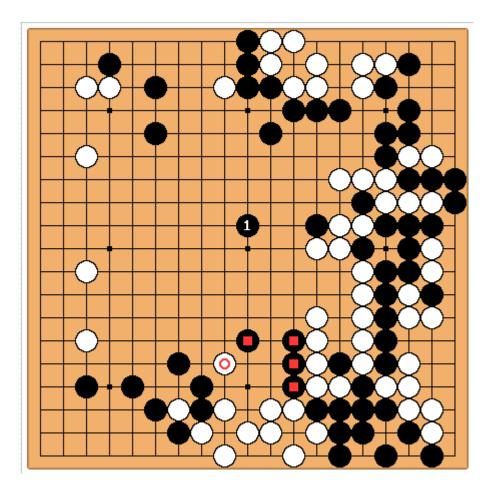


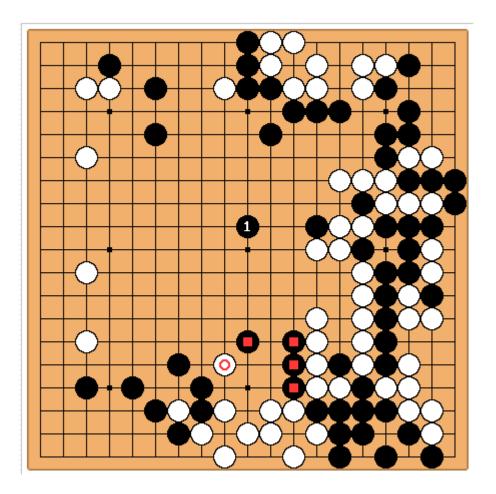
https://symreg.at


Genetic Programming and Symbolic Regression

Al Meetup Graz

Gabriel Kronberger, Fachhochschule OÖ, Campus Hagenberg 12. Dezember 2020

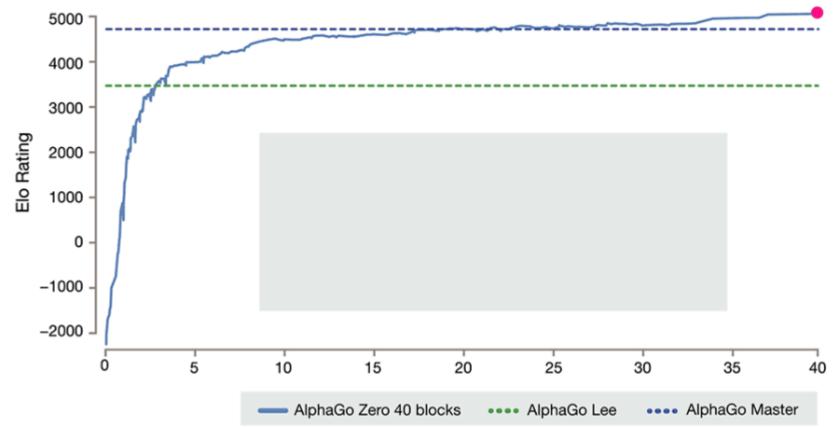
Explain!



The "ear-reddening move".

Shusaku (B) vs. Gennan (W) 1846

Explain!



B1 has different objectives.

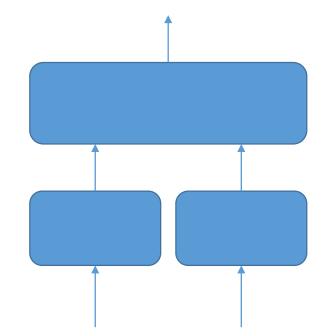
- It expands Black's moyo at the top,
- it helps the four black stones marked,
- it reduces the influence of White's strong position to the right, and it also has an eye on White's moyo on the left side.

Reliability / Trust

Source:

https://deepmind.com/research/alphago/

Why do I trust the result?


File	Home	nsert P	age Layout	Formulas	; Data	Review	View	
Paste	X Cut E Copy → V Format Painte Clipboard	r G		• 11 • A • <u>></u> • <u>A</u> t		≡≡		
F2	· ·	× ✓	f _x	=D2+E2				
	С	D		Е	F		G	
1								
2			17	4		21		
3								
4								
5								

Btw.: I cannot fully understand what happens to produce 21 even though I studied computer science

Requirements for trust: modularity

- Abstraction of complexity
- Interacting smaller components
- Each component can be trusted
- Communication protocols can be trusted
- Good track record

Example: Excel "Flash Fill" - Feature

1	A	В			
1	Email	Column 2 nancy freehafer			
2	Nancy.FreeHafer@fourthcoffee.com				
3	Andrew.Cencici@northwindtraders.com	andrew cencici			
4	Jan.Kotas@litwareinc.com	jan kotas			
5	Mariya.Sergienko@gradicdesigninstitute.com	mariya sergienko			
6	Steven.Thorpe@northwindtraders.com	steven thorpe			
7	Michael.Neipper@northwindtraders.com	michael neipper			
8	Robert.Zare@northwindtraders.com	robert zare			
9	Laura.Giussani@adventure-works.com	laura giussani			
10	Anne.HL@northwindtraders.com	anne hl			
11	Alexander.David@contoso.com	alexander david			
12	Kim.Shane@northwindtraders.com	kim shane			
13	Manish.Chopra@northwindtraders.com	manish chopra			
14	Gerwald.Oberleitner @northwindtraders.com	gerwald oberleitner			
15	Amr.Zaki@northwindtraders.com	amr zaki			
16	Yvonne.McKay@northwindtraders.com	yvonne mckay			
17	Amanda.Pinto@northwindtraders.com	amanda pinto			

Paper:

Gulwani, S.; José Hernández-Orallo; Kitzelmann, E.; Muggleton, SH.; Schmid, U.; Zorn, B. (2015). Inductive programming meets the real world. Communications of the ACM. 58(11):90-99. doi:10.1145/2736282

https://riunet.upv.es/handle/10251/64984

Automatic programming – State-of-the-art Solving programming exercises

- 5. Double Letters (P 4.1) Given a string, print the string, doubling every letter character, and tripling every exclamation point. All other non-alphabetic and non-exclamation characters should be printed a single time each.
- Vector Average (Q 7.7.11) Given a vector of floats, return the average of those floats. Results are rounded to 4 decimal places.
- 14. Count Odds (Q 7.7.12) Given a vector of integers, return the number of integers that are odd, without use of a specific even or odd instruction (but allowing instructions such as mod and quotient).

Thomas Helmuth, General Program Synthesis from Examples Using Genetic Programming with Parent Selection Based on Random Lexicographic Orderings of Test Cases, University of Massachusetts -Amherst, PhD Thesis, 2015 https://web.cs.umass.edu/publicat ion/docs/2015/UM-CS-PhD-2015-005.pdf

	Lexicase				Tournament			
Problem	100%	75%	$\mathbf{50\%}$	25%	100%	75%	50%	25%
Double Letters	6	1	1	0	0	0	0	0
Replace Space with Newline	51	46	<u>20</u>	<u>24</u>	8	13	11	9
String Lengths Backwards	66	<u>47</u>	<u>17</u>	<u>17</u>	7	6	12	10
Vector Average	16	*33	*49	25	14	11	5	8
Count Odds	8	3	<u>0</u>	1	0	0	0	0
Mirror Image	78	78	67	<u>48</u>	46	41	34	44
X-Word Lines	8	17	4	<u>0</u>	0	0	0	0
Negative To Zero	45	28	<u>19</u>	<u>9</u>	10	5	10	7
Syllables	18	13	10	8	1	2	1	3

Thomas Helmuth, General Program Synthesis from Examples Using Genetic Programming with Parent Selection Based on Random Lexicographic Orderings of Test Cases, University of Massachusetts -Amherst, PhD Thesis, 2015 https://web.cs.umass.edu/publicat ion/docs/2015/UM-CS-PhD-2015-005.pdf

Herbie: Automatically improving floating point accuracy of expressions

$$\frac{1}{2}\sqrt{2\left(\sqrt{x\cdot x + y\cdot y} + x\right)}$$

$$\frac{1}{2}\sqrt{2\frac{y^2}{\sqrt{x\cdot x + y\cdot y} - x}}$$

This improvement was implemented as a patch to Math.js, accepted by the Math.js developers, and released with version 0.27.0 of Math.js [32]. https://herbie.uwplse.org/

P. Panchekha et al. *Automatically improving accuracy for floating point expressions,* PLDI '15 Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation Pages 1-11, 2015

Herbie: Automatically improving floating point accuracy of expressions

$$\frac{1}{2}(\sin x)(e^{-y}-e^y)$$

$$-(\sin x)\left(y + \frac{1}{6}y^3 + \frac{1}{120}y^5\right)$$

https://herbie.uwplse.org/

P. Panchekha et al. *Automatically improving accuracy for floating point expressions,* PLDI '15 Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation Pages 1-11, 2015

SymReg Josef Ressel center for

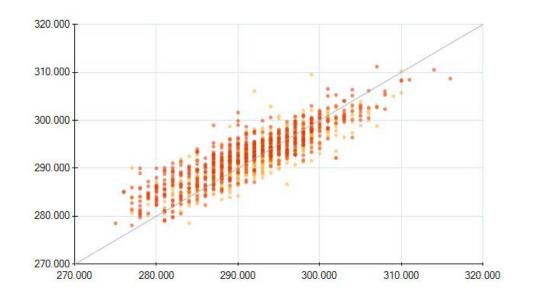
SYMBOLIC REGRESSION

Automatic programming

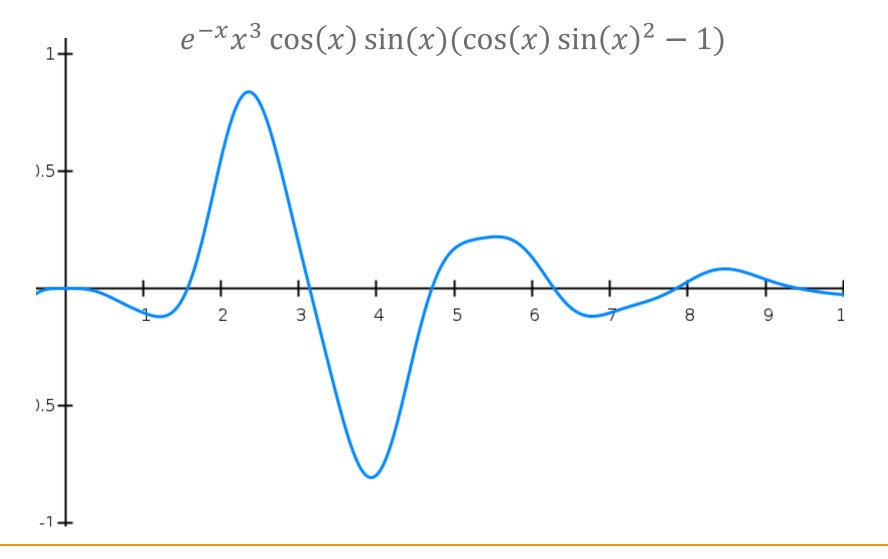
Genetic programming

Symbolic regression

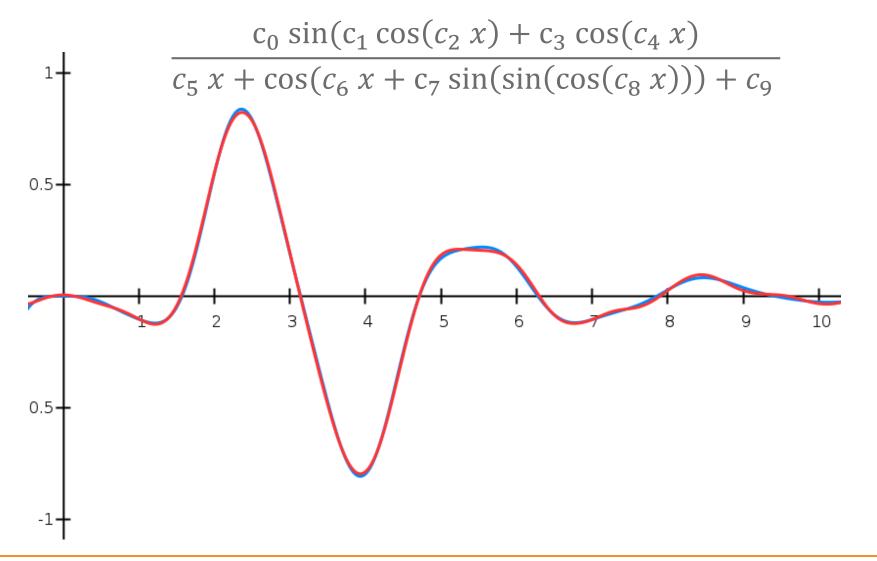
SymReg can be solved using GP which is a form of AP. However, other solution methods are also possible (see below)

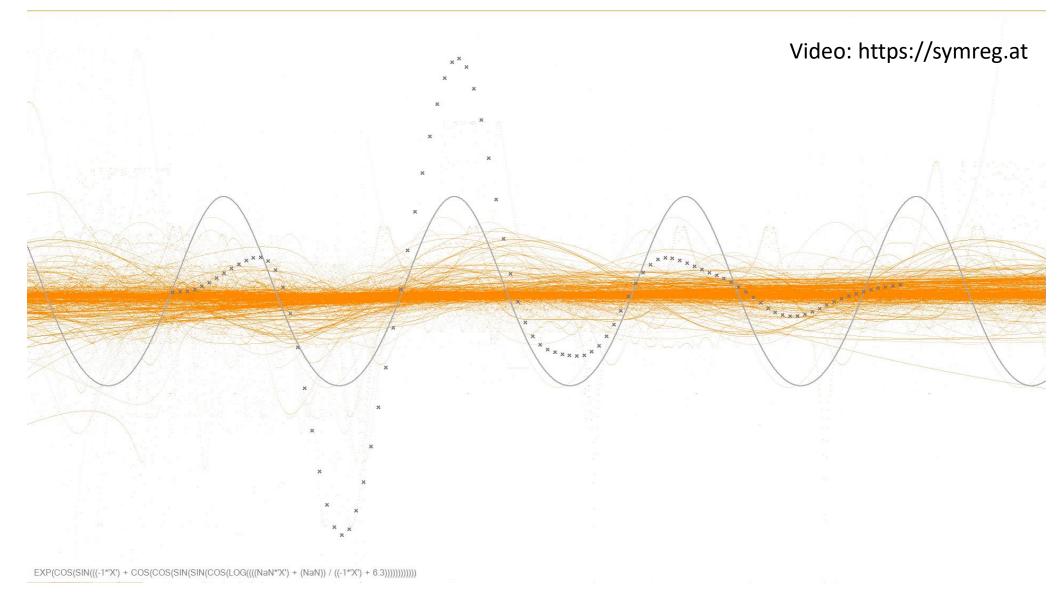


Learning of models as mathematical expressions


$$f(x_1, x_2) = \frac{0.0651 \, x_2 + 1.316}{1.5156 \, x_1 + 17.619}$$

Properties


- Nonlinear Models
- Smooth Response Functions
- Integration of Prior Knowledge



https://symreg.at

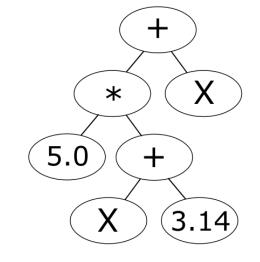
Pros

- Analytical model
- Fast evaluation
- Implicit feature selection
- No assumption about the model structure
- Simple integration in other software

Cons

- Computationally expensive
- Algorithm is hard to configure
- Bloated models
- Non-deterministic

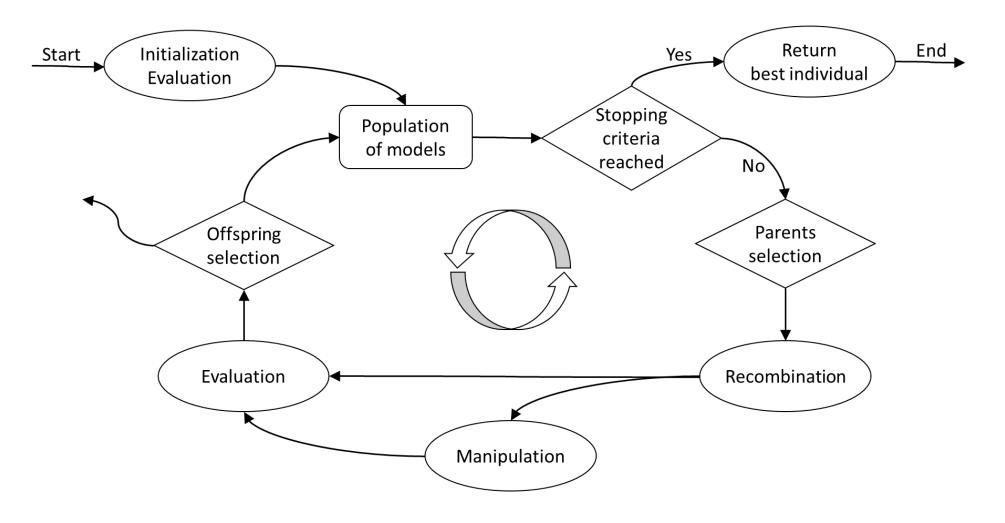
Symbolic regression using genetic programming


Symbolic expression trees

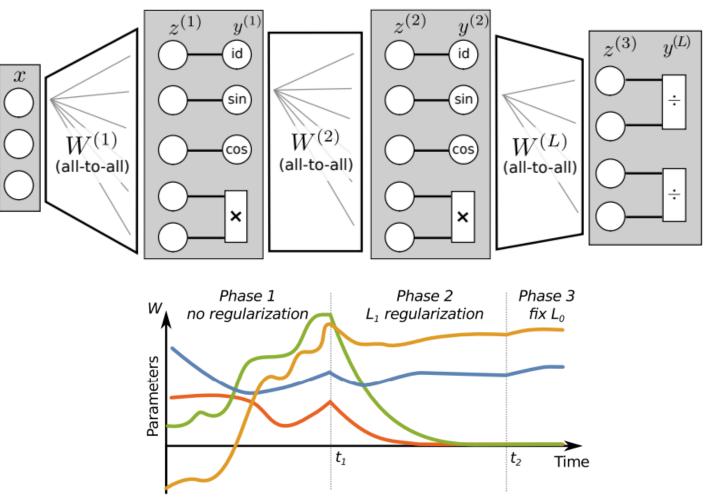
- Encode regression models
- Easily manipulated

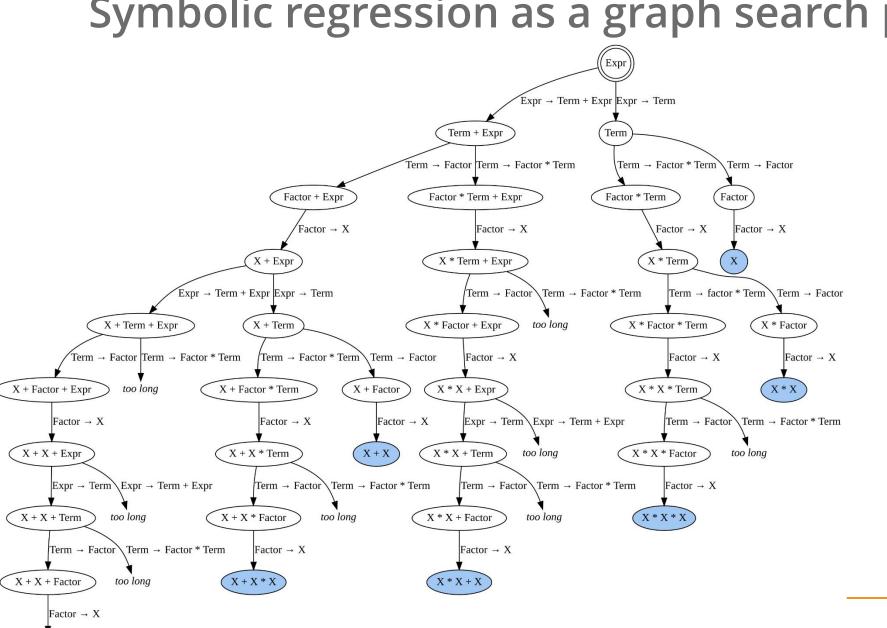
Objective function

 Minimize error between model estimations and presented data

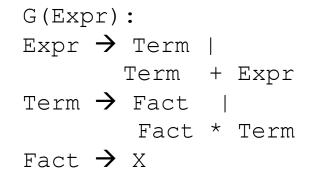

$$y = f(x) + \epsilon$$

$$f(x) = 5 * (x + 3.14) + x$$

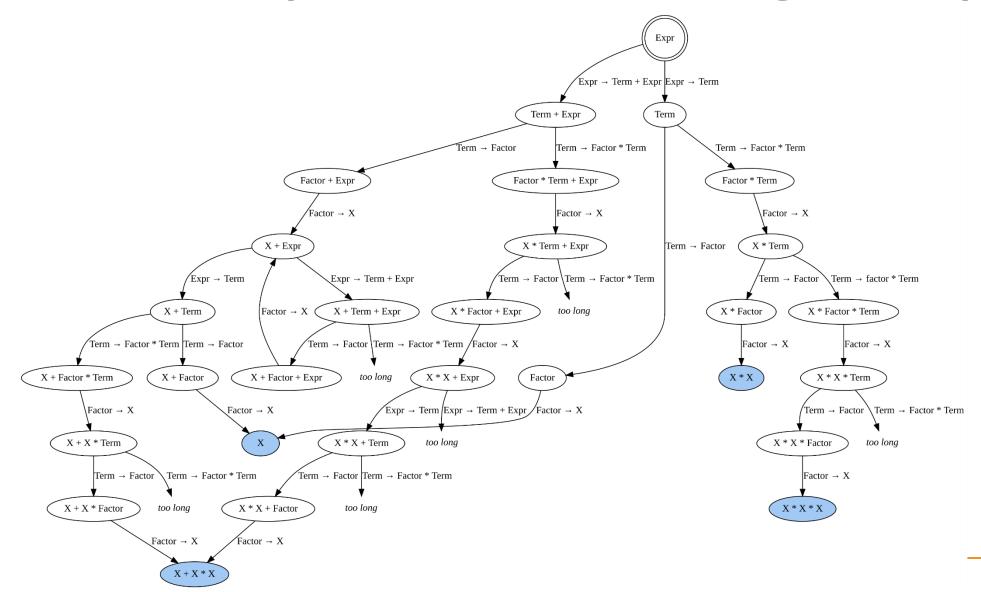

Genetic programming


Symbolic regression with neural networks

Learning Equations for Extrapolation and Control


Sahoo, S. S., Lampert, C. H., and Martius, G. Learning equations for extrapolation and control. Proceedings of the 35 th International Conference on Machine Learning, Stockholm, Sweden, PMLR 80, 2018.

X + X + X


Symbolic regression as a graph search problem

L. Kammerer, G. Kronberger, B. Burlacu, S. Winkler, M. Kommenda, M. Affenzeller, Symbolic Regression by Exhaustive Search, In Genetic Programming in Theory and Practice Springer, 2019

Search space reduction through deduplication

Symbolic regression algorithms compared to state-of-the-art algorithms



Fig. 7 Algorithm ranking based on the MSE scores on the test set.

M. Kommenda, B. Burlacu, G. Kronberger, M. Affenzeller, *Integrating Numerical Optimization Methods with Genetic Programming,* Genetic Programming and Evolvable Machines, to appear 2020

Knowledge integration

How can we enforce monotonicity?

The concept of shape-constrained regression

 $f^* = \operatorname*{argmin}_{f \in \mathcal{F}} \mathcal{L}(f, X, y)$

 $\mathcal{L}(f, X, y)$ is the loss function (e.g. sum of squared errors)

s.t.:

$$l_f \qquad f(x_f) \qquad u_f$$

 $l_{Jac} \leq \nabla f(x_{Jac}) \leq u_{Jac}$
 $l_{Hess} \qquad \nabla^2 f(x_{Hess}) \qquad u_{Hess}$

$$\begin{array}{l} \forall x_f, x_{Jac}, x_{Hess} \in \mathbb{R}^n, \\ l_{x_f} & x_f & u_{x_f} \\ l_{x_{Jac}} \leq x_{Jac} \leq u_{x_{Jac}} \\ l_{x_{Hess}} & x_{Hess} & u_{x_{Hess}} \end{array}$$

 ${\cal F}$ is a model class e.g.:

- polynomials of given degree
- neural network architecture

 ∇f is the vector of partial derivatives of f over all inputs

f must be differentiable

https://symreg.at

Symbolic Regression

Gabriel Kronberger, Fachhochschule OÖ, Campus Hagenberg 28. November 2019