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Short bio

Open-source projects

HeuristicLab (https://dev.heuristiclab.com) - heuristic and evolutionary optimization framework (C#)
Operon (https://github.com/heal-research/operon) - large-scale symbolic regression (C++)
Vstat (https://github.com/heal-research/vstat) - numerically stable, SIMD-enabled statistics (C++)
Pappus (https://github.com/heal-research/pappus) - interval and affine arithmetic (C++)

� https://github.com/heal-research
� https://github.com/foolnotion
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Talk outline

Introduction HEAL, SymReg, SciML

Symbolic Regression Overview

Example: Shape Constraints

Example: Inter-atomic Potentials
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Heuristic and Evolutionary Algorithms Laboratory (HEAL)

Research group
• Established at FH Upper Austria in 2005
• 5 professors, 17 research associates
• interns, students (bachelor, master)

Research output
• > 25 research projects, >6M€ funding
• > 200 publications (peer-reviewed)
• > 10 dissertations
• > 60 theses (bachelor and master)

Scientific and industrial partners
• https://heal.heuristiclab.com/partners
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Heuristic and Evolutionary Algorithms Laboratory (HEAL)

HeuristicLab
• Interactive development, analysis and application of optimization methods

• Plug-in architecture, distributed computing capabilities

Main focus on combinatorial and symbolic regression/classification problems
• (probabilistic) traveling salesman, knapsack, bin packing, vehicle routing, job shop scheduling,

orienteering, quadratic assignment, and others

• symbolic regression and classification

Large collection of optimization methods
• metaheuristics (evolutionary, tabu search, simulated annealing, etc.)

• tree ensemble methods, kernel methods, Gaussian processes, neural networks
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Heuristic and Evolutionary Algorithms Laboratory (HEAL)

Many interesting optimization problems
• production scheduling
• stacking in steel industries or container terminals
• dynamic warehouse operations
• cancer diagnosis based on tumor marker data
• properties of synthetic materials
• predictive maintenance
• process modeling based on virtual sensors

• exhaust gas modeling
• blast furnace modeling
• foam quality of firefighting vehicles
• plasma nitriding
• granulate homogeneity in plastic recycling machines

Close cooperation with domain experts

Focus on knowledge discovery, insight into the industrial process 7/62



Josef Ressel Centre for Symbolic Regression (JRZ)

Founded in 2018 as a joint project between the Christian Doppler Research Association, the University of
Applied Sciences Upper Austria and three industry partners:

Head of JRZ
Prof. Gabriel Kronberger

Symbolic regression as a technology:

• Algorithm design: deterministic symbolic regression (as opposed to e.g. stochastic/metaheuristic)
• Method development: optimize for accuracy and runtime, keep number of parameters low
• Integration of physical knowledge: shape constraints

https://symreg.at/
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Josef Ressel Centre for Symbolic Regression (JRZ)

- Development, simulation and testing of powertrain systems
- Virtual sensors and test bench
- Real-time control on control units
- Reduction of test bench and development times

- Friction materials, components for friction systems
- Improved friction system development through modeling and simulation
- Model- and data warehousing for Tribological systems
- Automatic validation, shorter development cycles

- optimize the process for stability and optimal throughput
- virtual sensors
- modeling and optimal control
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Scientific Machine Learning

What is SciML?
Blend of traditional scientific mechanistic modeling with machine learning methodologies.

Mechanistic (traditional) modeling: differential equations (by and large)

Machine learning: (deep) neural nets, kernel methods, tree ensemble methods, symbolic regression, etc.

Main challenges
Complex applications: complex and multi-scale dynamics, data are sparse and expensive to acquire

High consequence: decisions can have severe outcomes, need for explainable models

Technically challenging: numerical difficulties, computing gradients, running code in HPC environments
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Scientific Machine Learning

Focus shift from prediction to understanding:

• extracting insights from data requires interpretable models
• models should incorporate physical laws, constraints and other scientific domain knowledge
• physically meaningful behavior and parameters (e.g. Planck’s constant, Avogadro’s constant)
• robustness and the ability to quantify uncertainty are required for scientific rigour

“The path from good science to good engineering relies on conducting reproducible simulations that
quantitatively explain phenomena, and then being able to document how far those results can be trusted.”
– Erik van der Giessen et al 2020 Modelling Simul. Mater. Sci. Eng. 28 043001, https://doi.org/10.1088/1361-651X/ab7150
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Scientific Machine Learning

Agrawal and Choudari, Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of
science in materials science, APL Mater. 4, 053208 (2016), https://doi.org/10.1063/1.4946894

12/62

https://doi.org/10.1063/1.4946894


Scientific Machine Learning

© OSTI.GOV Technical Report: Workshop Report on Basic Research Needs for Scientific Machine Learning
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Scientific Machine Learning

© OSTI.GOV Technical Report: Workshop Report on Basic Research Needs for Scientific Machine Learning
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Scientific Machine Learning

Arrieta et. al, Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward
responsible AI, Information Fusion 58, 2020, https://doi.org/10.1016/j.inffus.2019.12.012 15/62
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Scientific Machine Learning

Mishin, Machine-learning interatomic potentials for materials science,
https://doi.org/10.1016/j.actamat.2021.116980
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Symbolic Regression

Finding a symbolic expression that matches data from an unknown function.

Core challenge in physics and engineering
(in principle, NP-hard: Lu et al. 2016 https://doi.org/10.1155/2016/1021378)

An optimization algorithm would have to explore a very large, combinatorial search space:

• Discrete in model structure, continuous in model parameters
• Growing exponentially with the length of the expression
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Symbolic Regression

Let P be a primitive set (e.g. `,´,ˆ,˜, exp, sin, etc.) andSP the syntactic search space defined by it.

LetΦ be the space of possible expressions and their parameters, defined as the set of all tuples pE, θq

whereE P SP is a symbolic expression andθ P Rp is a vector of coefficients forE.

We call a tuple pE, θq a symbolic expression modelME,θ P Φ.

LetG : Φ ˆ Rnˆm Ñ Rn be a function that evaluates modelME,θ P Φ on some training dataX (with
corresponding dependent targety) and outputs a prediction ŷ P Rn.

The overall goal of symbolic regression is to find the optimal model

Mopt “ argmin
ME,θPΦ

1

2
||GpME,θ,Xq ´ y||2

Overarching objective: good extrapolation behavior on unknown (out-of-domain) data.
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Symbolic Regression

Strategies to search model spaceΦ:
• Evolutionary: genetic programming, grammatical evolution (guided metaheuristic)
• Generative-enumerative: production rules from a grammar (guided heuristic)
• Hybrid: AI Feynman, DeepSR, EQL, PNN-SR (mixed heuristic)

Strategies to optimize model coefficientsθ:
• non-linear least squares
• variable projection (if least squares problem is separable)
• stochastic hill climbing
• metaheuristics e.g. CMA-ES
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Interlude: Heuristics and Metaheuristics

Algorithm
• Exact, deterministic, correct, finite number of steps, well understood, proven complexity bounds.

Heuristic
• Derived from experience or from empirical evicence
• Hard to study from a theoretical standpoint
• Usually no guarantees about optimality or complexity bounds
• Useful practical solving tools, producing good results (not necessarily optimal) in a short amount of time
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Interlude: Heuristics and Metaheuristics
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Interlude: Heuristics and Metaheuristics

Metaheuristic
Iterative master process that guides and modifies the operations of subordinate heuristics.

• combines different concepts for exploring and exploiting the search space
• uses learning strategies in order to structure information
• may manipulate a complete or incomplete solution or set of solutions at each iteration
• subordinate heuristics may be high or low level procedures, or simple local search, or just a

construction method

May be inspired from natural behaviors, emergent phenomena, etc.

May push the analogy too far https://github.com/fcampelo/EC-bestiary
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Symbolic Regression

• Abstract syntax trees typically used for representation
• Easy to manipulate
• Fast evaluation and amenable to autodiff (e.g. using dualsa ` bε, ε2 “ 0)
• Can be compiled to machine code (LLVM, asmjit), CUDA/openCL kernels
• Straightforward to transform (algebraic rules/identities) or prune
• Derivatives can be computed symbolically
• Coefficients tunable with non-linear least squares (e.g. leaf nodes 2, 5)
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Symbolic Regression

Genetic Programming
• Simulates the process of natural evolution (“survival of the fittest”)
• Stochastic search guided by heuristics and a cost (“fitness”) function
• Relies on genetic operators: selection, crossover, mutation
• Very general: no need for a priori knowledge, can find model structure and coefficients

Extensions
• Memetic approaches (+ local optimization: gradient-based, trust region etc.)
• Parallel/distributed approaches: island models, parallel tempering
• Multi-objective strategies (Pareto-based, decomposition-based)

Caveats
• Non-deterministic
• Can produce overly complex expressions
• Tradeoff between parsimony and accuracy
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Symbolic Regression

Genetic Programming
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Symbolic Regression

Deep learning and other approaches
• PINNs: “physics-informed NN” - eqn. learners, PDE solvers

(https://doi.org/10.1038/s41598-021-92278-w)
• AI-Feynman: divide and conquer, heuristic approach (https://arxiv.org/abs/2006.10782)
• DeepSR: RNN + risk seeking policy gradients (https://arxiv.org/abs/1912.04871)
• EQL: equation learning network (http://proceedings.mlr.press/v80/sahoo18a.html)
• PNNs: parsimonious neural networks (https://www.nature.com/articles/s41598-021-92278-w)
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Physics-Informed Neural Networks (PINNs)

Motivation
• black box nature of deep learning hinders explainability and new scientific discovery
• critical need to tackle “knowledge integration” in the deep learning pipeline
• knowledge integration can be: feature engineering, network architecture design, regularization, etc.

Approach
• encode model equations (e.g. PDEs) as part of the network itself
• taking into acount the physics of the problem
• loss function includes PDE residuals as well as terms for initial and boundary conditions
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Physics-Informed Neural Networks (PINNs)

Kim et al. 2021 https://doi.org/10.1007/s12206-021-0342-5
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Physics-Informed Neural Networks (PINNs)

Kim et al. 2021 https://doi.org/10.1007/s12206-021-0342-5
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AI Feynman (Udrescu et al. 2020)

• Collection of heuristics for discovering physical laws
• AST represented as a graph
• Recursive application of solvers and problem

decomposition heuristics
• Exploits neural networks, graph modularity, hypothesis

testing, normalizing flows

30/62



AI Feynman

https://cbmm.mit.edu/publications/ai-feynman-20-pareto-optimal-symbolic-regression-exploiting-
graph-modularity
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AI Feynman

https://cbmm.mit.edu/publications/ai-feynman-20-pareto-optimal-symbolic-regression-exploiting-
graph-modularity
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Deep Symbolic Regression (Petersen et al. 2021)

Approach
• use a large model (neural network) to search the space of small models (symbolic expressions)
• exploits background knowledge about the form of the expressions
• generates mathematical expressions using a recurrent neural network (RNN)
• the RNN is trained via a risk-seeking policy gradient
• AST represented as sequence of tokens (preorder)
• AST generated sequentially using sampling from RNN-generated token distribution + constraints
• tree coefficients further optimized with nonlinear least squares (BFGS)

Reward function

Rpτq “
1

1 ` NRMSE
("squashed" NRMSE)

NRMSE “
1

σy

g

f

f

e

1

n

n
ÿ

i“1

pyi ´ fpXiqq
2
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Deep Symbolic Regression
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Deep Symbolic Regression
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Deep Symbolic Regression
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Equation Learner (Sahoo et al. 2018)

Approach
• fully connected feed forward network structure
• nodes/neurons include base functions (e.g. `,´,ˆ,˜, sin, cos, etc)
• compositions of base functions are generated across network layers
• able to learn relatively simple formula, able to control cart-pendulum system

Regularized division
• division introduces poles with abrupt changes in convexity and diverging function values
• real systems are assumed to be unable to generate data at the pole itself

(because natural quantities do not diverge)
• therefore a single branch of the hyperbola 1{b, b ą 0 suffices as a basis function
• regularized division only used in the output layer

hθpa, bq “

#

a
b

ifb ą θ

0 otherwise
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Equation Learner (Sahoo et al. 2018)

• trained by stochastic gradient descent (mini batches + Adam)
• Lasso-like loss function (fully differentiable in its free parameters)
• penalty termPθ for small and negative denominators

L “
1

N

N
ÿ

i“1

||fpxiq ´ yi||
2 ` λ

L
ÿ

i“1

|Wplq|1 ` Pθ

38/62



Parsimonious Neural Networks (Desai and Strachan 2021)

Application in Material Science
Learn equations of motion that govern the Hamiltonian dynamics of a particle

Discover melting laws from experimental data

Approach
• data obtained generated using molecular dynamics simulations
• evolutionary optimization of network structure and weights (+ backpropagation)
• four possible activation functions: linear, relu, tanh, elu
• search space „ 1021 possible network structures
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Parsimonious Neural Networks (Desai and Strachan 2021)

Desai and Strachan 2021 https://www.nature.com/articles/s41598-021-92278-w 40/62
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Methods Comparison
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Methods Comparison
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Operon (Burlacu et al 2020)
• evolutionary system on top of Ceres

(http://ceres-solver.org), Eigen
(https://gitlab.com/libeigen/eigen), Taskflow
(https://taskflow.github.io/)

• tree AST as postorder sequence
• Levenberg-Marquardt coefficient tuning

SRBench
https://github.com/cavalab/srbench
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Example: Shape Constraints

Shape constraints are general concept applicable to different forms of regression analysis.
(but not all methods equally amenable)

Motivation: ensure conformance to physical expectation
• Boundedness / Non-negativity / non-positivity (function image)
• Monotonicity (first derivative)
• Convexity / concavity (second derivative)

Approach
• interval arithmetic (pessimistic approach)
• sampling the input space (optimistic approach)
• hard vs. soft penalties
• single- vs. multi-objective
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Example: Shape Constraints

50

0

50

RMSE Training: 16.362
RMSE Base-Function: 8.241

unconstrained

4 2 0 2 4
50

0

50

RMSE Training: 17.598
RMSE Base-Function: 4.189

constrained 
monotonically non-decreasing
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Example: Shape Constraints
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Example: Shape Constraints

Interval Arithmetic
• method for calculating output ranges of mathematical expressions
• rules for computing output intervals of arithmetic and elementary operators
• intervals represented as ra, bs “ tx P R|a ď x ď bu

Weakness
Does not track dependencies between operator arguments (“dependency problem”)

• fpxq “ x ´ x, x P ra, bs – IA: ra ´ b, b ´ as, actual: r0, 0s

• fpxq “ x2 ´ x, x P r´1, 1s – IA: r´1, 2s, actual: r´1
4
, 2s

IA tends to overestimate the output range, actual conforming models might get discarded.
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Example: Shape Constraints

Basic properties of Interval Arithmetic (cf. Warwick Tucker - Validated Numerics, 2011)
• Interval addition and multiplication are commutative and associative

• IA is not distributive in general but sub-distributive
@a, b, c P IR, apb ` cq Ď ab ` ac

• Monotone functions
If f : X Ñ R is non-decreasing, then fpXq “ rfpXq, fpXqs

• Inclusion isotonicity
f : IRn

Ñ IR is inclusion isotonic if @x, y P IRn, x Ď y ùñ fpxq Ď fpyq

• Interval extension
f : IRn

Ñ IR is an interval extension ofg : Rn Ñ R if @x P Rn, gpxq “ gpxq

Fundamental theorem of Interval Analysis
If f : IRn

Ñ IR is inclusion isotonic and an interval extension thengpxq Ď fpxq,@x P IRn.
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Example: Shape Constraints for Symbolic Regression

Basic properties of Interval Arithmetic
Usually the input space of the model is limited for example to ad-dimensional box

S “ rx1, x1s ˆ rx2, x2s ˆ ... ˆ rxd, xds Ď Rd

IA is both inclusion isotonic and an interval extension

Possible to improve its accuracy by discretizing S and computing the union of discretized results.

Greedy approaches, branch-and-bound heuristics for more accurate output.
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Example: Shape Constraints for Symbolic Regression

Tightening the bounds for fpxq “ cos3pxq ` sinpxq

W. Tucker - Validated Numerics for Pedestrians, ©2005 European Mathematical Society
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Example: Shape Constraints

Physics textbook equations from the Feynman Symbolic Regression Database
(Udrescu and Tegmark 2020, https://doi.org/10.1126/sciadv.aay2631)
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Example: Shape Constraints

Recent work by us (idea much older!)
• G. Kronberger, C. Haider, M. Kommenda, B. Burlacu (FH OÖ / JRZ)
• F. O. de Franca (CMCC, HAL, Federal Univ. of ABC, Santo Andre, Brazil)
• Kronberger et al. – Shape-constrained Symbolic Regression – Improving Extrapolation with Prior

Knowledge, Evolutionary Computation, Oct ’21 https://arxiv.org/abs/2103.15624v1

Methods comparison
• test setting included varying levels of Gaussian noise over the training data
• comparison between evolutionary metaheuristics, polynomial regression, auto-sklearn (Feurer et

al. 2015) with/without shape constraints

Results
• it’s complicated! :)
• shape constraints ensure conforming models, but not necessarily better generalization (test error)
• however, shape-constrained models perform better on noisy data
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Example: Atomic Potentials (Materials Science)

Numerical simulations needed to investigate new materials and their properties.

Molecular Dynamics (MD) and Monte Carlo simulations
• Need a realistic model of inter-atomic interactions, represented usually by interaction potentials.
• Only realistic interaction models are able to produce quantitatively reliable outputs

Modeling interatomic potentials
• Empirical / classical approach: very fast, simple analytical formulas, not very accurate
• Quantum: density functional theory (DFT) and others, very accurate, very slowOpN3q...OpN4q

• Machine learning: use data generated by quantum methods, generate surrogate potentials
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Potential Energy Surfaces (PES)

Play a pivotal role in (large-scale) particle simulations

Describe the relation between atomic positions and their potential energy

Very computationally expensive

ML methods recently emerged as a means to model PES at lower computational cost

source: https://en.wikipedia.org/wiki/Potential_energy_surface
53/62
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Potential Energy Surfaces (PES)

Potential Energy Surfaces (PES)
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Machine-learning Potentials

Learn the relationship between chemical structure and potential energy.

General requirements
• general applicability and absence of ad-hoc approximations (potentials that are transferable)
• accuracy comparable to first-principles methods (including high-order many-body effects)
• very high efficiency to enable large simulations
• the ability to describe chemical reactions and arbitrary atomic configurations
• the ability to be automatically constructed and systematically improved
• the ability to provide physical insight

Currently available potentials are far from satisfying all the needs

55/62



Machine-learning Potentials

Mishin 2021, https://doi.org/10.1016/j.actamat.2021.116980

Traditional (left): based on physical understanding, simple functional form, highly approximate
ML-based (middle): regression based on structural parameters that capture the 3N-D configuration space
Physics-informed ML (right): local structural parameters mapped to parameters of a physics-based PES
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Machine-learning Potentials

Capturing and mapping structural parameters = big challenge

Musil et. al, Physics-Inspired Structural Representations for Molecules and Materials, Chem Rev. 2021 Aug 25,
https://doi.org/10.1021/acs.chemrev.1c00021
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Machine-learning Potentials

Many approaches
• neural networks (most popular)
• polynomial fitting
• moment tensor potentials (linear combination of polynomial basis functions)
• Gaussian processes
• spectral neighbour analysis
• support vector machines
• interpolating moving least squares
• symbolic regression

Ongoing issues
• Generality and transferability (often too system-specific)
• Conceptual problems related to incorporating rotational, translational and permutational invariance
• Model complexity and explainability
• Training data requirements
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Machine-learning Potentials

“Black-box” methods
• almost zero capability of including physical information into the functional forms
• must exclusively rely on the physics-inspired features considered in atomic descriptors
• increased mathematical and computational complexity of resulting interaction models
• requires large amounts of training data

“White-box” methods
• emerging as an alternative for ML-based potentials (https://doi.org/10.1063/1.5126336)
• provides researchers with analytic equations, which expectably would have better interpretability
• more amenable to the integration of physical knowledge
• not requiring a priori knowledge or predefined functional forms
• explicit representation that can be interpreted by domain experts
• smaller number of parameters and better efficiency
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Symbolic Regression Potentials

Training data

• training data available from DFT simulations
• data consists of simulation snapshots with atomic positions and energy
• usually in special formats (VASP, POSCAR)
• each “data row” is a list of coordinates describing the atomic clusters and an energy value

Symbolic regression approach

• pairwise atomic distances computed from Cartesian coordinates
• distances potentially filtered by inner and outer radius parameters
• functional transformation of the input (distances, forces) followed by

ř
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Symbolic Regression Potentials

Hernandez et al., Fast, accurate, and transferable many-body interatomic potentials by symbolic regression, 2019,
https://doi.org/10.1038/s41524-019-0249-1

https://gitlab.com/muellergroup/poet 61/62
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Conclusion

Machine learning, critical part of the 4th paradigm of science.

Scientific-ML is an emerging field focusing on applications in computational science.

Explainability and interpretability become increasingly important properties of ML models.

Existing methods do not quite meet the needs of scientific users.

Models should respect or incorporate physical laws.

Several hybrid approaches are emerging with the goal of incorporating physical knowledge.

Often, ML methods require non-trivial, task-specific modications

SciML methods typically need to run in performance-critical environments.
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