

In Figure 29 we show a correlation analysis of the algorithm instances’
performance in terms of the expected run time measured in evaluated solutions
equivalents. There is some notable correlation among the solvers though and
easier instances require less effort overall. This is a nice property, nevertheless,
there is no clear indication of what is a simple instance. One would assume
that this observed correlation is due to problem dimension influencing the
algorithm performance of all solvers. However, dimension only explains some
variation as the first column in Figure 29 shows and there are instances as

small as size 19 which are very hard for some instances as well as those of sizes

108



4 ALGORITHM SELECTION CASE STUDIES

= RS = |terMA RTS-20 === RTS-100 === RTS-NO === STS VNS IterGA
=== MA/GLS === Multi-LS

1.
aﬁo MA/GLS ItetGA

RT, 100 It x/IA RT.
i
ti-

STS VNsr

0.8t

06T

041

0.2+

Probability to be at most 1% worse than best

RS
0 —
100 1000 10000 100000 1000000 10000000 100000000

Evaluations

Figure 28: Runtime analysis of different algorithm instances for the 1% target
on the nug30 problem instance.

close to 100 that are still rather easy to solve for some. The figure shows on the
lower left diagonal a scatter plot of the log;,(ERT) performance values where
ERT stands for expected run time. On the upper right diagonal the respective
Pearson’s correlation coefficient R? is shown. In the case of an ERT value of

00, logy,(ERT) = 10 was chosen.

4.1.5 Recommendation Algorithms

As a recommender we chose a k-nearest neighbor-based algorithm (k-NN)
which calculates distances among the features using the L2-norm. The features
are normalized to 0 mean and unit variance in order not to bias the distance
towards features with greater range. Normalization parameters are estimated
from training instances only and applied to the new problem instances.

K-nearest neighbor algorithms are instance-based algorithms that do not
require training. Its performance is influenced by the hyperparameter £ € N
that can be said to control the generalization. The higher k the more instances
will be considered to determine the regression value or class label. But also
the set of features that comprise distance has a strong influence on the perfor-
mance of the recommender.
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Figure 29: Correlation analysis of the algorithm instances’ expected runtime
measured in number of evaluations and given as log,,(ERT) when applied to
the benchmark data set. The problem dimension has been linearly rescaled to
fit into the range from 1 to 10.
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The output of the recommender should be a ranking of algorithm instances
and potentially an estimation on their runtime to achieve a certain target or
an estimation of the target given a certain budget. If neither are given it is
possible to average between a set of targets and budgets. For this study we
will assume that a fixed target is given by the user and algorithms should be
recommended that achieve that target in shortest time.

The ranking of each algorithm instance is determined by the observed rank-
ings of the k closest problem instances. In the described experiment, a new
ranking will be created by averaging the observed ERT values in each of the
problem instances and sorting the algorithm instances by that average ERT.

A small expected runtime will lead to a better rank than a higher runtime.

4.1.6 Evaluation

We will perform two tests in this study. In the first test, we will evaluate the
quality of the exploratory landscape approach to identify the correct problem
instance similar to the tests performed in Section 3.3.2 on page 80. In this
test we aim to identify how much effort has to be spent such that the features
uniquely identify a certain problem instance within the chosen benchmark set
(similar to the analysis performed in Section 3). Of course it is assumed
that this becomes better the more samples we obtain. In the second test,
the performance of the recommender that is applied to solve the algorithm
selection problem is evaluated on the set of benchmark instances using leave-
one-out (LOO) crossvalidation. Thereby, each of the instances is excluded from
the training set and treated as if it was previously unknown. A ranking and
recommendation is then obtained given the other instances and the observed
performance. This ranking is then compared to the actual ranking that was
observed in the test instance. Repeating this for all instances then gives us an
estimator on the quality of the recommender.

As has been mentioned before we observe a clustering of algorithms’ perfor-
mances. To a user, it is important to obtain one algorithm out of that cluster,
but not exactly which. Thus, the algorithm instances will be clustered into six
classes for each problem instance. Given the assumption of a pre-defined target
quality by the user, the clustering is concerned with the runtime performance
dimension. There exist efficient clustering algorithms such as Ckmeans.1d.dp
for 1-dimensional k-Means that we employ in this study [WS11a]. Again, we
use the log,,(ERT) performance values [[1S98, AT05]. The log-transformation
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is more akin to the users’ needs, because the difference in log values translates
to a quotient of the actual values. Thus, the clustering considers distances
which can be interpreted as “n times faster” (cf. Section 2.5 on page 47).
If however the user fixed the budget instead of the target, then the cluster-
ing would be performed on the performance measure in the solution quality
domain for which an appropriate transformation is a priori more difficult to
justify. A log-transformation might not be desired in such a case and may not
even be mathematically possible, e.g. in case of non-positive quality values.
In this study it is assumed that only the target quality value is fixed.

After Ckmeans.1d.dp is finished the clusters are sorted by their centroids
and the class values 1 to 5 are assigned in this order. In the obtained ranking

21d hest instances and so

class 1 holds the best algorithm instances, class 2 the
on. Class 6 is special and contains algorithm instances that failed to achieve
the x% target quality in any run. Their ERT would be oo and they are
thus put in their own class. While algorithm instances from class 1 to 5 are
generally usable, but with decreasing efficiency, algorithm instances of class 6
are unsuitable and should not be recommended.

We attempt to evaluate the recommender algorithm in this described set-
up. The n best-ranked algorithm instances for each problem instance are
determined and compared with the actual rankings. It has to be mentioned
however, that for some problem instances only a single algorithm instance
achieved the target quality. Thus for a setting of n > 1 the recommender

includes unsuitable instances in its suggestion.

4.1.7 Recommendation Performance Measures

We use the normalized discounted cumulative gain (NDCG) and Kendall’s 7
to evaluate the performance of the proposed recommender. NDCG [JK02] is
a measure from the field of information retrieval. In our case, it describes the
reward or gain of having a certain algorithm instance in a certain rank. Lower
ranked algorithm instances are discounted and do not provide the same gain
as a higher ranked document. The normalization is performed by dividing
the observed discounted cumulative gain (DCG) with the optimal or ideal
discounted cumulative gain (iDCG). The latter would rank each document
exactly as it should be ranked according to maximize gain. This results in a
number between 0 (bad ranking performance) and 1 (good performance). The
NDCG is often limited to the highest ranked n documents and then denoted
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as NDCG,,. Translated to the recommendation of algorithm instances, the
documents correspond to the instances and the observed performance is the
basis for the desired ranking.

Kendall’s 7 [I[{en38] is a rank correlation value. It considers a combination
of all unique pairs (z;, y;) and (x;, y;) in two rankings X and Y and is described
as the ratio between the difference of “agreeing” and “disagreeing” pairs and the
total number of pairs. In an agreeing pair, both x; and y; are ranked higher or
lower than z; and y;, otherwise it is considered a disagreeing pair. Kendall’s
7 falls within the range [—1;1] where -1 indicates two rankings are exactly
opposite and 1 indicates they are exactly equal. A value of 7 = 0 indicates no

correlation.

4.1.8 Analysis of the Accuracy of Exploratory Landscape Features

In the first part of the results we show the ability to correctly re-identify the
problem instances in a similar way as was shown in Section 3.3.2 on page 80.
This analysis should answer the question of how many effort needs to be de-
voted to (offline) landscape analysis in order to achieve a robust estimate of its
features. The robustness in this case is analyzed in terms of the average rank
that a certain landscape is observed in when comparing the Euclidean distance
of the feature vector obtained during training compared to that obtained dur-
ing test. Due to the stochastic method of exploratory landscape anaylsis each
time a slightly different feature vector is obtained.

In Table 12 we evaluate the ranking based on a baseline of 200 paths.
This means that we obtain the features sharpness, bumpiness, and flatness
(introduced in Section 3.2 on page 71) of all involved problem instances in
the study using 200 paths (training set). Then we take each problem instance
and compute the features again using different seeds and rank the training set
according to the Euclidean distance to the new vector. The obtained rank is
recorded. Ideally, this rank has to be 1, but when instances are more difficult
to identify another instance might be closer and thus a higher rank may be
observed. We produce an average over all problem instances and thus obtain
the strength of the number of paths involved. This process is then repeated 5
times and again an average is obtained. The results are shown in Table 12.

The results in Table 12 show that the given problem instances are dis-
cernible using the features and given about 100 paths which is still computa-
tionally challenging.
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Table 12: The average rank over 5 repetitions is shown using the three features
sharpness, bumpiness, and flatness with a training effort of 200 paths and a
varying test effort as shown in the columns. [BAW17]

Paths
5 10 | 20 | 50 | 100 | 200
Average Rank | 82 | 7.3 4.6 (2719 |14

4.1.9 Analysis of a k-Nearest Neighbor Recommender

The results of the recommendation measures are given in Table 13. It can
be seen that good NDCG,, values can be achieved. The table shows the recom-
mender performance for different relative target values. The values vary some-
what between different targets and a simple progress may not be observed.
Rankings need however not be stable across the target values. An algorithm
that is first to reach target X may reach target Y rather late. Additionally, a
closer target such as 1% or even the optimum at 0% deviation can lead to situ-
ations where most algorithm instances fail and the performance classes become
densely populated. Target values closer to the optimum lead to harder recom-
mendation problems as the number of algorithm instances that may achieve
those targets becomes much smaller. The results in Table 13 suggest that
for recommending three algorithm instances (NDCG3) good recommendations
can be achieved for a 5% target. For this target we observe that there were
18 (37.5%) cases where only a single algorithm instance was in rank 1.

Figure 30 shows a comparison of different algorithm instances as they per-
formed on the benchmark instances, while Figure 31 shows the performance
classes of RTS without aspiration with varying target levels from 0% (opti-
mum) to 10% deviation. The results show that there is one range of instances
(the taiXXe instances) that are not suitable for RTS without aspiration. As
Figure 30 shows these may be solved quite well with VNS. The combination
of RTS and VNS seems to form a successful team where one solves instances
that the other is not so good at and vice versa.

A detailed and closer look at the exact recommendation when three algo-
rithm instances are to be recommended for the just mentioned setting is given
in Table 14. The results indicate that the recommender can achieve the best
possible recommendation for 26 out of 47 problem instances (55%). In the re-

maining 21 problem instances, algorithm instances of class 6 were part of the
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Figure 31: Performance classes for the 0%, 1%, 5%, and 10% target for RT'S-noasp (left to right, top to bottom). Each
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dot represents a problem instance projected from problem specific feature space with t-sne.
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4 ALGORITHM SELECTION CASE STUDIES

recommendation only for three instances (dre56, lipa50b, tail25e10). These
algorithm instances are unsuitable because they were not able to achieve the
desired target level within 100,000,000 evaluations in any of the observed runs.
In other cases unsuitable instances had to be recommended because there
were less than three suitable algorithm instances. Also, in the 21 problem
instances that are not recommended perfectly, no algorithm instance of class
1 was recommended only three times (had20, tai20b, tail00b). For 18 prob-
lem instances, and thus in total for 44 out of 47 (93.6%) problem instances,
algorithm instances of class 1 were part of the recommendation.

Analyzing the correlation of all recommended algorithm instances we have
to turn to Kendall’s 7 in Table 13. The problem specific characteristics
achieved the best possible rankings, with second being the features introduced
in Section 3 and third being that of random walks with 10,000 iterations.

In the best possible scenario as shown in Table 13 we take a closer look
at the performances of each individual solver in comparison to the combined
solver using a one nearest neighbor recommender. Table 15 shows the relative
number of problem instances for which each algorithm instance achieved which
rank. As can be seen the recommender for this target performs very well and
better than any of the individual solvers both in the number of instances where
it achieves rank 1 and the number of times that it failed. For the harder 1%
target we can observe in Table 16 that the combined, portfolio-based approach
still outperforms any individual solver. Again the problem specific features
have been used.

In Figure 32 we observe the best performances of algorithm instances in the
QAP benchmark set. Each dot represents a problem instance and its associated
best performing algorithm instances - in case multiple dots are stacked inside
each other.
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4.1 Algorithm Selection for Solving QAPs

Table 13: The resulting performance measures evaluated for a varying num-
ber of ranked algorithm instances. The number n denotes that performance

measure if only the top n ranked algorithm instances are taken into account.

[BAW17]

NDCG,, Kendall’s T
1 |2 [3 4 [5 |6
Sharpness, Bumpiness, Flatness (200 paths)
0% 0.78 1 0.84 | 0.87 | 0.89 | 0.90 | 0.90 | 0.65
1% 0.80 | 0.80 | 0.85 | 0.85 | 0.86 | 0.87 | 0.61
5% 0.86 | 0.85 | 0.88 | 0.90 | 0.90 | 0.90 | 0.65
10% 0.83 1 0.85]0.89| 091|091 0.91 | 0.61
20% 0.80 | 0.81 | 0.86 | 0.87 | 0.88 | 0.89 | 0.58
Dimension, Sharpness, Bumpiness, Flatness (200 paths)
0% 0.80 | 0.86 | 0.88 | 0.90 | 0.90 | 0.90 | 0.62
1% 0.82 |1 0.83 | 0.86 | 0.86 | 0.87 | 0.88 | 0.62
5% 0.88 | 0.87 | 0.89 | 0.90 | 0.90 | 0.91 | 0.65
10% 0.86 | 0.87 | 0.91 | 0.92 | 0.92 | 0.91 | 0.61
20% 0.80 | 0.83 [ 0.88 | 0.89 | 0.89 | 0.89 | 0.57
QAP specific characteristics
0% 0.77 1 0.79 | 0.83 | 0.86 | 0.86 | 0.87 | 0.67
1% 0.7710.80 | 0.83 | 0.85 | 0.87 | 0.88 | 0.63
5% 0951094 (0931094 |0941|0.94 | 0.72
10% 0.93 10921093093 ]093]|0.94 ] 0.70
20% 0.89 | 0.90 | 0.92 | 0.92 | 0.92 | 0.92 | 0.68
Random walk characteristics (10,000 iterations)
0% 0.72 1 0.77 1 0.79 | 0.81 | 0.82 | 0.83 | 0.53
1% 0.69 | 0.72 | 0.74 | 0.76 | 0.78 | 0.79 | 0.52
5% 0.86 | 0.84 | 0.84 | 0.86 | 0.86 | 0.87 | 0.57
10% 0.86 | 0.85 | 0.86 | 0.87 | 0.89 | 0.89 | 0.59
20% 0.83 1 0.820.84 | 0.85| 0.87 | 0.87 | 0.56

Target
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4 ALGORITHM SELECTION CASE STUDIES

Table 14: Result of the recommendation. In each cell “X/Y” indicates that
X out of Y algorithms in that class have been recommended. Bold problem
instances indicate the best recommendation has been achieved. [BAW17]

Problem Instance Performance Classes 5% target

1 2 3 4 5 6
bur26a 3/4 | -/2 | -/2 |-/1|-/1
bur26d 3/4 | -3 | -/1|-/1 |-/
chr20a 2/3 | 12 | -2 | -1 | -1 | -1
chr20b /1 |12 |12 | -3 | -/1 | -1
chr20c 13 | 172 | -2 | -1 | 11 -1
dre24 3/3 | -/1 /1| -/2 | -/1 | -/2
dre30 2/2 | 1/1 | -/3 | -/1 | /1 | -2
dre56 /1 | -/1 | -/1 2/7
dre72 1/1 2/9
drel10 1/1 2/9
els19 13 | 1/2 | -1 | -2 | 11 ] -1
esc32a /1 | 1/4 | -/1 | -/1 | 1/2 | -/1
had20 /4 |23 | -1 11| -1
kra32 2/2 | /3 | 1/2 | -/1 | -/1 | -1
lipa20a 3/4 | -2 | -1 |-/2 |-/
lipa20b 1/1 | 2/3 | -/3 | -/1 | -/1 | -1
lipa50a 2/6 | -/1 1/2 | -/1
lipa50b 2/3 | -/2 | -/1 | -/1 | -/1 | 172
lipa90a 3/6 | -/1 -/2 | -/1
lipa90b 1/1 | 2/3 | -/1 | -/1 | -/2 |-/2
nug30 12 | 1/2 | 1/3|-/1|-/1|-/1
RAND-S-6x6-...bl 2/3 | -/2 | 1/2 | -1 | -1 | -1
RAND-S-8x8-...ci 3/4 | -/2 /1| -/1 | -/1 | -/1
RAND-S-10x10-...bl 4 | -/ | 11| -1 |11 -2
RAND-S-12x12-...ci | 3/4 | -/2 | -/1 | -/1 | -/1 | -/1
sko56 3/4 | -/2 /1| -/1 | -/1 | -/1
sko90 3/4 | -2 | -1 |1 |-/1 -1
tai20a 3/4 | -/2 | -1 | -1 | -1 |-
tai20b -/1 1/2 1/3 | 1/3 | -/1
tai50a 3/4 | -1 | -2 |-/1|-/1 |-
tai50b 13 | 172 | 12| -1 | -1 | -1
tail00a 3/4 | -2 | -/1 | -/1|-/1 -1
tail00b 2 |13 11| -1 | 12 | -
tai27e01 2/2 | 1/2 | -/2 | -/1 | -2 | -1
tai27e10 2/2 [ 1/1 | -2 | -/1 | -/3|-/1
taid5e01 11 |12 | 11| /1 | -/1 | -/4
taid5e10 11 | 172 | 11| /1 |-/ | -/4
tai75e01 1/1 | 1/1 | -1 | 11 -/6
tai75e10 /1 | 11 | -1 | 11 -/6
tail25e01 1/1 | 1/1 1/8
tail25e10 1/1 | -/1 2/8
tail75e01 1/1 | 1/1 1/8
tail75e10 1/1 2/9
tai343e01 1/1 2/9
tai343el0 1/1 2/9
wil50 3/4 | -/2 | -1 | -/1 | -1 -1
wil100 3/4 | -2 | -1 |1 |-/1 -1
Recommended 80 24 11 4 5 17
Total 119 79 59 45 40 128
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4.1 Algorithm Selection for Solving QAPs

Table 15: The combined solver given the one nearest neighbor achieved better
performance than the individual solvers for the 5% target.

Alg.Inst 15t gnd  grd gth 5th gth
Combined  92% 2% 2% 0% 2% 2%
STS 58% 4% 0% 0% 10% 25%
RTS-NOASP 50% 15% 2% 2% 8% 21%
RTS-100 4% 17% 6% 10% 2% 19%
RTS-20 35% 15% 15% 4% 0% 29%
VNS 25% 38% 21% 6% 2% 6%
IterMA 7% 1% 10% 25% 17% 12%
MLS 12% 44% 6% 8% 4% 23%
MA /GLS 6% 15% 50% 8% 2% 17%
IterGA 0% 0% 6% 27% 33% 31%

Table 16: The combined solver given the one nearest neighbor achieved better
performance than the individual solvers for the 1% target.

Alg.Inst 15t gnd  grd  gth 5th gth
Combined 53% 23% 4% 2% 2% 15%
RTS-NOASP  42% 10% 4% 8% 4% 29%

STS 0% 10% 6% 0% 8% 33%
RTS-100 29% 23% 6% 6% 4% 29%
VNS 25% 27% 1% 8% 6% 15%
IterMA 19% 23% 15% 15% 4% 23%
RTS-20 15% 19% 6% 8% 8% 42%
MA/GLS 6% 12% 33% 21% 2% 23%
MLS 4% 23% 21% 10% 6% 33%
IterGA 0% 0% 0% 12% 38% 48%
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Figure 32: Problem instance map showing the best performing algorithm in-
stance(s) for the 1% target. Each dot represents a problem instance projected

onto a plane with t-sne.

4.1.10 Conclusions

We have performed an algorithm selection case study on a range of diverse
instances of quadratic assignment problems. We have chosen a set of meta-
heuristic algorithms for solving the problem and analyzed their performance.
In particular, we looked at correlations in the performance among solvers.
We looked at the results in more detail and identified a good combination
in a portfolio that includes RTS and VNS. We have also evaluated a nearest
neighbor recommender among all algorithm instances and evaluated its per-
formance in a leave-one-out crossvalidation setting. The results indicate that
a portfolio-based approach can be more successful than a single solver.

As we have outlined at the very beginning, we consider each algorithm
instance as a unique entity. However, for future work it might be interesting
to also consider an embedding of algorithm instances into a vector space of
its own and identify whether there are relations between those spaces, which
could lead to new insights and discoveries.
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4.2 Algorithm Selection for Solving GQAPs

4.2 Algorithm Selection for Solving Generalized

Quadratic Assignment Problems

In this section I present an extension of the work that has been presented at
GECCO 2018 [BWA 18] and which has been done by myself, Stefan Wagner,
and Michael Affenzeller. The main contributions of this part to the state of
the art are:

1. Performing landscape analysis on the generalized quadratic assignment
problem (GQAP)

2. Benchmarking of algorithms and solvers, including open source imple-
mentations of metaheuristic algorithms as well as commercial-of-the-shelf
solvers

3. Evaluation of algorithm instance recommendation based on k-nearest
neighbor classifiers

The work described by Beham et al. [BWA18] was distributed such that
Beham devised the methodological approach and scope, devised and imple-
mented the algorithm and problem instances used in the study (if not otherwise
stated), and carried out the experiments. Beham implemented and carried out
the landscape analysis and generated, and analyzed the algorithm selection re-
sults. Affenzeller and Wagner both contributed with comments, engaged in
discussions, and supported the editing process of the final text.

The generalized QAP is a related, but also notably different problem from
the QAP. I have introduced the GQAP more formally already in Section 2.1.4.
In a brief summary of the differences, the size of the solution space grows dis-
tinctly and amounts to MY in contrast to the solution space of the QAP (N!).
Thus, there can be both larger and smaller instances of the comparable QAP
(same N) depending on the value of M. The assignment encoded in a solution
to the GQAP is typically represented as a vector of integers where the binary
matrix z;; is replaced by the integer vector y[i] < k where z;; = 1. This
vector may also never violate the constraint given in Equation (2.13). But,
unlike the QAP that encodes solutions as permutations, the general discrete
solution space requires different heuristic operators. Crossovers and manipu-
lation or perturbation operators defined on permutations are not feasible to
be employed in the context of the integer vector. A further difference between
the QAP and the GQAP is the presence of constraints such as the capacity
restriction which turns some parts of the solution space infeasible. To handle
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4 ALGORITHM SELECTION CASE STUDIES

such a constrained optimization problem several techniques are described in
the literature [MMC11] for which we chose to go with a lexicographic approach.
First the constraint violation is minimized and then the objective. Thus, we
generally favor feasible solutions over infeasible ones. In the category of infea-
sible solutions we prefer solutions that violate the constraints only slightly to
those that violate them to a larger degree, while among the feasible solutions
the better ones according to the objective are preferred of course.

We achieved the lexicographic approach using a single fitness value that
is split into two separated domains. The infeasible solutions were offset by a
penalty as given in Equation (4.4). This penalty is higher than the quality
of any feasible solution. In addition we add the amount of capacity that a
solution overuses to that penalty in order to comprise the fitness of an infeasible
solution. Feasible solutions are valued the same as the objective given in
Equation (2.11) on page 13. The effect is similar to other proposed constraint
handling techniques [[Kal00].

P =max(C) - N + e - max(W) - max(D) - N (4.4)

4.2.1 Benchmark Instances

There are benchmark instances already available which comprise the first 21
benchmark instances |[CGLMO6] of this case study ranging from 20 to 50 fa-
cilities and 6 to 20 locations. The utilization, as computed by Equation (4.5)
ranges from 35% to 95% and denotes the ratio between total demand and to-
tal capacity as shown. Utilization determines the size of the feasible search
space and a high utilization leads to many more solution configurations that

are infeasible.

Ztel..N Qt
ZrGL.M C’”

In addition to those instances we generated new instances based on the
well-known QAPLIB [BKR97]. For each instance in this library where the
dimension N > 20 we produce three groups of instances with different num-

util.: (4.5)

ber of locations. These have been chosen as the rounded value of M =
{N/6,N/3,2 - N/3}. The matrix D that describes the “distance” between

locations is generated by running a hierarchical clustering on the QAPLIBs’
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4.2 Algorithm Selection for Solving GQAPs

instance’s original distances and averaging the distances between the clusters.
Thus, it is ensured that structures present in the distances of locations of the
QAP instance are translated to the GQAP instance. Because instances in the
QAPLIB do not define a linear cost matrix, we generated the installation costs
C randomly by sampling from a uniform distribution in the interval shown in
Equation (4.6).

Cq €[I,N-W-D) Vie{l,..,N} Vke{l,.. 6 M} (4.6)

Here, W and D describe the mean of the weights and distance matrix
respectively. The demands R; were sampled independently from a uniform
distribution in the half-open interval [1,100). Each of the three groups with
the number of locations fixed is then split into four additional groups with
utilizations U = {35%, 50%, 75%,95%}. Because the demands were already
sampled, we achieved this by determining the capacity of each location. First
the total capacity B, was computed for utilization group u and was then
randomly split among the locations g (By,) adhering to the constraints given
in Equations (4.7) to (4.11). These constraints ensure, that a large number
of the generated instances have at least one feasible solution on the one hand.
On the other hand, the constraint given in Equation (4.11) ensures that not all
of the facilities can be assigned to a single location. Whether such instances
are more or less difficult has however not been analyzed in more detail, but it
is likely that a more carefully constructed installation costs matrix C' would
be required. Otherwise if the optimal solution would be to put all facilities in
that location it may be rather easy to find. A rejection sampling technique
was used to satisfy the constraints.

The way we generate C', R, and B is similar to existing generators [C GLMOG|,
however the new instances provide a much more diverse set with respect to
the different matrices for W and D. From the generated instances we took 168
for the presented study. The generated instances have been made available

online’.

"dev.heuristiclab.com/AdditionalMaterial#GECC02018
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s
Bu=- > R Yu e U (4.7)
tel..N
B,= Y B Yu e U (4.8)
gel.M
o
By, > treri}'I]lV(Rt) Vgel.M,ueU (4.9)
max (By,) > R, Vtel.N,ueU (4.10)
gel.M
By < > R Vgel.MueU (4.11)
tel.N

4.2.2 Feature Extraction

The first step in the algorithm selection methodology is to define and compute
features of the problem instances. This process involves still manual work,
though the methods described in Section 3 are somewhat more general. For
instance, to perform random, adaptive, or directed walks the neighborhood
function needs to be defined. In the case of directed walks this neighborhood
function requires that any solution can be transformed into any other through
a finite sequence of steps. However, as we have already observed in the last
section problem specific features may work quite well and these require to be
redefined.

In the case of the GQAP we use the features that have already been defined
in the respective publication [BWA 18] and which are repeated here for the sake

of completeness:

e Problem specific: dimension (|N|), MN-ratio (|M|/|N]), the coefficient
of variation for W, D, B, R, the sparsity for W, D (W, D), utilization,
and basic feasibility

e Random walk: autocorrelation (acl), correlation length (c.len), infor-
mation content (ic), partial information content (pic), density basin in-
formation (dbi), information stability (is), diversity, regularity, total en-
tropy (H (X)), peak information content (ic*), and peak density basin
information (dbi®).

e Directed walk: sharpness, bumpiness, flatness

We use sparsity in that we calculate the ratio between the amount of entries
that are zero and the size of the matrix. Basic feasibility is specific to GQAP
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being a constrained optimization problem and describes the percentage of valid

isolated assignment pairs and is given in Equation (4.12).

2ien g € M|R; < By}|

f .
eas N

(4.12)

Random walk-based landscape measures that have been described in the
literature are also applied [AZ98, VI'MOO, PA12]. In this study a walk length of
5,000 is used and the results of 30 independently performed walks is averaged.
For the directed walks again we perform a total of 200 paths.

4.2.3 Fitness Landscape Analysis

After performing the landscape analysis by applying the walks and calculating
the problem specific calculations we obtain a feature vector that describes each
problem instance. In Table 17 we study those features in terms of their corre-
lations. This presents a picture in which we can observe to which extent two
features respond similarly to the properties of the landscape. Naturally, this
is biased by the selection of the benchmark instances and does not represent
a view of the GQAP overall, but of the chosen set of instances.

By looking at the problem specific features such biases can be highlighted.
For instance, we observe a highly significant negative correlation (p ~ (—0.57,
—0.52),p < 1le75) between the sparsity of the weights and distance matrices
(Wo, Do) respectively and the dimension (|V]). As the dimension grows, the
sparsity reduces which shows that there is a certain bias in that larger instances
are becoming less sparse. Another significant correlation is observed between
M/N and feas. (p ~ —0.57,p < le7%). It is clear that by increasing the
number of locations M the capacity per location becomes lower and thus the
chance is higher that there are facilities with a higher demand than some of the
locations. Still, given the moderate strength of the correlation this is not fully
determined and variation does exist. But we also see correlation between M /N
and Dy (p ~ —0.64,p < 1e7%). Thus, a higher number of locations relative to
the number of facilities is observed together with distance matrices that are
less sparse. The same is not true for Wy however. This may be explained with
respect to the zero entries in the distance matrices’ diagonal.

By examining the correlation among the three features CV(B), flat., and
feas. it can be seen that both flat. and CV(B) are negatively correlated to
feas. (p < —0.5,p < 1le~%) while the correlation between flat. and CV(B) are
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Correlations among FLA characteristics using Spearman’s p. Sig-

Table 17

te a p-value < 1le™6, **

for p < 1e73, * for p < 0.05. Bonferroni adjustment is used. [BW

1Ca

XKk ind

ficant correlations on the upper diagonal:

ni

A1S]

£

T ¢I1'0-CS'0-19°0 ¢60-87'0 T ¥2'0-L9°0 T€0-9€0-[¥S°0 TT°0-TT°0- [9°0- TO'0- 92°0 ¢O'0- 8Z'0 60°0- €¥0-T00 ¥0'O zeo| (xX)H

T T16°0-19°0 €00 8%'0 ST°0-96°0 6€°0 L0°0-T0°0-|TO'0- €€0-T°0 T€°0-9¥7°0- G2°0-€1°0 ¥0°'0 ¥1°0- €€0 1I1T°0- TII'0- ¢S¥0 Bo1

dokk okkk L 86°0-99°0 TS0-67'0-67'0-18°0-€0°0 TO0 [9T°0- L0°0-¥€0 (99°0 TT'0 €00 L0°0- €00 ¢TI0 9T°0-L0°0- G¢'0- 910" e

sokk kdkok dokk | G9°0-2S°0 L¥V'0 G0 T80 €0°0-20°0-|€T°'0 90°0 L£0- |89°0-CT°0- TO'0 60°0 T0'0 €T°0- €T°0 90°0 qco 91°0 9P

ok skk kkk L Ly'0-16°0-T°0 GL'0-1¢'0 €20 [9€°0- CT'0-G€0 (890 ¢0'0- 61°0-T0°0 ¥1°0- .00 ¢'0 90°0- 8¢0- ST0 oud

dokk ko dokk okkok kokk | LV'0 LE0 €9°0 87°0-¢S0-|8¢°0 12°0-0 €9°0-7€°0- L0°0-9T°0 8T'0 IT'0- TO00-S0°0- 9T1T°0- 190 St

*okk sk kkk kokk kdkok | 8C'0-%¥9°0 T€&0-L£0-[99°0 TT0-T0- |859°0-C0°0- LZ'0 €0°0- 80 600- S¥0-T100 €00 T¢°0 ot

skkk kkk  kokok *% ok T G€'0 ¥0°0 IT°0 |20~ ¥I'0-90°0- |L2'0-9€°0- 9¢'0-8T0 90°0-TIT°0- €¥0 800- O 620 ‘AP

skk k% kkk kkk kokk kkk kkk k% L L0°0- L0°0-|TT°0  L0°0 #'0- |€L°0-90°0- €0°0 ¥0°0 T0°0 T°0- TT°0 CT°0 920 €10 qp

* s,okk ok T ¥6°0 |cV'0- 92°0 LZ'0- |8T°0 9C°0 92°0-1¢'0- €C¢0-%¥¢0- LT'0 STO TT°0 T7°0- us[™d

*% *xk k% sokk | 6v'0- €0 €0- [610 ¢0 €0~ ¢0- ¥¢'0-¥¢'0- €20 ST°0 61°0 7v0- 1o

ok k% Rk Rk sk kkk | L 8G°0-8%'0 [LT'0-8T°0- €2°0 80°0- 9€°0 ¥1'0- L¥'0-100- Gg'0- ¢&y0| ‘dreys

* * ! 9L°0- [90°0-€7'0 ST'0-T00- 8¥'0-€2°0 €70 910  L¥'0 990~ yey

k% Kk k% . * skk kxk L 770 ¥70- ¥0°'0 80°0-  L€0 ¢I'0- 9T°0-ST°0- €70- Ly0| dunqg

skok sk k skkk kksk o koksk skokk skekk kkk skokk T T0°0 <0°0-¢0°0- ¢0'0-T°0 €00 80°0- 90°0- 1¢€°0- mn

skokk Kk ok skokk kkok T 90°0-0 79°0-1¥°0 T0°0-80°0- ¢0°0- LS80 Z\E

* T ¥0'0- 670 L00 L9°0-0 6T°0 80°0- om

T 12°0-€0°0  T00-9¢0- 10 0 |[(MAD

* * kk skkk kk kkk kkk T 9¢°0- ¢G'0-T0 T0°0- v0 OQ

ok wx 1 §z0 61°0- ¥0°0- L1°07 (@)AD

sk ks sokk kKoK sk skokok sokok sokok T IT°0  8T°'0  ST'0- [N

ok I L0°0  S0°0 (4)AD

* sokk koo T ¥S°0-| (d)AD

* Hokk kk ok * ok kkk [Rkk Rk kkk (% *okk Kook Kok ok T ‘889Y
(X)H o1 ot Liqp od st ot cAlp Iqp  wepd [oe |'dreys pey ~dumqn N/ OM (M)AD O (A)AD IN| () AD () AD ses)

127



4.2 Algorithm Selection for Solving GQAPs

(necessarily) positively correlated (p ~ 0.47,p < 1le®). A stronger variation
of the capacities translates into less basic feasibility and this in turn lets the
landscape appear more flat. This may be explained by the lexicographic ap-
proach to the objective and the high offset for the infeasible solutions. In the
infeasible region it is more likely to make neutral choices.

Stronger correlations have also been identified between wtil. and several
of the features from exploratory analysis, especially ic, pic, dbi, and H (X))
(p ~ (—0.58,0.68, —0.73, —0.60,p < 1e7%)) and also between bump. and util.
(p = 0.44,p < le—6), but to a lesser degree. Thus these features are more
sensitive to changes in wtil.. The correlation between feas. and util. was
significant, but lower (p ~ —0.31,p < 0.05). As the utilization increases, the
choices for some of the facilities become less as their demand is larger than the
capacity of some locations. Still, the effect of util. on the landscape is much
higher as shown by the correlations with the walk-based landscape features.
Other problem specific features were not significantly correlated with wtil..

4.2.4 Algorithm Instances

In this study we applied a wider variety of algorithm instances including open-
source implementations as well as commercial solvers, both exact and heuristic
and single-solution algorithms as well as population-based methods. Never-
theless, the algorithms and the instances chosen represent only a hand-picked

subset of possible algorithms. The selected algorithms are:

Iterated Local Search (2 instances)

Evolution Strategy (1 instance)

Iterated Genetic Algorithm (1 instance)

Greedy Randomized Adaptive Search Procedure (1 instance)
Late-acceptance Hill Climber (1 instance)

Age-Layered Population Structure (1 instance)

Linearized Integer Programming (2 instances)

Hybrid Mathematical Programming Solver (2 instances)

© 0N Ot W

Random Search (1 instance)

These algorithm instances respectively solvers will be described in more de-
tail and with pseudo-code descriptions at least for the open-source implemen-
tations. Again we include random search in this study for sake of completeness
and as a baseline.

128



4 ALGORITHM SELECTION CASE STUDIES

Iterated Local Search

As has been described in Section 2.2.4 on page 30 iterated local search is a
more general framework that is based on applying an efficient low-level local
search to certain points in the landscape. While the general framework as given
in Algorithm 2 (page 30) enables the use of history, in the implementation used
in the following study this history was not used. A pseudo-code description of
the employed algorithm is given in Algorithm 12. The low-level local search
used in this algorithm uses the I-shift neighborhood in which one facility is
reassigned to a different location than to which it is currently assigned. This
results in a neighborhood size of N-(M —1) when it is exhaustively enumerated.
The resulting locally optimal solution with respect to this neighborhood is then
called 1-opt. The partial evaluation of a move can be more efficient than a full
evaluation and can be performed in O(N), while a full solution evaluation
requires O(N?).

In this study, two instances of ILS are used and both use a greedy strategy
for accepting a new solution as a base for performing the next perturbation.
Only a strictly better new solution is accepted. The two instances differ in
their sampling and perturbation strategy. One instance is parameterless and
similar to the multi-start local search as introduced in the QAP experiments.
It uses an unbiased random sampling of solutions in both Sample and Perturb,
while the second instance uses the greedy randomized construction described
in Mateus et al. [MRS11] in Sample and uses a probabilistic reassignment of
on average 10% of the facilities in Perturb. The value of 10% was determined

using irace 2.4 on several benchmark instances in 5,000 experiments.

Late-acceptance Hill Climber

Late-acceptance hill climber (LAHC) [BB17] is an algorithm that was in-
troduced more recently. It shares similarities with simulated annealing in
that it uses a probabilistic acceptance criterion instead of a deterministic one.
However, the temperature parameter in simulated annealing that governed
the acceptance is replaced with a history. As the value of the temperature is
highly dependent on the domain of the fitness values this parameter is subject
to instance specific tuning, normalizing the fitness function or using the fit-
ness of some initial randomly drawn solutions to automatically set the value.
LAHC would also fit into the ILS framework, however, it does not employ
local search and thus is better seen as a category of its own. Two param-
eterless variants were introduced [BL17] and of those pLAHC-s was the one
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Algorithm 12 TIterated Local Search for GQAP

1: procedure ILS(] pertstr)
2: sol + Sample()
(bestsol, bestfit) < OneOptLocalsearch(sol)
while not Terminate() do
s < Perturb(bestsol, pertstr)
(sol, fit) < OneOptLocalsearch(s)
if fit < bestfit then
bestfit + fit
bestsol + sol
10: end if
11: end while
12: return (bestsol, bestfit)
13: end procedure

used in this study and thus, no parameters were tuned for this algorithm. A
pseudo-code description is given in Algorithm 13 which is based on previous
works (cf. [BL17] Algorithm 2 on page 223), but adapted to the notions, style,
and abstraction used in this thesis. The algorithm uses the GenerateNMove
neighborhood, for which N = 1 was chosen and thus is identical to the 1-shift
neighborhood used in the low-level local search of ILS.

Evolution Strategy

Evolution strategies have been introduced in Section 2.2.4 on page 28. They
comprise a set of algorithms well-known for finding optima in real-valued search
spaces. ES describe an adaptation of the perturbation / mutation strength
based on the dynamics of the search. It uses a population of solutions and
typically generates multiple offspring of which either an elite set is maintained
together with the old population (termed “plus-ES”) or an elite set is selected
from the new population only (termed “comma-ES”).

In this case study we implemented a (10, 1000)-ES (“comma variant”) with
recombination and mutation using the perturbation method that is also em-
ployed in ILS. However, instead of choosing a fixed strategy parameter of 10%
that was tuned offline for ILS, we use a dynamic adaptation of the strategy
parameter. This parameter governs how many of the facilities should be relo-
cated. The value is transformed by a sigmoid function into the open interval
(0,1) which is interpreted as a probability. The strategy parameter is mutated
additively as it spans both negative and positive values including zero. The

more conventional multiplicative approach is thus not applicable.
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Algorithm 13 Late Acceptance Hill Climber for GQAP, adapted from [BL17]

1: procedure LAHC()
2: (bestsol, bestfit) + Sample()

3 bestlist + [bestfit]
4 for exp in 1..24 do
5: memory|[1..2°P] < Initialize(bestlist) > Sorted afterwards
6: sprint < 0
7 (sol, fit) < (bestsol, bestfit)
8 while not Terminate() do
9 (move, movefit) + GenerateNMove(sol)
10: v < sprint mod |memory]|
11: if fit < memory[v] or fit < movefit then
12: sol < Apply(move, sol) > Accept move
13: fit < movefit
14: end if
15: if fit < memory[v] then
16: memory|v] < fit > Update memory
17: end if
18: sprint <— sprint + 1
19: if fit < min(bestlist) then
20: bestlist < fit > Append to best list
21: bestfit < fit
22: bestsol <+ sol
23: end if
24: end while
25: end for

26: return (bestsol, bestfit)
27: end procedure
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4.2 Algorithm Selection for Solving GQAPs

Algorithm 14 Evolution Strategy for GQAP
1: procedure ES(] recombineyn, | plusyn, | u, | \)

2: (pop, o) + Sample(u) > initialize population and strategy parameters
3: while not Terminate() do

4: nextgen < []

5: foriin 1.\ do

6: if recombineyn then

7 offspring < DLX(pop)

8: o’ « Average(o)

9: else

10: (offspring, o’) + Select(pop, o) > Randomly select a parent
11: end if

12: o o 2 -N(0,1) > Mutate strategy parameters
13: offspring’ + Mutate(offspring, ")

14: nextgen < (offspring’, o)

15: end for

16: if plusyn then > In the plus-ES the old population is included
17: nextgen <1 (pop, o)

18: end if

19: (pop, o) + Best(nextgen, )

20: end while
21: return BestOf(pop)
22: end procedure

The parameters of ES have been determined by irace 2.4 on several bench-
mark instances in 5,000 experiments. A pseudo code description of the imple-

mented algorithm is given in Algorithm 14.

Iterated Genetic Algorithm

Genetic algorithms have been introduced in Section 2.2.4 on page 26. We
chose a more modern variant of genetic algorithms called offspring selection
genetic algorithms which are described in more detail on page 27. The algo-
rithm includes a success-based termination criterion. It stops when generating
successful offspring in a certain generation requires too much effort. Very often
it has been observed that this coincides with the convergence of the population
and the loss of diversity [AWWB09]. Because of this termination procedure the
algorithm cannot be run arbitrarily long, respectively it would not be mean-
ingful to extend the algorithm past the point of convergence. Thus, we added
a restart procedure where the population is reinitialized randomly, but not

allowed to keep the same assignment that it had just converged to.
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Algorithm 15 Iterated Genetic Algorithm for GQAP
1: procedure OSGA (] popsize, | mutprob)

2: pop < Sample(popsize) > Initialize the population
3: best < BestOf(pop)
4: while not Terminate() do
5: nextgen < []
6: restart < false
7 selpress < 0
8: while selpress < 1V length(nextgen)/popsize > selpress/500 do
9: parents < RandomSelect(pop) > Sample 2 solutions randomly
10: offspring <+ DLX(parents)
11: Mutate(offspring, mutprob)
12: if offspring betterThan BestOf(parents) then
13: nextgen <+ offspring
14: best < Update(best, offspring)
15: end if
16: selpress < selpress + 1.0/popsize
17: end while
18: if length(nextgen) < popsize then > Population converged
19: restart <— true
20: nextgen <1 BestOf(pop) > Fill next generation with best of pop
21: end if
22: pop < nextgen
23: if restart then
24: Mutate(pop) > Perform a relocation of all facilities to a different location
25: end if
26: end while
27: return best

28: end procedure

For crossover a new operator was introduced by the author [BWA18]. Mu-
tation is similar to ILS and applied to about 5% of the solutions, but with a
higher strength (25%). The population size was chosen 500 which is a recom-
mended default parameter [AWWB09] and was observed to be well suited to
solve certain problem instances to optimality. Parents were selected randomly
without bias as the selective pressure is put on offspring survival.

Age-Layered Population Structure

The age-layered population structure (ALPS) is a complex evolutionary
algorithm that also attempts to mitigate premature convergence, but in a
different way than OSGA. It uses a number of stacked layers that contain
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better and better solutions. The lowest of the layers is replaced with randomly
generated solutions. In each generation mating pools are created for each
layer together with the immediate lower layer. Each solution is attributed an
age property in addition to its fitness. The age determines the layer that the
solution is assigned to. Thus, as solutions participate in the variational process
they become older and move from lower to higher layers. The variational
process itself is identical to a standard genetic algorithm involving parental
selection, crossover, and mutation.

ALPS was configured to use the same crossover and mutation as OSGA.
It uses a maximum of L = 10 layers, and N = 100 solutions per layer. The
age gap was set to A = 20 and a polynomial ageing scheme is employed. Fur-
ther parameters were set to 1-elitism, and a generalized linear rank selection
[TS95] with a selection pressure parameter set to 4. Drawing from previous
experience and preliminary tests, this rather high value has proven to work
successfully in many problems. A pseudo-code description of ALPS is given in
Algorithm 16 and has in this form not been publicly made available elsewhere.
Only the steady-state ALPS variant has published pseudo-code descriptions,
but this variant has not been implemented.

Greedy Randomized Adaptive Search Procedure

The variant of GRASP used in this study is the algorithm described by
Mateus et al. [MRS11] that was specifically implemented, analyzed, and tuned
to optimize GQAP intances. We thus also follow their recommendations on
parameters which have been extensively analyzed. A pseudo-code description
is given in this thesis nevertheless in Algorithm 17, but which closely follows
the original description and is rather adapted to the style and formatting in
this thesis.

Because GRAPS is rather general its search performance is highly depen-
dent upon a well-defined set of operators. These have been implemented ex-
actly as described [MRS11] and their pseudo-codes are not repeated in this
thesis, but are described in detail in the original publication. These operators
are fairly complex and thus this GRASP algorithm is certainly a highly-tuned
algorithm for GQAP. In contrast when we compare this GRASP algorithm
with the ILS, the latter is much simpler and shorter to describe. Even the lo-
cal search procedure employed as part of GRASP is of a special kind [MRS11].

As has been mentioned, we follow the authors recommendation of param-
eters that have been analyzed extensively and are as follows: the employed
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Algorithm 16 Age-Layered Population Structure for GQAP

1: procedure ALPS({ L, N,| A, | mutprob, | selpress)

2:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

layersy + [] > An empty dummy layer
gen < 0

A Aj o YE,5) € {(1,1),(2,2),(3,22), ..., (I-1,[L — 2]2), (L,00)} > Age limits
L+1 > Number of / last active layers

while not Terminate() do

if gen mod A = 0 then

layers; < Sample(N) > (Re)Initialize the first layer
S0lage <= 0 Vsol € layers, > Age is a property of solutions
end if
for i in 1..£ do > Mating loop for layer ¢
nextgen < []

while Incomplete(nextgen) do
v
offspring + DLX(p’,p")

,p") < GeneralizedRankSelection((layers;_1, layers;), selpress)

Mutate(offspring, mutprob) > Facility relocation
offspringage — max(plge, Pige) + 1
nextgen < offspring
end while
layers; < Replace(nextgen, layers;)
end for > End of mating loop for layer ¢
MigrateElders(layers;_1, layers;, A;) Vi € [2..L]
if gen > A AL <L then
L+—L+1
layers; < MatingLoop(layers;_1) > Copy layer and iterate one generation
end if
gen < gen + 1
best < BestOf(best, Ule layers;)

end while
return best

31: end procedure

variant is termed “f-r-g-g”, candidate size factor (n) = 50%, elite set size = 10,

maximum candidate list size (mcl) = 10, 6 = 4, minimum elite set size (p) =

2, one-move probability = 50%, and maximum iterations for local search =

100 were set.

Linearized Integer Programming

Two linearized integer programming (IP) models have been implemented

that are described in the literature for the quadratic assignment problem
(QAP) and which have been adapted to the GQAP. On the one hand there
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Algorithm 17 Greedy-Randomized Adaptive Search Procedure for GQAP,
adapted from [MRS11]
1: procedure GRASP(] elitesetsize, | p, ] d,] mcl, | lmoveprob, | maxiterLs, | 1)

2: pop «[]

3: while not Terminate() do

4: newbest < false

5: sol < GreedyConstruction()

6: if length(pop) > p then

T if not IsFeasible(sol) then

8: sol < SelectRandom(pop)

9: end if

10: ApproxLocalSearch(sol, mcl, 1moveprob, maxiterLs)
11: other « SelectRandom(pop)

12: sol <— PathRelinking(sol, other, n)

13: ApproxLocalSearch(sol, mcl, lmoveprob, maxiterLs)
14: if sol betterThan best then

15: best < sol

16: newbest < true

17: end if

18: if length(pop) = elitesetsize then

19: if newbest V MaxSimilarity(sol, pop) > J then
20: candidates < {p € pop | p worseOrEqualThan sol}
21: if candidates # () then
22: pop <~ argmax Similarity(sol,c)

¢ € candidates

23: pop <1 sol
24: end if
25: end if
26: else if newbest V MaxSimilarity(sol, pop) > § then
27: pop <1 sol
28: end if
29: else if IsFeasible(sol) A MaxSimilarity(sol, pop) > ¢ then
30: pop <1 sol
31: else if length(pop) = 0 then
32: best < BestOf(best, sol)
33: end if
34: end while
35: return best

36: end procedure
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is the linearization described by Frieze and Yadegar [F'Y83] and on the other
hand the linearization described by Kaufman and Broeckx [[KXB78]. The mod-
els are implemented in the optimization programming language (OPL) and
solved by IBM CPLEX® 12.7.0 for which an academic license had been ob-
tained. IBM CPLEX is a commercial product that is widely used to solve
linear mathematical programming formulations. The implementation of the
solver is a secret however. The CPLEX solver was run with all parameters set
to their default value. It does however feature many parameters that could be
tuned. Certainly, we do not imply that the results show the performance of
CPLEX as a whole, but rather of the default parameterization. The models
are given in Listing 1 and 2. These models start by introducing the constants
where the ellipsis (...) indicate that the data is defined in another, so called
DAT-file. Then the decision variables are defined, followed by the objective
and finally the constraints wrapped in the subject to block.

Shttps://www.ibm.com/products/ilog-cplex-optimization-studio
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Listing 1: CPLEX-FY, an OPL implementation of the GQAP using Frieze and
Yadegar linearization

int EQUIPMENTS = ...;
int LOCATIONS = ...;
float TC = ...;

1

2

3

4

5 range N = 1..EQUIPMENTS;
6 range M = 1..LOCATIONS;
7
8
9

float weights[NI[N] = ...;
float distances[M][M] = ...;
10 float install[N]J[M] = ...;
11 float demands[N] = ...;
12 float capacities[M] = ...;

13

14 dvar int+ x[N][M] in O0..1;

15 dvar float+ z[N]J[MJIN][M] in O..1;

16

17 dexpr float installCosts = sum(i in N, k in M) x[il[k] * install[il[k];

18 dexpr float flowCosts = TC * sum(i in 1..EQUIPMENTS-1, k in M, j in N, h
in M: j > i)

19 (weights[i]1[j] * distances[k][h] + weights[jl[i] * distances[h][k]) =*

z[i]1[k]1[j][h];

20

21 minimize installCosts + flowCosts;

22

23 subject to {

24

25 forall (i in N)

26 AllAssigned:

27 sum(k in M) x[i][k] == 1;

28

29 forall (k in M)

30 Capacity:

31 sum(i in N) x[il[k] * demands[i] <= capacities[k];
32

33 forall (i in 1..EQUIPMENTS-1, k in M, j in N: j > i)
34 sum(h in M) z[il[kJ[jl[h] == x[il[k];

35

36 forall (i in 1..EQUIPMENTS-1, j in N, h in M: j > i)
37 sum(k in M) z[il[k]1[jl[h] == x[jl[h];

38

39 }
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Listing 2: CPLEX-KB, an OPL implementation of the GQAP using Kaufman
and Broeckx linearization

int EQUIPMENTS = ...;
int LOCATIONS = ...;
float TC = ...;

range N 1..EQUIPMENTS;

1..LOCATIONS;

range M

float weights[N]I[N] = ...;
float distances[M][M] = ...;
float install[N]J[M] = ...;
float demands[N] = ...;
float capacities[M] s

© 0 N O U W N

o e
w N = O
]
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~

float v[i in N][k in M] = sum(j in N, h in M) (weights[i]l[j] * distances[k
1[h]);

15

16 dvar int+ x[N][M] in O0..1;

17 dvar float+ y[N][M];

18

19 dexpr float installCosts = sum(i in N, k in M) x[i]l[k] * install[il][k];

20 dexpr float flowCosts = TC * sum(i in N, k in M) y[i][k];

21

22 minimize installCosts + flowCosts;

23

24 subject to {

25

26 forall (i in N)

27 AllAssigned:

28 sum(k in M) x[i][k] == 1;

29

30 forall (k in M)

31 Capacity:

32 sum(i in N) x[i][k] * demands[i] <= capacities[k];

33

34 forall (i in N, k in M)

35 v[il[k] * ( x[i]1[kx] - 1 ) + sum(j in N, h in M) (x[jl[h] * weights[il[j]

* distances[k][h]) <= y[il[k];
36
37 }

Hybrid Mathematical Programming Solver

To contrast the instances with another commercial product, LocalSolver
7.5 was included in the benchmark. LocalSolver? is a commercial mathemati-
cal programming solver [BEG™ 11]. Academic licenses can be obtained free of
charge and are valid for one month. Models can be described in a similar way

to OPL, but LocalSolver uses heuristics to solve them. Due to the heuristic

9http://www.localsolver.com

139



4.2 Algorithm Selection for Solving GQAPs

solver it is allowed to use non-linear functions and operators in the model and
thus it is not necessary to perform a linearization. Two models have been im-
plemented, the first model uses binary decision variables z;; € {0, 1} to denote
the assignment of facility ¢ to location j while the second model uses integer
decision variables z; € M that directly encode the location to which facility
i is assigned to. An implementation of these models in the C# programming
language and using the respective API is given in Listings 3 and 4. As in
the case of CPLEX we used only default parameters and did not perform an

extensive parameterization study.

Listing 3: C# implementation of the LocalSolver N model

LSModel model = new LocalSolver().GetModel();
// x[f]l] = 1 => equipment f is on location 1
var x = new LSExpression[demands.Lengthl];

for (int f = 0; f < demands.Length; f++)

x[f] = model.Int(0, capacities.Length - 1);
// All locations contain not more equipments than there is capacity for
for (int 1 = 0; 1 < capacities.Length; 1++) {

var util = model.Sum();

for (var £ = 0; f < demands.Length; f++)

util.AddOperand ((x[f] == 1) * demands[f]);
model.Constraint (util <= capacities[1]);
}

// Create distances as an array to be accessed by an at operator

© W N O Ok W N

N e
= W N = O

var distancesJagged = new double[capacities.Length][];

"
o

for (var i = 0; i < capacities.Length; i++) {

=
(=]

distancesJagged[i]l = new double[capacities.Lengthl;

=
IS

for (var j = 0; j < capacities.Length; j++)

[
oo

distancesJagged[i][j] = distances[i, j];
}
var installJagged = new double[demands.Length][];

NN =
= o ©

for (var i = 0; i < demands.Length; i++) {

N
»

installJagged[i] = new double[capacities.Lengthl;

N
w

for (var j = 0; j < capacities.Length; j++)

V)
=

installJagged[i]l[j] = installationCosts[i, jI;
}

LSExpression distancesArray = model.Array(distancesJagged);

NN N
~N o«

LSExpression installCostsArray = model.Array(installJagged);

N
oo

// Minimize the sum of product distancexflow

N
©

obj = model.Sum();
for (int f1 = 0; f1 < demands.Length; f1++) {

for (int f2 = 0; f2 < demands.Length; f2++)

obj.AddOperand (transportationCosts * weights[fl, f2] * distancesArrayl[
x[£1], x[£21]1);

33 obj.AddOperand (installCostsArray[f1, x[f1]]);
34 }
35 model.Minimize (obj);

w o w w
N = O
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49
50
51

Listing 4: C# implementation of the LocalSolver 01 model

LSModel model = new LocalSolver().GetModel();

// x[£,1] = 1 if equipment f is on location 1,

var x = new LSExpression[demands.Lengthl][];

for (int f = 0; f < demands.Length; f++) {
x[f] = new LSExpression[capacities.Length];

for (int 1 = 0; 1 < capacities.Length; 1++) x[f][1]

}

// All equipments are installed in exactly 1 location
for (int f = 0; f < demands.Length;

LSExpression nbLocationsAssigned
for (int 1 = 0; 1 < capacities.Length; 1++)
nbLocationsAssigned.AddOperand (x[£f]1[1]);
model.Constraint (nbLocationsAssigned == 1);

}

// All locations contain not more equipments than there is capacity for

f++) {
model.Sum() ;

for (int 1 = 0; 1 < capacities.Length; 1++) {

LSExpression assignedDemand

model.Sum() ;

for (int f = 0; f < demands.Length; f++)
assignedDemand.AddOperand(x[f]1[1] * demands[f]);
model.Constraint (assignedDemand <= capacities[1]);

}

// Index of the assigned location of equipment f

0 otherwise

model.Bool();

var equipmentsOnLocations = new LSExpression[demands.Lengthl;

for (int f = 0; f < demands.Length;

f++) {

equipmentsOnLocations [f] = model.Sum();
for (int 1 = 0; 1 < capacities.Length; 1++)
equipmentsOnLocations [f].AddOperand (1 * x[£f][1]);

}

// Create distances as an array to be accessed by an at operator

var distancesJagged = new double[capacities.Length][];

for (var i = 0; i < capacities.Length; i++) {

distancesJagged[i] = new double[capacities.Lengthl];

for (var j = 0; j < capacities.Length; j++)

distancesJagged[il[j]l = distances[i, j];

¥

var installJagged = new double[demands.Length][];

for (var i = 0; i < demands.Length;

i++) {

installJagged[i] = new double[capacities.Lengthl;

for (var j = 0; j < capacities.Length; j++)

installJagged[il[j] = installationCosts[i, jl;

}
LSExpression distancesArray =

LSExpression installCostsArray

model.Array (distancesJagged) ;

= model.Array(installJagged);

// Minimize the sum of product distance*flow

var obj = model.Sum();

for (int f1 = 0; f1 < demands.Length; fi1++) {
for (int f2 = 0; f2 < demands.Length; f2++)
obj.AddOperand (transportationCosts * weights[f1,

equipmentsOnLocations [f1],

}

model.Minimize (obj);

£21]
equipmentsOnLocations [£2]]);
obj.AddOperand(installCostsArray[f1l,

* distancesArray [

equipmentsOnLocations [£1]]);
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4.2.5 Experiment Setup and Execution

In contrast to the case study on QAP that was performed using open-source
implementations of solvers only, the case study on GQAP includes a much
more heterogeneous set of algorithm instances. We decided to measure run-
length not in terms of evaluations, but in terms of the elapsed wall clock time.
A reasonable abstraction for commercial solvers is difficult to attain and even
difficult to measure. What is an “evaluation” in CPLEX and how to track their
numbers? The wall clock time is still a valid measure, but of course this means
that we are actually testing the performance of the implementation. Consider-
ations such as runtime complexities of operations on collections and language
details suddenly become relevant details. We also decided to go with a sequen-
tial instead of a parallel implementation, respectively assuming the algorithms
are run in a single CPU environment. All open source implementations were
conducted in C# using the .NET Framework 4.5.

For a fair comparison we used a single machine were all tests were per-
formed. It is a virtual machine using Intel Xeon E5-2660 CPUs with a total
of 28 cores with 125Gb RAM. The 28 cores were used to parallelize the exper-
iment instead of the individual algorithms. Only CPLEX was allowed to take
advantage of all 28 cores as it was the only exact solver in the test and is less
of a direct competitor, but a different (exact) approach to problem solving.

A total of 30 to 45 repetitions were performed for every algorithm / problem
instance pair for all open source implementations, while the commercial solvers
were just executed once. The maximum runtime was limited to 1 minute. This
was enough to find optimal solutions for several instances. The commercial
solvers were run such that only one algorithm / problem instance pair was
executing concurrently. The experiment yielded more than 75,000 runs.

Some runs of the pLAHC-s instance terminated before the available time
budget and had not reached the target fitness. We simulated a restart proce-
dure for those runs in that we sampled from the runs that we had observed.
This is a process similar to bootstrapping.

The performance data that we obtained tracked the best found quality over
time. We store the monotonic convergence graph for each run. In the open
source implementations such a variable was updated after the call to the evalu-
ation function, but was not made during an operator, such as a low-level local
search. For CPLEX we used the MIPInfoCallback and the IterationTicked call-

back was used for LocalSolver. The execution time has been measured using
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4 ALGORITHM SELECTION CASE STUDIES

the System.Diagnostics.Stopwatch class which allows high-precision measure-

ments. The experiment data has been published and is available online!".

4.2.6 Performance Measurement

We use two dimensions to evaluate the performance of the methods in this
study. On the one hand we record the achieved solution quality and on the
other hand the execution time as the elapsed wall clock time. The best algo-
rithm would achieve the best quality in less time than any other, however this
is difficult to achieve. In general, longer runs typically lead to better quality
than shorter runs. In this study we identify a target solution quality that is
within a few percent of the best attained quality and measure the expected
runtime (ERT) required to achieve it.

As in the previous study, we use six performance classes and assign the class
values using Ckmeans.1dp [WS11a], while we reserve class 6 for all algorithm
instances that did not achieve the target at all. Class 1 thus contains the best
performing algorithm instances. Again, we use the log,,(ERT) for clustering
in order to distinguish the instances by performance in orders of magnitude
rather than based on the actual runtime in seconds.

4.2.7 Post-hoc Experiment Analysis

A total of 12 algorithm instances was applied to 189 problem instances. We use
target qualities of 1% and 2% to the optimum or the best-found quality if an
optimum was unknown. For the 2% target on average we can observe that there
are 1.4 algorithm instances with rank 1, 1.5 instances that achieved rank 2, also
1.5 instances with a rank of 3, and 1.2 respectively 0.9 ranked 4 and 5. Most
algorithm instances (5.5 on average) did not achieve the target quality and
ranked 6. In the last case study we have observed several algorithm instances
achieved good solutions, while in this case the field of successful algorithm
instances per problem instance is much narrower. We state the percentage
of class rankings observed for each algorithm instance in Tables 18 and 19.
Again, it has to be noted that rank 1 only means a certain algorithm instance
was fastest, not that it was the only algorithm instance to achieve that quality.
Any of the algorithm instances classified among ranks 1 to 5 have a chance to
achieve the target, but took increasingly longer. This probability may still be
rather low within the given time budget.

103ev.heuristiclab.com/AdditionalMaterial#GECC02018
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4.2 Algorithm Selection for Solving GQAPs

At a 2% target, there were 126 (66.7%) cases where only a single algorithm
instance was in rank 1, while in 11 (5.8%) cases, all but one algorithm instance
failed to succeed. The binary model solved by LocalSolver achieved rank 1 most
often still the question has to be raised if it would also constitute the best
choice overall. The three algorithm instances that are especially interesting
from a robustness perspective are ILS, OSGA, and GRASP+PR which failed
to achieve the target quality for only 10-17% of the problem instances, while
all other algorithm instances failed at a rate of about a third to two thirds. ILS
would be a good choice as it achieved the 2% target in 90% of the instances.

However, caution has to be taken that this result is not misinterpreted.
Since the performance classes are created based on the log;,(ERT) it would
be wrong to conclude that ILS is successful 90% of the time it is applied. The
result says only that there is some probability > 0 that ILS is successful on 90%
of the problem instances and this probability becomes smaller and smaller the
higher the rank. Nevertheless, from an implementation perspective ILS is also
attractive. While GRASP is a highly specialized algorithm with many tuned
operators that is described and analyzed in a 39 page journal article [MRS11],
ILS is a very simple implementation with just a perturbation operator and
a low-level local search. ILS does perform worse than GRASP, however it is
certainly faster to develop if starting from scratch and failed least often in this
benchmark setting. The only static hyperparameter (perturbation strength)
is also easy to be tuned and performs better than the dynamic adaption that
we devised for ES which did not satisfactorily work.

The results in Table 19 show the performances of algorithm instances for a
1% target. There were 145 (76.7%) cases where only a single algorithm instance
was in rank 1, while in 27 (14.3%) cases, all but one algorithm instance failed
to succeed. As can be observed, OSGA solved more instances than the binary
LocalSolver model and also failed to achieve the target least often (17%). While
ALPS and pLAHC-s ranked very low in terms of the number of instances where
they achieved rank 1, they still failed to reach the target in only around 40%
of the problem instances and thus would be ranked 4** and 5" if the goal was
to avoid rank 6 first and then achieve rank 1 most often.

We analyze potential correlations between landscape features and algo-
rithm performance, in addition to correlations among algorithms in Table 20.
From the point of portfolio building, given two positively correlated algorithm
instances it would probably suffice to have one in the portfolio. However, neg-
atively correlated algorithm performance indicate that one algorithm is good
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Table 18: Percentage of ranks that algorithms achieved (2% target). [BWA1S]

Alg.Inst 15t gnd  grd - yth 5th 6th
LocalSolver 01 40% 11% 12% 6% 2% 31%
OSGA 28% 26% 18% 10% 5% 14%
GRASP+PR 25%  32% 13% 8% 4% 17%
ILS 19% 31% 26% 14% 1% 10%
LocalSolver N 10% 14% 10% 5% 4% 58%
CPLEX-KB % % 8% % 4% 67%
CPLEX-FY 6% 14% 8% 5% 2% 65%
MLS 4% % 5% ™% 13%  66%
pLAHC-s 3% 5% 13% 23% 23% 34%
ALPS 1% 4% 24% 22% 1™% 32%
ES 1% 4% 12% 15% 14%  55%
RS 0% 0% 0% 0% 0% 100%

Table 19: Percentage of ranks that algorithms achieved (1% target)

Alg.Inst 15t gnd  grd - yth 5th 6th
OSGA 3% 18% 14% 11% 4% 17%
LocalSolver 01 25% 8% 9% 6% 3%  49%
GRASP+PR 22%  27% 19% 5% 4% 23%

ILS 12% 23% 1™% 10% 2% 36%
LocalSolver N % 11% 6% 5% 2%  68%
CPLEX-KB % 7% 4% 5% 2% 75%
CPLEX-FY 6% 14% 7% 6% 1% 67%
MLS 3% 3% 4% 5% 13% 1%
pLAHC-s 3% 3% 11% 20% 22% 42%
ALPS 1% 8% 16% 19% 16%  40%
ES 0% 3% 5% 8% 8% 76%
RS 0% 0% 0% 0% 0% 100%
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4.2 Algorithm Selection for Solving GQAPs

especially at those instances that another is bad at and vice versa. These
algorithms are then highly interesting to form a portfolio with as their perfor-
mances complement one another. For instance, the OSGA instance is such a
candidate as it has significant correlations with ALPS (p ~ 0.51,p < 1le™°),
but performs better in general. On the other hand it is negatively correlated
to MLS and pLAHC-s, albeit with lower significance (p ~ —0.26, —0.34,p <
0.05,1e73). There is no significant correlation to other algorithm instances.
The two CPLEX models that we employed in the test performed similarly
(p ~ 0.71,p < 1e79), however the two LocalSolver models are not correlated.
The LocalSolver model with only binary decision variables performs much bet-
ter than the model with integer decision models from a greater domain. Both
encodings are equally powerful and cover the same solution space. The differ-
ence in performance are most probably due to internals of LocalSolver, which
are not in the public domain.

But we do not only look for correlations between solver performance. In
Table 20 we also state correlations between landscape characteristics and al-
gorithm ranks. Unexpectedly, we can observe high correlation between ex-
act solvers and problem dimension (p ~ (0.74,0.57)) while other algorithm
instances are less sensitive to dimensionality. LocalSolver even achieved a
slight negative correlation suggesting that it was performing better at larger
instances (lower rank) than other algorithm instances. When examining cor-
relations of |M|/|N| and relative algorithm performance we see that most
instances achieved worse performance when this ratio went up and thus when
the amount of locations was closer to the amount of facilities - which also cor-
responds to an increase in solution space relative to N. However, pLAHC-s
showed a slight negative correlation indicating that it performed slightly better
in such cases. This raises a question for future studies if this may be rooted in
a probabilistic acceptance criterion. The most interesting correlation among
solver performance and problem specific landscape characteristic is with re-
spect to utilization. We can observe that most algorithm instances show a
positive correlation indicating that they achieved higher rank on problem in-
stances with higher utilization. However, OSGA and ALPS, as representatives
of genetic algorithm variants, show a negative correlation (p =~ (—0.38, —0.3))
and thus those two are more successful on those instances relative to the other
algorithms. We hypothesize that crossover is beneficial to find good solutions
for problem instances with high utilization, whereas it prevents good perfor-

mance in cases with low utilization. Still, more research is required as ES was
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4 ALGORITHM SELECTION CASE STUDIES

also employed with crossover, but performed very poorly overall.

The commercial solvers CPLEX and LocalSolver were not affected much by
utilization and showed the smallest absolute correlation. However, we can see
that W, and also Dy have a stronger influence, especially on CPLEX. Naturally,
CPLEX benefits a lot from sparse matrices, because this reduces the problem
size considerably as it eliminates a lot of terms in the objective. LocalSolver
is mixed, while the integer model does benefit, solving the binary model does
not profit from more sparse problem instances. It is also interesting to observe
that the two LocalSolver models are likely solved much differently than CPLEX
solves the two linearizations. Often the correlations have different sign for the
binary and the integer model, while for CPLEX it’s about the same.

An analysis of the performance with respect to ECDF curves as mentioned
in Section 2.5 on page 50 is given in Figure 33 [BWA18]. We may see that ILS
and GRASP are very good initially and both share the same greedy construc-
tion heuristic. But while GRASP manages to achieve the 2% target faster, ILS
falls behind after about 1 second. Both are surpassed slightly before the 10
second mark by OSGA and later by LocalSolver which achieved most of the
2% targets. It is also necessary to observe that even for such short runtimes
of one minute, a poor metaheuristic, as our ES implementation in this case, is
outperformed by exact approaches. Of course, the comparison involves much
more cores on the CPLEX side. Assuming a perfect discriminator, selecting
from a portfolio consisting of OSGA, GRASP, and the LocalSolver 01 model
a total of 74% of the problem instances can be efficiently solved to 2%, which
increases to 83% when ILS is added.

In Figure 34 we observe a t-sne projection [MHO08] of the problem instances
in the study. The projection was performed using the problem specific features
|N|,|M|/|N|,util, and feas as described in Section 4.2.2. For each algorithm
instance a separate plot is shown where the problem instances as points are
colored according to the performance classes of that algorithm instance. In
Figure 35 projections based on different feature sets are compared for the
performance of the OSGA algorithm instance.

In Figure 36 we observe the performance of OSGA and GRASP on a parallel
coordinates plot. The three different feature are shown on the x-axis and their
respective standardizes values on the y-axis. It can be seen, that there is
some difference, with respect to |M|/|N| (M/N Ratio) and bump (Bumpiness).
Problem instances with larger values of bumpiness are solved more efficiently
by OSGA while problem instances with smaller bumpiness favor GRASP.
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Figure 34: Performance classes for the 1% target for OSGA, GRASP, ILS, and LocalSolver 01 (left to right, top to
bottom). Each dot represents a problem instance projected from problem specific feature space with t-sne.
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Dimension M/N Ratio feas. util. Dimension M/N Ratio feas. util.

Sharpness Bumpiness Flathess Sharpness Bumpiness Flatﬁess

dbi ic pic dbi* ic* H(X) dbi ic pic dbi* ic* H(X)

Figure 36: Parallel coordinates plot for the 1% target for OSGA (left) and
GRASP (right) of different features (top to bottom): problem specific, directed
walk, random walk. The color represents the performance class with class 6 in
light yellow represents very bad performance and darker blue represents very

good performance.
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4.2.8 Algorithm Selection

In this section we will use a k-nearest neighbor algorithm (k-NN) to perform
the algorithm selection and evaluate its performance. k-NN is an instance-
based machine learning method that does not learn a model. Its performance
depends on the hyperparameter k and the distance metric used in the feature
space. In this case we will stick with a FEuclidean distance (L2-norm), but
vary the feature sets which have a strong influence on the distance as we have
seen in Figure 35. The feature sets that we will compare are problem specific
features, random walk-based features, directed walk-based features, and all
features combined.

The ranking of algorithm instances is composed of the observed perfor-
mances of the nearest k& problem instances. For k = 1 the performance is
exactly the same, but for £ > 1 an averaging must be used. It has however
been hypothesized that such an averaging does not favor the best, but rather a
generally well performing method [BAW17]. Thus we use k = 1 for all experi-
ments and evaluate its performance. Again, a 2% target has been used to the
optimum respectively the best found solution. All features are normalized to 0
mean and unit variance before the L2-norm is used to compute the distance. A
leave-one-out crossvalidation (LOOCV) is used to evaluate the generalization
performance. Thus, a total of 189 folds are evaluated and a ranking should be
achieved. Similar to the previous study we use Spearman’s p and NDCG to

evaluate the performance of the recommender.

4.2.9 Results

If all characteristics are used the combined solver achieves better performance
than any of the individual solvers as shown in Table 21. It achieved a rank
1 algorithm instance in 41% of the cases, and an unsuitable instance in only
17% of the cases. Thus algorithm selection results in a better overall solver in
that it aims to pick the better ones for a concrete problem instance.

Furthermore, we analyze the NDCG; performance and the correlation co-
efficient in Table 22. The best results are achieved with the problem specific
features only. Neither the random walk nor the directed walk exploratory
landscape analysis results in an improvement of the recommendation.

In this experiment all 12 algorithm instances are used, but for future work
it could be meaningful to limit the analysis to only the top four algorithms

which may account for a large number of problem instances.
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Figure 37: Problem instance map showing the best performing algorithm instance(s) for the 1% target using problem
specific features for performing the projection. Each dot represents a problem instance projected onto a plane with t-sne.
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Table 21: The combined solver given the one nearest neighbor achieved better
performance than the individual solvers for the 2% target.

Alg.Inst 15t gnd grd - 4th g5tho gth
Combined 41% 22% 12% 5% 3% 1%
LocalSolver 01 40% 11% 12% 6% 2% 31%

OSGA 28% 26% 18% 10% 5% 14%
GRASP+PR  25% 32% 13% 8% 4% 1%
ILS 19% 31% 26% 14% 1% 10%

Table 22: Correlation analysis of an ideal selection and with k-NN [BWA 18]

Features NDCG; | p
problem specific  0.69 0.49
random walk (fla) 0.56 0.39
directed walk (fla) 0.65 0.43
problem specific + fla  0.68 0.48
problem specific + directed walk 0.69 0.49

As a last result, we developed a new visualization that has already been
shown in Figure 32 for the previous study. In this new visualization we want
to show the best algorithm instances for each problem instance in one plot,
rather than in many different plots. We have to overcome an obstacle in that
multiple algorithm instances may share rank 1 for certain problem instances,
thus we have to find a suitable way to display such an overlap. In Figure 37
we sorted the instances by the number of rank 1 instances and assign differ-
ently sized circles as markers. Each problem instance is then displayed as the
corresponding circles for the respective algorithm instance that solved it most
efficiently. Because, the circles are increasing in size and shown without a fill
color, different algorithm instances achieving top performance stack together.
Thus we can also easily visualize instances that are easy to solve in that there
are more choices of efficient algorithms. Again, to identify the locations of
the problem instances, we used t-sne as a projection of the high dimensional

feature space into two dimensions.
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4.2.10 Conclusion and Outlook

In this section we performed a landscape analysis on generalized quadratic as-
signment problems, we devised new highly efficient algorithms and models and
applied them in a large study involving more than 70,000 experiments. We
analyzed correlations among the performance of these algorithms and among
performance and features. We also showed in more depth different visual-
izations that are based on projecting the problem instances, in this case with
t-stochastic neighbor embedding (t-sne), which is a very well known and highly
suited technique for this task. Furthermore, we evaluated the performance of
a simple one nearest neighbor recommender based on various feature sets and
showed that the resulting performance is better than that of an individual
solver. In this study, we also evaluated a mix of commercial and open source
solvers, and found both to be quite efficient. Certainly, CPLEX as the only
exact solver, did have its limitations, however LocalSolver could provide very
good solutions in short time.

We developed a new visualization for showing the performance of algo-
rithm selection as a classification problem when there exist multiple algorithm
instances for class 1. This visualization is based on a scatter plot with stacked
markers. Additionally, we identified a new hypothesis regarding a relationship
between the success of crossover and the utilization of the problem instance
[BWA18]. This has to be investigated further in future work.
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5 Decision Support Systems for Real-World Ap-

plications

“Plans are worthless, but
planning is everything”

Dwight D. Eisenhower [Bla57]

Given the developments that we outlined so far in this thesis, we are closer
to think of and create decision support systems in heuristic optimization. We
do not only want to compare performances among algorithms, although that is
a prime interest in scientific research, but also suggest algorithm instances to
apply to previously unknown problem instances. In addition, some users of a
possible decision support system, would certainly value the ability of searching
the solution space not only by starting from randomly generated solutions, but
by reusing previously identified solutions of higher quality. In addition, users
may contribute to this system by supplying algorithm and problem instances,
runs and solutions. But before talking about such a possible decision support
system more in detail we have to reconsider the decisions that have to be
made, the information that leads to well-funded decisions and their outcome
and impact.

We will focus on the whole process of applying heuristic optimization from
the problem definition to the presentation of a valid and acceptable solution.
In general, we will assume the research model depicted in Figure 38 is followed
which has been formulated by Sagasti and Mitroff [SM73, MBPS74] and has
been discussed since [BIF02] in the field of operations research (OR). In this
model the real problem situation is transformed into a scientific model to
which solutions are found and which are then implemented in the real world
again. To arrive at a scientific model a conceptual model is first developed
in a phase called “conceptualization”. Sagasti and Mitroff put extra emphasis
on the importance of the conceptual model, but found it difficult to formalize.
They speculated that “perhaps this conceptualization process is a part of the
art of operations research rather than the science of OR” [SM73]. Also it is
important to mention that the solution may influence the conceptual model
and vice versa in such a way that putting the scientific model to work actually
produces usable solutions for the real world, or at least the conceptual model
of it. Another important arrow is drawn between reality and scientific model

emphasizing the validation process.



5.1 Motivation for Decision Support

Scientific
Model

Problem
Situation

Figure 38: Research model as displayed in [BF02| originally published by
[MBPST74].

This research model is highly useful in depicting the basic steps in problem
solving. In each process certain decisions are made, however not all of them
may be supported by systems. Nevertheless, in the following we will cover
some important aspects and aim to motivate the use of decision support.

5.1 Motivation for Decision Support

In more recent years there have been continued research efforts towards meth-
ods that automatically select from a pool of algorithm instances suitable to
solve a given problem instance [SM08, XHHLbH0OS, XHLb10, SMvHI11]. This
is highly useful in the case of choosing the right solver for a given task, e.g.
in an automated decision scenario. However, the idea of providing a decision
support system (DSS) extends beyond this case. In the greater context of the
research model (cf. Figure 38) this covers only the model solving processes
that researchers encounter when tackling real-world problems. In this narrow
focus, such a DSS should be able to help in the understanding of the prob-
lem landscape. Which instances are related to each other in terms of their
characteristics? Furthermore, a DSS should support users in applying search
algorithms, for instance by suggesting efficient solvers or by seeding solvers
with some solutions in order to search more actively in a certain part of the
search space. Finally, the results should be documented and intuitive compar-
isons between solvers should be possible.
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5.2 Decision Support with the Research Model

A decision support system may become effective when it supports mastering
a number of processes encountered in the general research model. Especially,
concerning real-world problems and application scenarios, the conceptualiza-
tion phase governs a few critical decisions. The objective has to be defined in
terms of a measurable quantity that should either be minimized or maximized.
Then it must be decided which kind of modeling methodology is suitable to
achieve an improvement with respect to the objective. Finally, a solution ap-
proach must be designed and the resulting solutions must be screened and

returned to the user.

Goal

Predating any formalized approach in minimizing or maximizing a certain
target, the problem situation has to be analyzed. In industry projects practi-
tioners often formulate only business goals which can be as coarse as “we want
to improve utilization” or “we want to automatize crane operations”. This part
of the conceptualization process is difficult to support and requires a lot of
experience also involving creativity, whole-system thinking, but also analytical
abilities. Nevertheless, it is among the most important steps. An incomplete
conceptual model that does not consider related activities or the wrong goal
can lead to unforeseen consequences and unwanted side-effects in the end.
Also, often there are several goals and also constraints: ‘We have to improve
X, but still do Y”. At a moment where formalization is still low, it is uncertain

if these goals are even feasible to achieve.

Modeling Methodology

Modeling methodology is an important decision which also has strong in-
fluence on how the model can be solved. A problem situation that has to be
simulated may hardly be solved by exact methods and often requires a heuris-
tic approach. On the other hand having a mathematical model, there may be
highly efficient exact solvers. The options can be coarsely summarized as

e Mathematical Programs
e Deterministic Simulations

e Stochastic Simulations

Mathematical programs often provide a concise description of the optimiza-

tion problem. However, large number of constraints or many decision variables
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can lead to lengthy descriptions. Formulations might become more compli-
cated due to linearization techniques or other relaxations that are performed
for efficient solving. The quadratic assignment problem (QAP) formulation
given in Equations (2.3) to (2.6) is an example of a mathematical program.

Deterministic simulations are similar to mathematical programs, but gen-
erally allow more complex descriptions of the problem. Any mathematical
description can easily be transformed into a deterministic simulation. These
often accept a complete solution of the problem and compute several charac-
teristics, e.g. objective value and constraint violations. In the QAP case this
would be the sum of the flow distance products between all assigned facilities.
Even stochastic problems, such as the probabilistic traveling salesperson prob-
lem, may be represented as deterministic simulation or mathematical program.
For instance, by deriving an analytic expression of the desired objective, e.g.
expected distance or by sampling from the probabilities, i.e. creating realiza-
tions, and optimizing the expectation given those samples.

The domain of stochastic simulations is certainly the most challenging from
the point of model solving. Each run of the simulation will likely result in a
different outcome. Typically, this approach is referred to as simulation-based
optimization, because it includes additional activities such as having to es-
timate the expected value from a range of samples. Comparing solutions to
stochastic simulations is akin to the comparison of probabilistic variables and
thus more complex than a simple > or < operation as in the case of determin-
istic simulations. Statistical tests may have to be performed to decide whether
the means of two solutions are indeed different and if not additional simula-
tions may have to be performed. Thus, often a number of repetitions may be
necessary using random seeds or a fixed set of seeds. The expected value may
then estimated as the average of the samples’ outcomes. In the case of a fixed
set of seeds this could again lead to a deterministic approach.

Solution Representation

The solution structure, i.e. the decision variables and their interrelations,
need to be determined. The type of the variables, typically discrete or con-
tinuous numbers, need to be fixed. However, there can also be more complex
solution types with a dynamic amount of decision variables such as whole com-
puter programs. These may be used within a simulation, e.g. to perform a
ranking of jobs such as in scheduling problems [BWWAOS].

Not all algorithms are well defined for all possible solution representations.
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In continuous optimization the notion of gradient and direction is present which
is missing in e.g. permutation spaces. Thus, some algorithms that may ap-
proximate the gradient and dynamically adjust the step size may work very
well in continuous domains and are rather low ranked in other search spaces
with more complex interactions between the variables. In addition there may
be constraints on the decision variables which complicate variation operators

such as crossover or mutation.

Fitness Function
The fitness function is a formalization of the objective that transforms

elements of the solution space S into the real-valued domain of degree n.

f(z) > R" with x € S

A decision has to be made on the value of n. The applicability of available
methods changes quite drastically for n = 1, n = [2, 3], and n > 3 which relate
to the fields of single-objective, multi-objective, and many-objective optimiza-
tion [I'TNO8]. The option to reduce a problem with multiple objectives to a
single objective is possible in principle by computing the dot product of the
fitness vector and a weights vector. This scalarization approach however is
limited to identify only solutions as optimal that lie on the convex hull of the
optimal Pareto front. Additionally, a decision on the weights for the individual
objectives has to be made.

The impact of this step are rather large as the methods are entirely different
and the expected results are different. In addition, approaches that consider
multiple objectives usually return a set of solutions that are non-dominated
to each other. Thus, a final selection of a single solution always has to be
performed afterwards in case this is required.

Algorithm Selection

Especially, in research projects when the problem formulation is new and
little is known about the variety and difficulty of new problem instances a
DSS may be very helpful. In the framework of a DSS multiple algorithms are
benchmarked against each other on a number of test cases and first results can
be compared. Potentially, there is a dominating solution approach already that
can be further improved through customization and specialization to the target
problem. Otherwise, first insights might be obtained to which degree different

algorithms and their search concepts affect the outcome quality. Potentially,
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hints may be obtained that finding solutions to some group of instances is
improved by having some sort of crossover, while some other group of instances
is solved very well through simple hill climbing [BWA18].

For a formalized problem definition consisting of a solution representation
and a fitness function several approximate algorithms exist. Often these algo-
rithms possess a number of parameters, which create a large space of possible
algorithm instances. These vary in their ability to achieve good solutions in
short time. Typically, for each instance of the problem, a different algorithm
instance may be optimal.

In algorithm selection, the “best” instance has to be selected for the con-
crete problem instance. The definition of what may be best is not as simple
and basically expands into the domain of short runtime and good quality. If
we fix one of these domains then it becomes quite clear, the algorithm instance
that delivers the best quality in the given runtime or the algorithm instance
that uses least time to achieve the desired quality. A further complication
is that approximate algorithms are often stochastic thus runtime and quality
both have to be seen as random variables distributed to an a priori unknown
distribution.

Solution Selection

Algorithm instances may evaluate a number of different solutions often
presenting a final best solution or a set of best solutions, e.g. those of similar
quality or non-dominated solutions in multi-objective search. Sometimes minor
criteria which were not added to the problem definition may also lead to a
selection decision in that one solution is more preferable over another. This
can happen when it would be difficult to formalize or when a bias towards such
criteria should be avoided in the search.
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5.3 Use Cases

The assumption is that the experts approach a decision support system with
a new problem instance that has not be solved before [BWA16]. We aim to

focus on three use cases that are relevant for experts in heuristic optimization.

1. Understanding the new instance
2. Solving the new instance

3. Document results and learn from past experiments

There is some overlap in these use cases as understanding the instance and
solving it are closely related. For instance, when analyzing results of specific
solvers, e.g. population-based algorithms or iterated local search variants users
may be able to gain a better understanding of the instance also. The successful
use of a population suggests that exploration is more vital concept and that
there is some global super structure which can be exploited through combi-
nation in the population. On the other hand, if single-solution metaheuristics
perform well, it may suggest just the opposite, that there is hardly a super
structure such as a “big-valley” [OV16]. Combining fitness landscape analysis
with performance data enables to complete the picture of similarity between

problem instances.

Understanding

Identifying similar problem instances is one of the key interests of optimi-
zation experts. One of the main strengths of adaptation based on previous
experience is to find a similar or related case and decide based on the obtained
information there. Thus, it is the aim to identify if a new instance is part of
a cluster and to which other instances it is most closely related. In a decision
support system visualization of the space of problem instances are highly in-
teresting. Typically, these spaces consist of the high-dimensional characteristic
vector that we obtain through landscape analysis (cf. Section 3) and thus some
mapping methods from high-dimensional to two dimensions have to be used,
e.g. principal components analysis (PCA), multi-dimensional scaling (MDS),
self-organizing maps (SOM), and t-distributed stochastic neighbor embedding
(t-SNE) are commonly referred to.

An important part in such an embedding of high-dimensional spaces is the
actual characteristics that should be used. Naturally, characteristics should

be normalized before being embedded in order to avoid a characteristic with a
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bigger range become more important. But even if such normalization is being
applied, a range of features that measure basically the same characteristic may
also bias the result. Thus, correlations among such features need to be studied,
as was done in Section 4, in order to identify a set of characteristics that are,
at least not linearly, related.

Furthermore, solutions of the problem instance provide another means of
understanding. Networks of solutions may be formed, for instance by creating
a graph in which an edge denotes a certain probability to move from one solu-
tion to another. These, so called, local optima networks (LON) are created by
considering locally optimal solution, their quality and distance in the solution
space. Nevertheless, these networks may become huge, still in the analysis
of certain centrality characteristics some insights are gained [OVDT14]|. Such
LON have been visualized with the help of multiple dimensions. The size of
a node is directly proportional to the size of its associated basin of attraction,
while the colore of a node is related to its quality or fitness. Visually in-
specting such a network might quickly reveal some important characteristics,
for instance whether the high quality solutions are also those with the bigger
basins of attraction or whether the opposite is the case. Creating LON does
have a computational disadvantage as they are very expensive to compute and
a thorough exploration of the solution space has to be performed. It could be
said, that after a LON has been built, solving the instance is not of interest
anymore as most of the interesting solutions have already been found.

Solving

Experts seek to identify good solutions to problem instances, either by
randomly initializing a starting solution or by some predefined starting point.
Especially, the later case is still mostly unexplored, and interactive optimiza-
tion systems are not as well researched. However, it presents a chance for a
modern and interactive approach to solving. A simple “primer” heuristic could
quickly reveal some good solutions that are further improved by more complex
heuristics. Also, in visualizing the network of solutions experts could choose
to set starting solutions such as to intensify the search in a certain region. For
this, two different seeding strategies are identified:

e Cloning
e Sampling

Solutions that are cloned are directly used within the starting configura-
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tion of the algorithm. A single solution algorithm may choose from the set of
seeding solutions, while a population-based algorithm may fill its initial pop-
ulation with members of that set. Unless, the set of seeding solutions is very
large, it is a strategy that is more viable for single-solution metaheuristics
that aim to intensify the search around a certain solution. When sampling
from the set of seeding solutions only some components of those solutions are
used. The starting configuration of the algorithm consists of a certain mix
of those components. This strategy may be more viable for population-based
metaheuristics, as it is easier to generate a diverse set of solutions for the ini-
tial population. Single-solution metaheuristics would be able to intensify the
search in some sub-region of the solution space that is spanned by the possible
combinations of the solutions in the seeding set.

While experts may be familiar with some algorithms and know their pa-
rameters and associated effects quite well, it would be quite demanding to
require an understanding of each and every algorithm that has been described
and implemented. The idea is that the creator provides some suggestions on
the parameterization and “hand-selects” a set of instances that may be effi-
cient on different instances. These would then be treated independently. It
would not be wrong to consider some meaningful, but basic adaptation of those
parameters, for instance depending on the problem size.

The provided algorithm instances could then need to be ranked by the de-
cision support system so that experts may get some a priori feedback. It would
be beneficial to have an estimation of the expected runtime to reach a certain
target value, or vice-versa the expected target value given a certain runtime.
Recommendation algorithms as have been applied in Section 4 can be used to

process the data and suggest suitable solvers.

Documenting and Learning

Finally, a decision support system should enable uploading data such as
problem instances, FLA characteristics, algorithm runs and solutions. This
documents the progress and efforts that have been attempted at solving and
may help improve the recommendation in the future when again a similar

instance should be solved.
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5.4 Software Systems

In the course of my career I have worked in several research projects and where I
shaped the architecture and usage scenarios of several software systems. These
systems may be coupled and put to use in real-world problem solving. In this
section I would like to describe the systems in a bit more detail and how they

fit into the research model.

5.4.1 Sim# - Discrete Event Simulator

Modeling real-world processes may be a rather complex task. As has been
explained previously, simulation is one of the main modeling methodologies
to describe such processes. To support modeling real-world systems, I started
the discrete event simulator Sim#''. Sim# can be described as a port of
the functionality described by SimPy!'? from the “Python world” to the C#
programming language and the “.NET world”. It is actively maintained open
source software and has been successfully put to use, for instance to simulate
the inner processes of a machine tool. There are two notable difference between
SimPy and Sim#. First, SimPy may use only double as time, while in Sim+#
the Timespan class may be used. However, usage of doubles was added through
a set of methods called the “D-API” as these all have a “D” appended to the
name. The second case concerns when a process faults due to external reasons,
for instance due to another process. SimPy may inject an exception into a
generator, i.e., a process method, which is not possible in C#. Thus, Sim#
processes that are expected to be interrupted have to call a specific method to
indicate that the fault has been handled. The core concepts of Sim# are:

e Events
e Processes

e Resources

Events are objects that hold certain data and which may be added to the
global event queue. Each event provides a list of callbacks which are executed
when the event is processed. It has a lifetime that translates into the states
Alive, Triggered, and Processed. It is alive when it has not yet been added to
the global event queue and becomes triggered once it is stored there. When

the event has happened it becomes processed and all callbacks are called.

"Uhttps://github.com/abeham/SimSharp
https://simpy.readthedocs.io/
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Processes are event generators. A process may be implemented as a
method in the C# programming language. It yields a series of events. Af-
ter a yield the process is suspended and will be continued when the event that
was yielded is processed. This simple concept enables a concise description of
a process. Processes may also spawn sub-processes and can be waited upon as
for each process an event is created that will be triggered and processed when
the process does not generate further events.

Resources are additional event queues that are used to synchronize pro-
cesses. In the most simple case a resource can be requested or consumed by a
process, the request itself is an event that can be yielded. Once the request is
granted the process may continue. It may hold that request for as long as it
likes, but should eventually release it. Other processes that require the same
resource may have to wait for capacity to be available again. In general we
may categorize resources according to the following criteria:

e Spectrum - Discrete or Continuous
e Mixture - Homogeneous or Heterogeneous
e Contract - Lease or Consume

The spectrum is most characteristic to distinguish between resources. Dis-
crete resources usually consider a finite number of entities which may be rep-
resented by a discrete number or instance of an object in a “list-like” data
type. On the other hand, continuous resources usually just capture the total
quantity in a continuous number.

Continuous resources implicitly assume a single homogeneous entity of
varying size. However, discrete resources may either be homogeneous or het-
erogeneous. In the case of a heterogeneous resource the entities have further,
potentially unique properties, while for a homogeneous resource all entities are
exactly alike and only their number is of interest. For instance, a workforce
may be homogeneous if the individual workers are assumed to be replaceable
with one another for the tasks considered in the model. However, if the work-
ers’ different skills and attributes are taken into account a resource that rep-
resents heterogeneous entities has to be used. Likewise, in a logistics scenario,
transport vehicles may be considered homogeneous, e.g., all having the same
capacity, or heterogeneous, e.g. with different capacities among the vehicles.
Usually, modelling scenarios with heterogeneous resources adds the additional
complexity that the selection of the exact entity has to be defined and which

may be more complex than random or first-in-first-out (FIFO).
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Finally, the contract category describes whether a certain amount or quan-
tity of the resource is leased and has to be returned or whether it is consumed.
For instance, a worker will usually be modelled as being leased, while a ware-
house may be a resource that allows stocking and consuming items. A resource
that leases its entities is slightly more complex as it has to track and match
the leaseholders which is not necessary when entities may be fully consumed.
In Sim# there exist a few standard resources which are given together with

the categorization above:

Resource - Discrete, Homogeneous, Lease

ResourcePool - Discrete, Heterogeneous, Lease

Store - Discrete, Heterogeneous, Consume

Container - Continuous, Homogeneous, Consume

A Resource contains a discrete number of anonymous entities that can be
requested and which have to be released back to the resource eventually. It
employs a FIFO queue to arrange requests. There exist variants in form of
a PriorityResource and a PreemptivePriorityResource to which requests with
a certain priority may be made in both cases. Preemptive resources may
additionally retract a processes’ lease prematurely. The process that holds the
lease is interrupted and has to handle the preemption or fault otherwise.

The ResourcePool is similar to a Resource, but consists of identifiable en-
tities. This type is not part of SimPy and has been introduced only in Sim#.
This may be useful, for instance when modeling a pool of employees with their
individual characteristics, e.g., qualifications. An entity from the resource pool
may only be borrowed for some time and has to be returned. Requests to a
ResourcePool may specify a filter to define the properties of the individual to
be requested (e.g. some qualification).

A Store contains a discrete set of heterogeneous items that can be added
to and removed from. Stores may have a maximum capacity, and a so called
FilterStore exists to retrieve items that fulfill some criteria. Store and Resour-
cePool are very similar, however in a Store the item does not need to return
(consume instead of lease). A PriorityStore exists in which items have some
form of priority and they are consumed in priority order, while still each put
and get operation is executed in FIFO order.

A Container contains a continuous amount of some substance. Again, the
substance may be stocked in the container and consumed. A PriorityContainer

in which requests are prioritized would be thinkable, but a use case for such a
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resource has not yet emerged. In any case, it is simple to extend the standard
resources given that the code of all resources is open source.

In Listing 5 two processes are shown representing a certain chef that prepare
some meal. Both use a common resource (oven). The result of the model is
displayed in the last lines of the listing. The request events implement the
IDisposable pattern and are thus released automatically after the using block.

In general, processes should be created that are parametrizable such that
a chef can be modeled using only one process that differs in the parameters.
As can be seen both chefs in Listing 5 perform the same basic steps, but differ
in the time that is required. In a production or logistics scenario the processes
would represent processing at a machine or some transport activity. A clear
advantage of the SimPy/Sim# modeling approach is that the processes can be
described without having to interact with the simulation framework a lot. The
interactions are mostly to call the request and release methods of resources and
several methods of the environment object.

Coincidentally, in the example in Listing 5 both cooks could finish in less
time when ChefA got the oven before ChefB even if the latter had to remain
idle for one time unit (or start one time unit later). This opens the world of
scheduling problems for which Sim# is a suitable evaluation framework. In
Listing 6 a simple deterministic permutation flowshop is simulated. The class
PermutationFlowshop creates a default instance of 3 machines and 20 jobs.
The method SimulateShop expects an order of the jobs. The first job in the
sequence is processed first and so forth. It would be fairly simple to extend
such formulations regarding “no-wait” conditions, i.e., that the job may release

the current machine only after it has acquired the next.
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Listing 5: Two processes in Sim# 3.1.1 and the corresponding output

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

static IEnumerable<Event> ChefA(Simulation env, Resource oven) {
env.Log("{0,3} A starts to prepare the meal.", env.NowD);

yield return env.TimeoutD(3.0);

using (var req = oven.Request()) {

env.Log("{0,3} A wants the oven", env.NowD);

yield return req;

env.Log("{0,3} A got the oven", env.NowD);

yield return env.TimeoutD(2.0);

env.Log("{0,3} A finished cooking, leaving the oven", env.NowD);
}

yield return env.TimeoutD(4.0);

env.Log("{0,3} A finished preparing.", env.NowD);

}

static IEnumerable<Event> ChefB(Simulation env, Resource oven) {
env.Log("{0,3} B starts to prepare the meal.", env.NowD);

yield return env.TimeoutD(2.0);

using (var req = oven.Request()) {

env.Log("{0,3} B wants the oven", env.NowD);

yield return req;

env.Log("{0,3} B got the oven", env.NowD);

yield return env.TimeoutD(5.0);

env.Log("{0,3} B finished cooking, leaving the oven", env.NowD);
}

yield return env.TimeoutD(2.0);

env.Log("{0,3} B finished preparing.", env.NowD);

}

static void Main(string[] args) {
var env = new Simulation();

var oven = new Resource(env);
env.Process (ChefA(env, oven));
env.Process(ChefB(env, oven));

env.Run () ;

}

// Output:

0 A starts to prepare the meal.

0 B starts to prepare the meal.

2 B wants the oven

2 B got the oven

3 A wants the oven

7 B finished cooking, leaving the oven
7 A got the oven

9 B finished preparing.

9 A finished cooking, leaving the oven
13 A finished preparing.
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Listing 6: Permutation Flowshop Simulation using Sim# 3.1.1

1 public class PermutationFlowshop {

© 0 N O U s W N

NN NN NN NN R R e e
© ® N O G A W N R O © KN O ® N RO

private int M, J; // number of machines, jobs

private List<List<int>> pij; // processing times per machine, job
public int Jobs { get { return J; 1} }

public int Machines { get { return M; } 1}

public PermutationFlowshop () {
pij = new List<List<int>> {
new List<int> { 54, 83, 15, 71, 77, 36, 53, 38, 27, 87,
76, 91, 14, 29, 12, 77, 32, 87, 68, 94 },
new List<int> { 79, 3, 11, 99, 56, 70, 99, 60, 5, 56,
3, 61, 73, 75, 47, 14, 21, 86, 5, 77 },
new List<int> { 16, 89, 49, 15, 89, 45, 60, 23, 57, 64,
7, 1, 63, 41, 63, 47, 26, 75, 77, 40 }

public PermutationFlowshop(List<List<int>> proc_times) {
pij = proc_times;
M = pij.Count;
J = pij[0].Count;

public double SimulateShop(IEnumerable<int> jobs) {
var env = new Simulation(); // create a new Sim# simulation
// create the M machines
var machines = Enumerable.Range (0, M).Select(x => new Resource(
env)).ToArray () ;
// add the jobs in order given by the permutation
foreach (var j in jobs)
env.Process (Job(env, j, machines));
env.Run(); // run the simulation

return env.NowD; // return the simulation time (last finish time)

private IEnumerable<Event> Job(Simulation env, int j, Resourcel[]
res) {
// for each of the M machines in order from 0O to M-1
for (var m = 0; m < M; m++) {
// create a new request for the next machine
using (var req = res[m].Request()) {
yield return req; // wait upon obtaining the machine
// process the job j on machine m
yield return env.TimeoutD(pij[mI[jl);
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5.4.2 HeuristicLab Programmable Problem

The HeuristicLab optimization environment features an elaborate graphical
user interface (GUI) that allows students, researchers, and practitioners ex-
plore heuristic optimization. It contains many pre-defined problems such as
vehicle routing variants and pre-defined algorithms such as variants of genetic
algorithms to name just a few.

One of the main contributions that I initiated and implemented together
with my colleague Michael Kommenda is the programmable problem. This
enables to define a new optimization problem in the GUI similar to how e.g.
the CPLEX Optimization Studio or the MiniZinc IDE allows defining mathe-
matical programming models. The basic interface of the single-objective pro-
grammable problem in HeuristicLab is given in Listing 7.

Listing 7: Interface of the programmable problem in HeuristicLab 3.3.15

bool Maximization { get; }
void Initialize();

1

2

3

4

5 double Evaluate(Individual individual, IRandom random);

6

7 void Analyze(Individual[] individuals, double[] qualities,
ResultCollection results, IRandom random);

8

9 IEnumerable<Individual> GetNeighbors(Individual individual, IRandom

random) ;

The user has to define an Initialize method in which the solution repre-
sentation and boundary constraints on the decision variables are defined. This
method defines the problem instance is and is called upon successful compila-
tion. In the Evaluate method the user retrieves the solution configuration in
form of an Individual as well as a random number generator instance in case
a stochastic optimization problem is to be modeled. This method has to return
a double value that depicts its quality. The Maximization property defines
whether this quality is to be minimized or maximized. The Analyze method
is similar to a callback after each iteration in which the user may calculate
custom results, e.g. of the best-found solution so far. Finally, trajectory-
based methods require the definition of a neighborhood. This is not always
simple to achieve in a generic fashion. The GetNeighbors method allows the
user to specify the neighborhood by returning all solution configurations that

are neighbors to a certain solution. This approach is generic and works with
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all algorithms that accept some form of neighborhood definition, but has the
downside that no partial evaluation is possible. Thus, each neighbor has to
be evaluated as if it was a full solution. Again a random number generator is
given to this method in order to allow stochastic sampling of the neighborhood.

While Sim# is a framework for creating deterministic or stochastic simu-
lation models to represent, the programmable problem is an interface to solve
those models using algorithms. The model itself is seen as a black box. For
instance, in the Evaluate method in Listing 7 such a model could be pa-
rameterized and started. The result of that model could then be returned.
Listing 8 shows an implementation of the permutation flow shop problem as
a programmable problem formulation reusing the Sim# model from Listing 6.
Instead of computing the start times of the operations manually, the simulation
engine will perform the necessary steps.
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Listing 8&:

Permutation Flowshop Programmable Problem in

HeuristicLab
1 using System;
2 using System.Ling;
3 using System.Collections.Generic;
4 using HeuristicLab.Core;
5 using HeuristicLab.Data;
6 using HeuristicLab.Encodings.PermutationEncoding;
7 using HeuristicLab.Optimization;
8
9 namespace PFSP {
10 public class PFSPDefinition : CompiledProblemDefinition,
11 ISingleObjectiveProblemDefinition {
12 private PermutationFlowshop flowshop;
13 // objective is to minimize makespan
14 public bool Maximization { get { return false; } }
15
16 public override void Imnitialize() {
17 // processing times are parsed from the instance
18 flowshop = new PermutationFlowshop();
19 // encoding is created
20 Encoding = new PermutationEncoding("p", length: flowshop.Jobs,
21 type: PermutationTypes.
Absolute);
22 }
23
24 public double Evaluate(Individual ind, IRandom random) {
25 return flowshop.SimulateShop(ind.Permutation("p"));
26 }
27
28 public void Analyze(Individual[] individuals, double[] qualities,
29 ResultCollection results, IRandom random) { }
30 // for move-based algorithms, all possible swap2 neighbors are
returned
31 public IEnumerable<Individual> GetNeighbors(Individual ind,
IRandom random) {
32 var p = ind.Permutation("p");
33 foreach (var move in ExhaustiveSwap2MoveGenerator.Apply(p)) {
34 var neighbor = ind.Copy();
35 var perm = neighbor.Permutation("p");
36 Swap2Manipulator.Apply (perm, move.Indexl, move.Index2);
37 yield return neighbor;
38 }
39 }
40 }
41 }
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5.4.3 PPOVCockpit - Production Planning and Visualization

So far we have covered how Sim# supports researchers and practitioners in
creating a scientific model and detailed how the programmable problem is used
to embed such a model within the HeuristicLab optimization environment. A
missing link in terms of systems is an interface to the real-world and to software
systems typically found in real-life such as enterprise resource planning (ERP)
or manufacturing execution systems (MES).

In 2009 I started the development of the PPOVCockpit. The PPOVCock-
pit is also based on HeuristicLab and was specifically created to interface with
real-world systems. Its heart is a data model that abstracts many entities,
which also occur in ERP systems such as production orders, workplaces, ma-
terials, etc. The basic data model is rather generic and can be extended to
include special properties. For instance, the generic material has an identi-
fier, dimensions, volume, and weight. A steel slab, which is a derivative of
the generic material, then adds a temperature property among others. See
Figure 39 for a snapshot of the data model used within the PPOVCockpit.

In 2018 the PPOVCockpit is installed in several companies in Upper Aus-
tria and provides functionalities such as performance measurement, quality
control, and its data is used to parametrize optimization models such as steel
stacking, intralogistic transport, or warehouse assignment. There have been
many contributors from the HEAL research group to this software. A full list
of contributors would be too long, but Johannes Karder and Sebastian Raggl
deserve to be mentioned.

The PPOVCockpit supports the process of acquiring data, visualizing and
transforming data and thus the parameterization of the scientific models. It
also supports implementing the solutions which may be deferred to human
operators that use the result of the software or provided to autonomous systems
in terms of an API that can be called when it is run without GUI. The user

interface is shown in Figure 40.
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Figure 39: A snapshot of the generic data model that includes a specialization

of the Material type in form of a Slab.
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Figure 40: A screenshot of the PPOVCockpit showing performance visualiza-

tions in the steel logistics case.
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6 Conclusions

“XXX TODO XXX”

This Author

The thesis at hand constitutes a study within the topic of fitness landscape
analysis and its application in algorithm selection. I imagine this work to be
important in the transition of technology created and maintained by human
experts to technology that is self-maintaining and runs unobserved. Natu-
rally, such a thesis can only cover a certain part of this process, in this case,
the automated selection of suitable algorithms through the analysis of fitness
landscapes. A range of open technologies are yet to be developed and meth-
ods are yet to be created which I also attempt to summarize in the remaining
sections of this conclusion.

6.1 Summary of the Obtained Results

There are three main contributions to the state of the art that are described
in this thesis in Sections 3 to 5. First, a new kind of exploratory landscape
analysis method, termed “directed walks”, was introduced and analyzed in de-
tail on problem instances of the quadratic assignment problem. Three features
have been derived from the resulting graphs of these walks and which are used
to characterize the problem instances. It has been shown that more paths lead
to more precise characterizations and about 100-200 paths have been found
sufficient to identify problem instances accurately (see Table 8). It has been
discussed that this new walk is suitable for integration into metaheuristic al-
gorithms as it is part of a solution improvement procedure, although there is
still research necessary. Previously described walks are not as suitable for such
an integration as their goal is to cover a large part of the search space rather
than identify good solutions. Directed walks may achieve both, although at
a slightly higher cost. In addition to the three new features, existing features
have also been analyzed. It has been found that features from information
analysis are also suitable and can be applied as characteristics. A slight bias
was found in information analysis characteristics and a remedy for that bias
was proposed (see Figure 21). The effect of the bias was however insignifi-
cant and both the regular and symmetric features performed about the same
for the practical task of identifying problem instances (compare IALREG and
TALSYM in Table 8).



6.1 Summary of the Obtained Results

In a second contribution two larger studies have been conducted on algo-
rithm selection applied to the quadratic assignment problem and its generalized
cousin. Although the problems share common properties, they differ signifi-
cantly from the perspective of a metaheuristic as the first uses a permutation
while the second needs to be encoded using a more general discrete vector
encoding. Algorithm instances have been implemented as described in the lit-
erature and even commercial solvers have been added to the benchmark. In
both studies a combined solver using a one nearest neighbor could outperform
any of the individual algorithms. For the quadratic assignment problem and
a target of 5% the combined solver achieved very good performance and out-
performed the best individual solver by a large margin (92% vs 58% of the
instances in class 1) as shown in Table 15, but also for the harder 1% target
the algorithm selection outperformed the best individual solver (53% vs 42%
as given in Table 16). For the generalized quadratic assignment problem, as
shown in Table 21, the combined solver was slightly better than the best single
algorithm with respect to instances where it achieved rank 1 (41% vs 40%), but
showed much less unsuccessful attempts (17% vs 31%). Thus, the combined
solver was more robust than the single solver. Additionally, the algorithm se-
lection problem was analyzed graphically and a new visualization in form of a
scatter plot with stacked markers was devised (see Figures 32 and 37). In an-
alyzing the performance of algorithms through correlations among each other
and with landscape features it was found that certain landscape properties aris-
ing out of specific problem configurations might favor algorithms that employ
a population and crossover instead of local search. Still, it must be concluded
that more research is necessary to confirm or refute such a hypothesis.

In a third contribution relevant software tools were highlighted that have
been created as part of the thesis. A simulation kernel was ported from Python
to C# and extended. Examples are given how complex problems from the
domain of scheduling could be evaluated using this simulation kernel. In ad-
dition, an interface was described that allows users to formulate optimization
problems for metaheuristic algorithms and it was shown how this could be
combined with the simulation kernel to pursue simulation-based optimization
applications. The case of a decision support system for metaheuristic opti-
mization was discussed and three use cases have been presented. Finally, a
software system which has been used in practice to store data from real-world
production systems was shown, and the data model has been introduced. Ap-
plications using this software system have been discussed.
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6.2 Outlook and Future Work

Similar to the three main contributions above I also like to summarize and
extend the future work in these topics. First, the topic of fitness landscape
analysis is explored more intensively already, but the integration within meta-
heuristic algorithms is a new field. Nevertheless, it needs to be studied how
the dynamics of a search algorithm influence the quality of the characteristics
from such walks. For instance, a highly similar set of solutions between which
directed walks are performed would lead to rather short walks. The charac-
teristic data would thus consist of both long and short walks. Methods need
to be devised how such data can be made use of and how the performance of
landscape identification is degraded when data quality drops. In this regard, I
think the potential of inverse directed walks as introduced as part of Section 3
are more interesting. As can be observed in Figure 17 on page 67, locally
optimal solutions may even be improved slightly in a couple of steps of an
inverse directed walk. Thus, this type of exploratory walk would contribute
to the quality of solutions that an algorithm found. Also these walks are of
roughly similar length, regardless of the state of the population and, as was
observed in Tables 7 and 8 on page 85, are best suited to provide information
for landscape identification. On the other hand, they are also the most costly
to compute (Table 9) as the neighborhood is larger than in regular directed
walks. However, in the presence of an efficient delta evaluation this can be
worthwhile. The author’s MemPR algorithm that achieved 2"? place at the
GECCO 2016 in Denver in the combinatorial black box optimization bench-
mark includes such a type of walk. Still, it did not yet use this information
as part of an “in-situ” decision on parameter adaption or algorithm for a post-
optimization phase. Further algorithms that include inverse directed walks are
not known to me.

The topic of algorithm selection provides a challenging field for future re-
search. While landscape analysis and feature-based algorithm selection become
more pervasive in the scientific literature, the broader topics of optimizing the
algorithm portfolios and problem instance libraries themselves are still not as
widely considered. These topics need more attention. In my thesis I have built
strongly on personal experience in devising the various algorithms that are used
to form a portfolio. However, for a future application an automation of that
process would be of value. Systems are needed that automatically benchmark

algorithm instances against each other and decide on the keepers that make up
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a successful portfolio. But this is not the only important aspect. The success
of such a portfolio depends on three ingredients: (1) the algorithm instances,
(2) the problem instances, and (3) the recommender or selector, respectively
schedule builder. Especially, the problem instances are a crucial part which
greatly influences the computational effort to manage such a portfolio. In ad-
dition, when the range of problem instances that are available to the portfolio
is only limited to a certain “kind”, algorithm instances may not become part
of the portfolio that would outperform the others on another “kind”. Finally,
the recommender is important in such a way that when the performance of
algorithm instances may not be discriminated well enough, only an average
performance might be reached. In addition, missing data poses a real-world
problem that has been ignored so far. But it is important to identify algo-
rithm instances to recommend when we do not know all their performance on
all the instances. It is unknown how the recommendation algorithms drop in
performance when the data contains missing values.

The topic of algorithm selection still poses a lot of open questions. I have
pursued a k-nearest neighbor approach with a fixed setting of £ = 1 and
formulated the problem as a classification task (Tables 15 and 21). However,
a regression-based approach would also be possible, and there are many more
machine learning approaches that can be applied and compared. In addition,
visualization is a very important aspect. The newly developed graphs as shown
in Figure 32 and 37 may show a lot of information. However, it is still an open
task to also describe the clusters and sub-clusters of the problem instances
such that those are not merely anonymous points. To devise new interactive
visualizations would be an interesting branch for future development.

Finally, an interesting topic for future work would be the standardization
of benchmarking efforts and the increased compatibility between results gen-
erated with different frameworks and the increased availability of open source
implementations. It is still cumbersome to this date to find open source im-
plementations of algorithms and to perform a thorough comparison with state
of the art performance. The description of algorithms in a prosaic form often
falls short of the specificity of a real implementation in a real programming
language. Reimplementations always bear the possibility of introducing addi-
tional errors and may invalidate conclusions and research efforts. In summary,
I hope to have presented some concrete opportunities for future work and
further research.
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6.3 Postscript

Digitalization and subsequently automation are major keywords of the late
2010s, which fill the topic lists of major national and EU funded research
programs. It is expected, given the progress that digital companies such as
Google or Facebook have achieved, that this process results in new abilities to
analyze, understand, and predict performances and relationships in real-world
systems such as manufacturing, healthcare, or agriculture. The vision is that
new digital abilities and systems enable faster and better decision making and
control. The hope is that this leads to improvements in efficiencies, as well
as new products and services which may bring together producers, logistics
providers, and consumers closer than ever.

Still far from a widespread realization of this vision, the current focus is
to digitalize the real-world processes that naturally are reluctant to change. I
said half-jokingly once, that the presence of telephones is still one of the major
obstacles to Industry 4.0. But therein lies the truth, that, in a digital world
humans are expected to collaborate using digital tools. Telephones and paper
notebooks that are ever so present in these days are highly analogue devices.
The research agenda to create algorithms and systems that can be called using
a phone or which can be given hand-written notes as forms of interaction is
rather small. Even though some progress, most notably by Google, has been
made in that direction already. The typical man-machine interaction still
occurs with the user interfaces that we have all become acquainted with.

A further challenge remains in synchronizing the digital and the analogue
world. Unless all physical items become internet of things (IoT) devices that
area physically co-located, the digital and physical world have to be kept syn-
chronized. Research efforts are directed towards the creation of, so called,
digital twins that synchronize their properties and states with their physical
sibling. In a broad sense, many such twins are already in place and it is un-
thinkable how business would operate without them. Enterprise information
systems such as ERP, MES and warehouse information systems provide a dig-
ital copy of the real system. However, it is expected that even more state and
information is maintained digitally and partly in centralized databases, partly
in decentralized storages and in close proximity to the physical item.

The work in this thesis becomes more and more relevant the more progress
is made in the digitalization process. In the emerging situations of the digi-

talized world, automation becomes a greater focus. In present day operations,
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automation is still mostly concerned with physical processes and their sensors
that are queried by programmable logic controllers (PLCs) and provide quick
decisions for machine actuators. In the future, it is expected that algorithms
are even more important in controlling digital processes. In the financial sec-
tor, this has been achieved already to a larger extent in that many transactions
and even whole funds are managed by algorithms. This also has raised new
“issues” in that the length of network cables at stock exchanges may be a dis-
criminating factor as those algorithms connected to the stock exchange systems
with longer cables are slower to answer to a potential trade.

In manufacturing, for instance, scheduling algorithms control the mate-
rial flow, not by directing material handling equipment, but by managing the
precedences of jobs that are to be executed. Industry 4.0 is still tied on the
point whether these algorithms are to be successfully employed in a central
manner as has been attempted in the previous decade or whether decentral-
ized approaches need to emerge; research is still ongoing.

In my personal experience in automating the crane operations at a contin-
uous caster in the steel industry, devising new digital processes that replace
their analogue predecessors is immensely more complex and often requires for-
mulating rules much more precisely than before and creating new data that
has to be maintained. In addition, the vast decision spaces with constraints
that are sometimes hard to formalize and get input data of, the presence of
many conflicting objectives where preference varies according to the “current
situation” still challenge our abilities of controlling real-world systems with
digital models. Additional research efforts in the optimization of dynamic and
uncertain systems are still necessary. In this light, algorithm selection seems
to be a minuscule challenge, but mostly, because such topics are still ahead
of their time. To me it is clear that the progress in digitalization and the
ability to improve the scientific modeling and solving of real-world decision
situations, the topic of algorithm selection becomes ever so important. Above
all, the time to achieve decisions is crucial, and again judging from personal
experience, there is a huge difference between a decision in 1 second vs in 10
seconds, as the world changes. Time and quality, which are both important to
algorithm selection, are the key elements of successful digital decision makers.
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Appendices

Algorithm 18 shows the description of the swap2 best-improvement local search
for the quadratic assignment problem as used in Section 4.1.2. It uses an effi-
cient calculation of the neighbors fitness and greedily selects the best-improving
neighbor.

Algorithm 18 Local Search in the Swap2 Neighborhood

1: procedure SWAP2LOCALSEARCH({ N, | sol)
2: qual + F'itness(sol)

3: isLocalOpt < False
4: while isLocalOpt = False do
5: best < (—1,—1)
6: bestDelta < 0
7 fori e [1;N) do
8: for j € (i;N] do
9: delta < DeltaFitnessSwap(sol,i,]) > Fitness difference new - old
10: if delta < bestDelta then > Improvement in a minimization problem
11: best « (i,])
12: bestDelta < delta
13: end if
14: end for
15: end for
16: if bestDelta = 0 then
17: isLocalOpt < True > No more improving move
18: else
19: (i, j) « best
20: Swap(sol, i, j)
21: qual < qual + bestDelta
22: end if
23: end while
24: return sol

25: end procedure

Algorithm 19 shows the DiversitySelect method used within Algorithm 9
in Section 4.1.2 on page 103 in a pseudo-code description. The algorithm
creates a new population from the combination of the old population and the

generated offspring by taking the best non-identical solutions.
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Algorithm 19 DiversitySelect Method for GLS

1: procedure DIVERSITYSELECT(/ pop, | offspring)
2: len < Length(pop)

3: (s1, S2, ..., Sp) < Sort(Concat(pop, offspring), by = Fitness, order = bestFirst)
4: nextgen < [s1]

5: similarset + {s;}

6: for i € [2;n] do

7 if Length(nextgen) = len then
8: break

9: end if

10: if s; ¢ similarset then

11: nextgen < s;

12: similarset < similarset U s;
13: end if
14: end for
15: return nextgen

16: end procedure
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