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Part I – Method

Variable Interaction Network (VIN)

= directed, weighted graph

Nodes: variables

Edges: impact of variables on others
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Part I – Method

Variable Interaction Network: Modeling
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0.0730.121

2.1 Remove variable info, e.g. shuffle values

2.2 Recalculate model error, e.g. R²

 Error increase = impact

Example calculation for model target=x1:

2. Calculate variable impacts1. Alternate targets & inputs 3. Create network

target input variables
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For all models do: For all inputs do:



Part I – Method

Variable Interaction Network: Evaluation

vs. Re-computed VINInitial VIN
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VIN comparison

‒ Spearman: Spearman‘s Rank 

Correlation

‒ NDCG: Normalized Discounted 

Cumulative Gain (Kekäläinen, 2002)

Network 
Similarity

Threshold



Part I – Method

Variable Interaction Network

Model Type Characteristics

↖ Enables holistic system analysis …also on streaming data [3]

↖ Agnostic to the regression algorithms / models used as base

↖ Fast to create, once regression models are built

↙ Infeasible for high-dimensional data without pruning

↙ Non-deterministic modeling & evaluating causes network alternatives
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[3] Zenisek, J., Kronberger, G., Wolfartsberger, J., Wild, N., & Affenzeller, M. Concept Drift Detection with 
Variable Interaction Networks. In International Conference on Computer Aided Systems Theory (pp. 296-
303). Springer, Cham, 2020.



Part I – Method

VIN Evaluation Instability (Video)
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Part I – Method

VI Network: Modeling (cont.d)

0.252

0.0730.121

2.1 Remove variable info, e.g. shuffle records

2.2 Recalculate model error, e.g. R²

 Error increase = impact

Example calculation for model target=x1:

2. Calculate variable impacts1. Alternate targets & inputs 3. Create network

target input variables
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For all models do: For all inputs do:

= Permutation Feature Importance [3]

[4] Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)



Part I – Method

Shapley Value based Variable Impact [5]

Feature contribution to the difference between the actual prediction and the mean prediction
1. Create all possible feature coalitions with and without the targeted feature

2. Calculate „actual prediction – mean prediction“ difference for each coalition

3. Average differences between coalitions with and without the targeted feature

– Coalition game theory (solid mathematical foundation)

– Local and model agnostic

– Computationally expensive

Customization:
– Use of nmse and impact threshold

– Average absolute shapley value of current set (global analysis)

– Normalize outcome

8[5] Shapley, Lloyd S. “A value for n-person games.” Contributions to the Theory of Games 2.28 (1953): 307-317



Part II - Experiments

Benchmarking Problems for VINs

Communicating Vessels

– Inherently stable

– d = introduced drift (hidden) to simulate
gradually clogging communication path

[3] Zenisek, J., Kronberger, G., Wolfartsberger, J., Wild, N., & Affenzeller, M. Concept Drift Detection 
with Variable Interaction Networks. In International Conference on Computer Aided Systems 
Theory (pp. 296-303). Springer, Cham, 2020.

Circular Connected CVs (new)
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Part II - Experiments
Real World Problem: Photovoltaic Power Production

Available Data:
– 190 privately owned photovoltaic systems

– including battery packs

– Recordings from 2014 to 2019

– Recording interval: 5 min, ~100 Mio. data rows

– Constant parameters: geolocation, manufacturer, 
capacity,…

– Measured features: PV production, power 
consumption, grid input/output, battery charge, 
discharge, SOC

Main goals:
– Prediction models for power production & 

consumption

– Network resilience analysis

10



Part II - Experiments

Network Resilience Simulations (Resinet)
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What happens if…
– … weather is sunny (everywhere)?

– … weather is bad (for a long period)?

– … n% of the batteries have an outage?

– … batteries degrade faster than expected?

– … batteries are connected (shared memory)?

How do we detect/predict system drifts?

 Sliding window based VIN-comparison

Motivation for VINs: Structure knowledge

Motivation for Shapley Values: Forecasted data



Part II - Experiments

Network Resilience Simulations (Resinet)
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What happens if…
– … weather is sunny (everywhere)?

– … weather is bad (for a long period)?

– … n% of the batteries have an outage?

– … batteries degrade faster than expected?

– … batteries are connected (shared memory)?

How do we detect/predict system drifts?
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Part II - Experiments

Stability Test Results: Stability Ratio
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Part II - Experiments

Stability Test Results: SD of Changes
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Part II - Experiments

Introducing Drift
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Communicating Vessels: clogging communication paths

Photovoltaic Network: shared batteries + individual outages

Detection scoring: Pearson R of (hidden) drift and network similarity



Part II - Experiments

Drift Test Results: Pearson R
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Part II - Experiments

Implementation and „Root-Cause“ Analysis
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„Hotpath“ Heuristic

1. De-cycle graph: iteratively remove weakest link on 
next shortest cycle

2. Generate all paths from source to target nodes (DFS)

3. Highlight path with highest change sum

powerConsumption1

gridDiff1

gridDiff

dayLength1



Take-Home Messages and Outlook

Variable Interaction Networks (VIN)
– enable holistic system analysis (also on streaming data)

– enable knowledge integration (i.e. network structure)

– currently underrepresented in the field Explainable / Interpretable AI

Further leads: extend root-cause analysis
– „Hotpath“ improvement, e.g. add memory (find most stable over time)

– Classification approach

18

Evaluation Precision Stability Data Access

– based on PFI: fast high mediocre input, true outcome

– based on SV: slow (bulk), fast (streaming) high high input
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