Shapley Value based Variable Interaction Networks for Data Stream Analysis

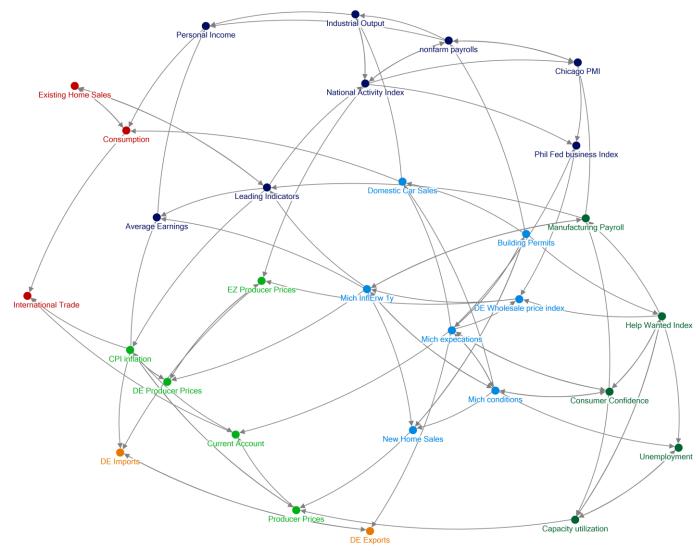
Eurocast 2022 // 2022-02-23

Jan Zenisek, Sebastian Dorl, Stephan Winkler and Michael Affenzeller

Heuristic and Evolutionary Algorithms Laboratory
University of Applied Sciences Upper Austria

Institute for Symbolic Artificial Intelligence Johannes Kepler University Linz

Part I – Method Variable Interaction Network (VIN)



= directed, weighted graph

Nodes: variables

Edges: impact of variables on others

[1] Kronberger et al. Genetic Programming: Current Trends and Applications in Computational Finance, Nova Science Publishers, 2013

[2] Hooker, Giles. *Discovering additive structure in black box functions.* Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, 2004.

Part I – Method Variable Interaction Network: Modeling

1. Alternate targets & inputs

target	input variables				
x1	x2	x3	x4	x 5	
1.1	1.4	1.7	1.3	1.2	
1.2	1.3	1.4	1.5	1.3	
1.2	1.1	1.4	1.9	1.4	
1.4	0.9	1.2	1.3	1.4	
1.2	1.2	1.6	1.2	1.7	

x2

2. Calculate variable impacts

For all models do: For all inputs do:

2.1 Remove variable info, e.g. shuffle values

2.2 Recalculate model error, e.g. R^2 \rightarrow Error increase = impact

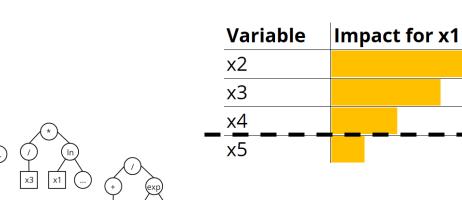
Example calculation for model target=x1:

0.252

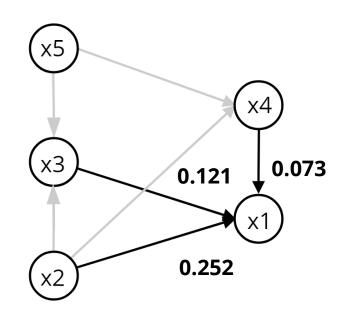
0.121

0.073

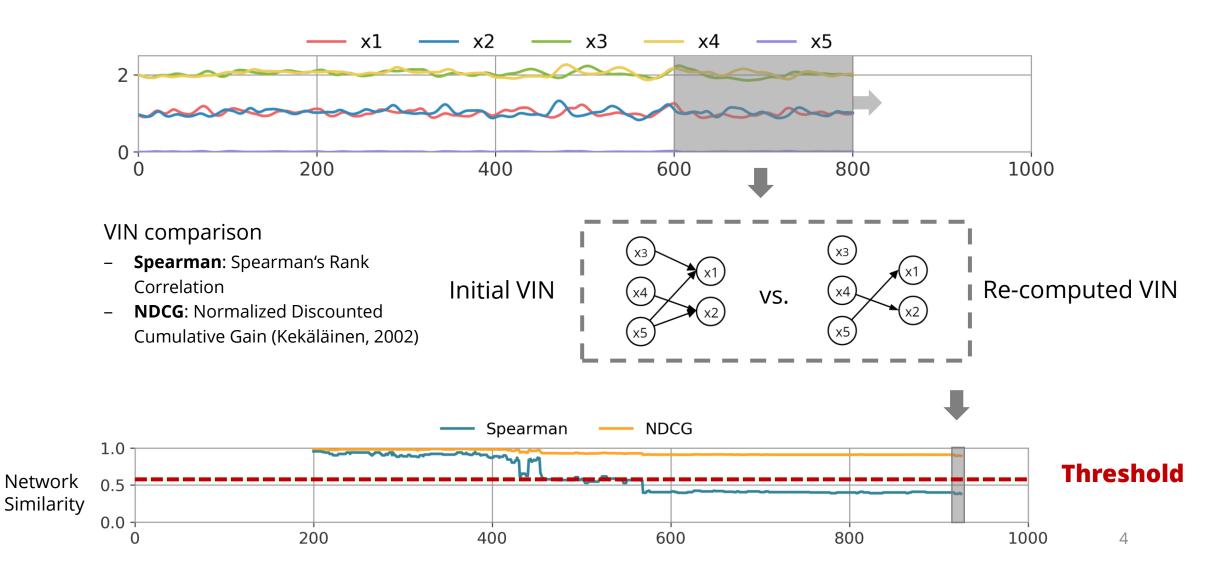
0.037



3. Create network



Part I – Method Variable Interaction Network: Evaluation



Part I – Method Variable Interaction Network

Model Type Characteristics

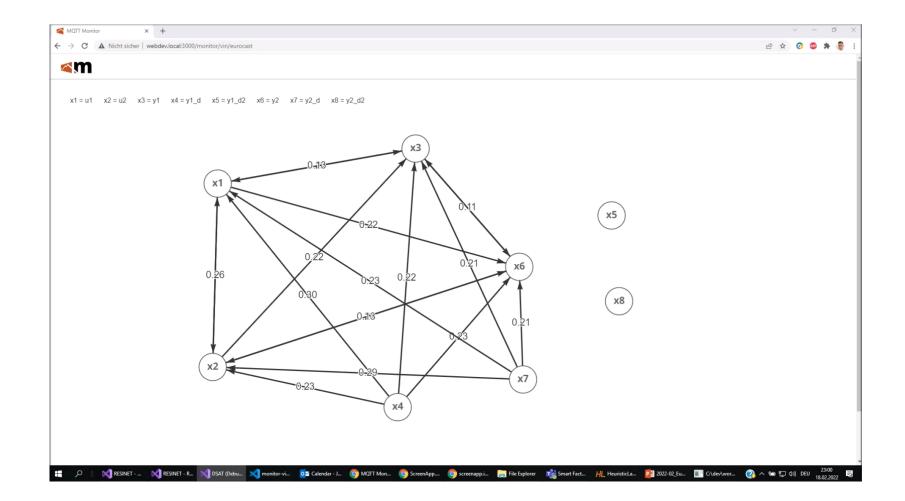
Enables holistic system analysis ...also on streaming data [3]
 Agnostic to the regression algorithms / models used as base
 Fast to create, once regression models are built

✓ Infeasible for high-dimensional data without pruning

✓ Non-deterministic modeling & evaluating causes network alternatives

[3] Zenisek, J., Kronberger, G., Wolfartsberger, J., Wild, N., & Affenzeller, M. Concept Drift Detection with Variable Interaction Networks. In International Conference on Computer Aided Systems Theory (pp. 296-303). Springer, Cham, 2020.

Part I – Method VIN Evaluation Instability (Video)



Part I – Method VI Network: Modeling (cont.d)

1. Alternate targets & inputs

target	input variables				
x1	x2	x3	x4	x5	
1.1	1.4	1.7	1.3	1.2	
1.2	1.3	1.4	1.5	1.3	
1.2	1.1	1.4	1.9	1.4	
1.4	0.9	1.2	1.3	1.4	
1.2	1.2	1.6	1.2	1.7	

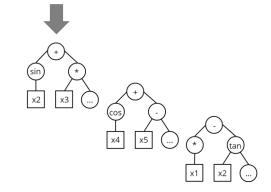
2. Calculate variable impacts 3. C

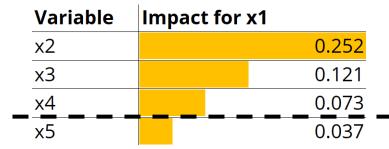
For all models do: For all inputs do:

2.1 Remove variable info, e.g. shuffle records

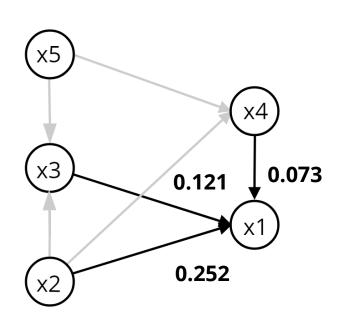
2.2 Recalculate model error, e.g. R² → Error increase = impact

= Permutation Feature Importance [3] Example calculation for model target=x1:





3. Create network



Part I – Method Shapley Value based Variable Impact [5]

Feature contribution to the difference between the actual prediction and the mean prediction

- 1. Create all possible feature coalitions with and without the targeted feature
- 2. Calculate "actual prediction mean prediction" difference for each coalition
- 3. Average differences between coalitions with and without the targeted feature
- Coalition game theory (solid mathematical foundation)
- Local and model agnostic
- Computationally expensive

Customization:

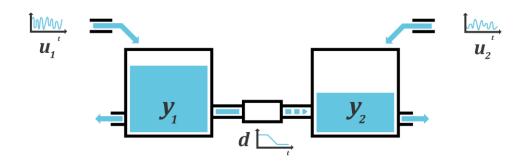
- Use of nmse and impact threshold
- Average absolute shapley value of current set (global analysis)
- Normalize outcome

Part II - Experiments Benchmarking Problems for VINs

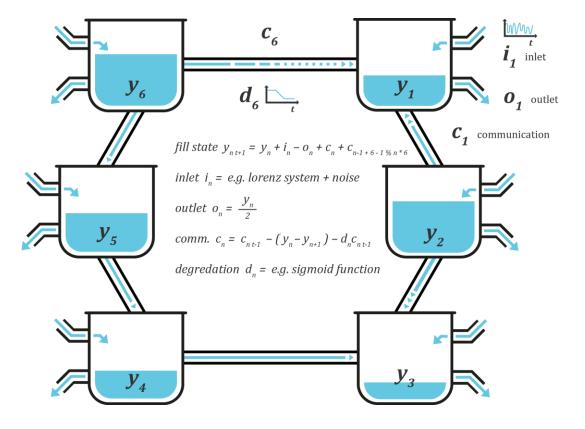
Communicating Vessels

Circular Connected CVs (new)

- Inherently stable
- *d* = introduced drift (hidden) to simulate gradually clogging communication path



[3] Zenisek, J., Kronberger, G., Wolfartsberger, J., Wild, N., & Affenzeller, M. Concept Drift Detection with Variable Interaction Networks. In International Conference on Computer Aided Systems Theory (pp. 296-303). Springer, Cham, 2020.

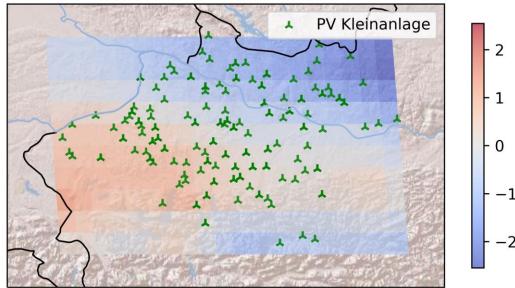


Part II - Experiments Real World Problem: Photovoltaic Power Production

Available Data:

- 190 privately owned photovoltaic systems
- including battery packs
- Recordings from 2014 to 2019
- Recording interval: 5 min, ~100 Mio. data rows
- Constant parameters: geolocation, manufacturer, capacity,...
- Measured features: PV production, power consumption, grid input/output, battery charge, discharge, SOC

ERA5_Land - Upper Austria 23:30 31st of Dec 2015



Main goals:

- Prediction models for power production & consumption
- Network resilience analysis

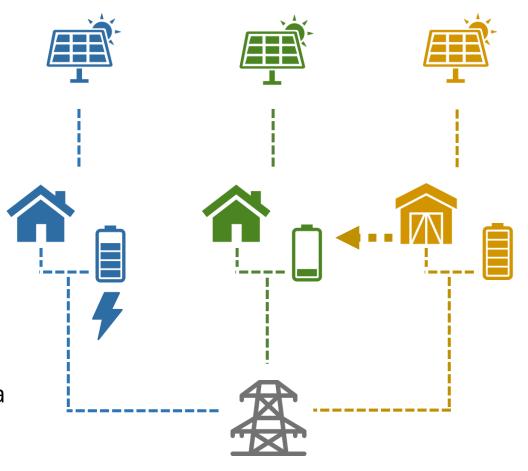
Part II - Experiments Network Resilience Simulations (Resinet)

What happens if...

- ... weather is sunny (everywhere)?
- ... weather is bad (for a long period)?
- ... n% of the batteries have an outage?
- ... batteries degrade faster than expected?
- ... batteries are connected (shared memory)?

How do we detect/predict system drifts? → Sliding window based VIN-comparison

Motivation for VINs: Structure knowledge Motivation for Shapley Values: Forecasted data



Part II - Experiments Network Resilience Simulations (Resinet)

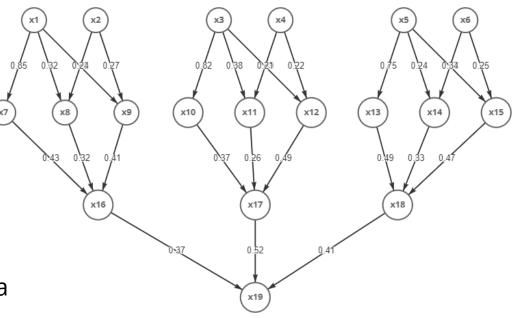
What happens if...

- ... weather is sunny (everywhere)?
- ... weather is bad (for a long period)?
- ... n% of the batteries have an outage?
- ... batteries degrade faster than expected?
- ... batteries are connected (shared memory)?

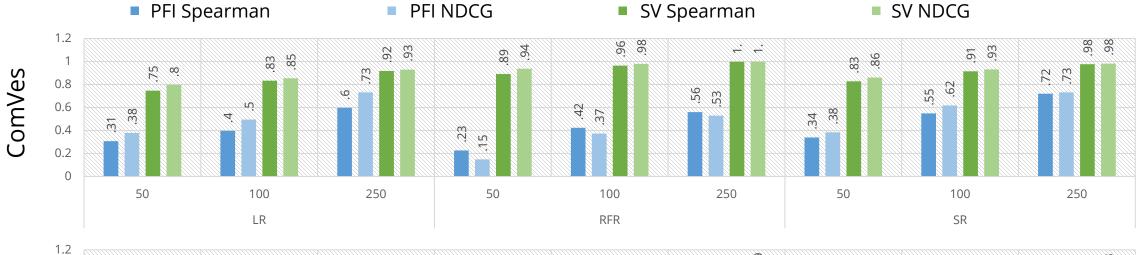
How do we detect/predict system drifts? → Sliding window based VIN-comparison

Motivation for VINs: Structure knowledge Motivation for Shapley Values: Forecasted data

x1 = weather1 x2 = system1 x3 = weather2 x4 = system2 x5 = weather3 x6 = system3 x7 = pvProduction1 x8 = powerConsumption1 x9 = batterySOC1 x10 = pvProduction2 x11 = powerConsumption2 x12 = batterySOC2 x13 = pvProduction3 x14 = powerConsumption3 x15 = batterySOC3 x16 = gridDiff1 x17 = gridDiff2 x18 = gridDiff3 x19 = gridDiff

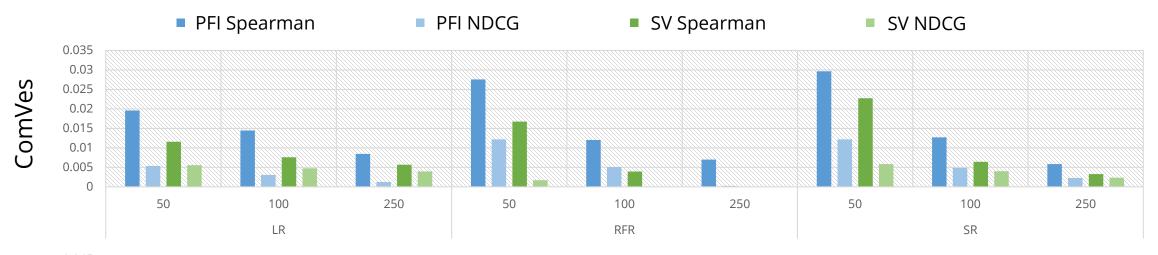


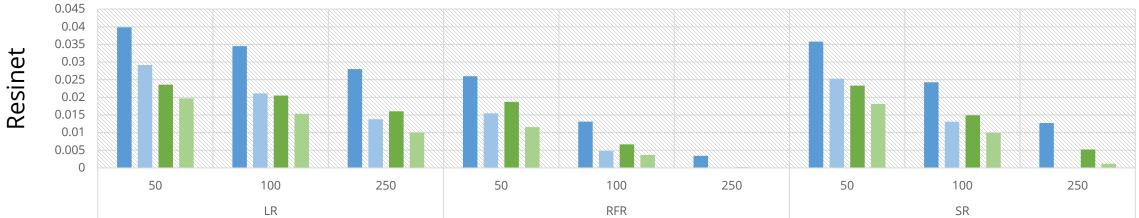
Part II - Experiments Stability Test Results: Stability Ratio





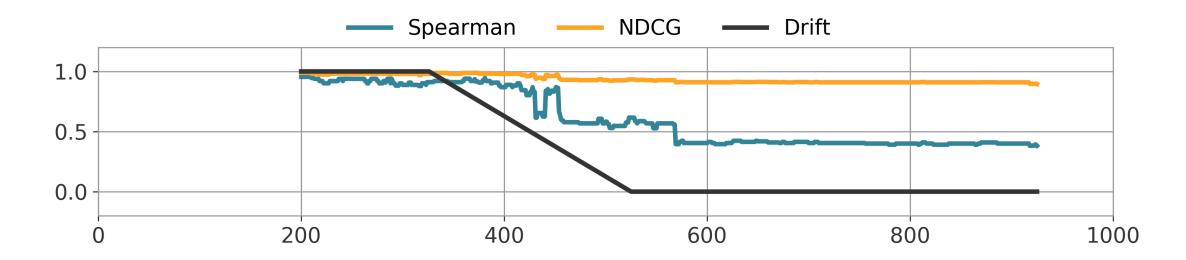
Part II - Experiments Stability Test Results: SD of Changes





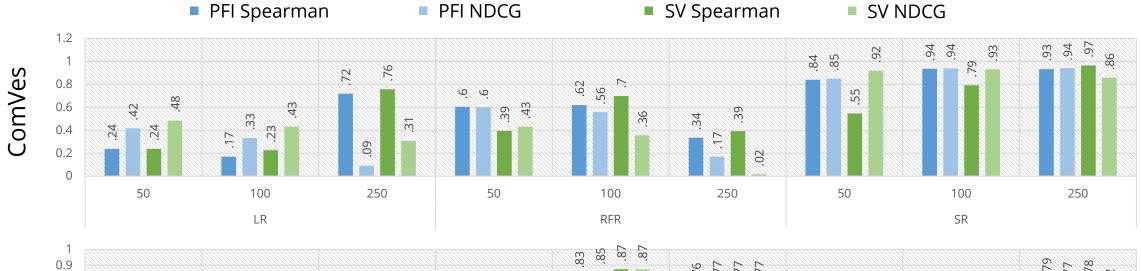
Part II - Experiments Introducing Drift

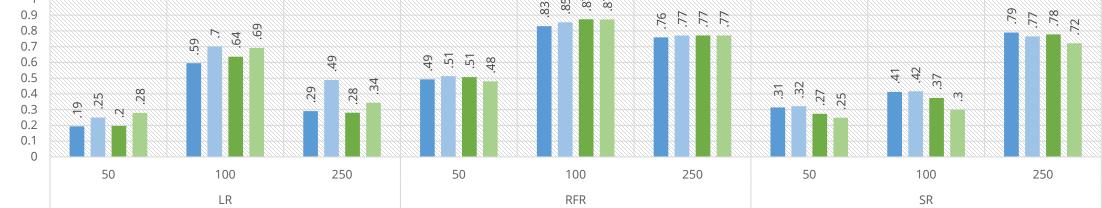
Communicating Vessels: clogging communication paths **Photovoltaic Network:** shared batteries + individual outages **Detection scoring:** *Pearson R* of (hidden) drift and network similarity



Part II - Experiments Drift Test Results: Pearson R

Resinet





Part II - Experiments Implementation and "Root-Cause" Analysis

m

 $x1 = age1 \quad x2 = age2 \quad x3 = age3 \quad x4 = batterySOCWh1 \quad x5 = batterySOCWh2 \quad x6 = batterySOCWh3 \quad x7 = dayLength1 \quad x8 = dayLength2 \quad x9 = dayLength3 \quad x10 = globalRadiation1 \quad x11 = globalRadiation2 \quad x12 = globalRadiation3 \quad x13 = globalRadiationSum2h1 \quad x14 = globalRadiationSum2h2 \quad x15 = globalRadiationSum2h3 \quad x16 = globalRadiationSumFrame07to12h1 \quad x17 = globalRadiationSumFrame07to12h2 \quad x18 = globalRadiationSumFrame07to12h3 \quad x19 = gridDiff \quad x20 = gridDiff1 \quad x21 = gridDiff2 \quad x22 = gridDiff3 \quad x23 = hoursAfterSunrise1 \quad x24 = hoursAfterSunrise2 \quad x25 = hoursAfterSunrise3 \quad x26 = powerConsumption1 \quad x27 = powerConsumption2 \quad x31 = pvProduction2 \quad x31 = pvProduction3$

dayLength1 x25 (x1 х8 х9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x23 x24 0.31 (0:0248 (0.38) 0.2118 0.31 0.28 (0.27) 0.35 0.38 (0.36) 0.50 4447) - - 0.40 - - -0.76 (0.53)2 (0.0.92 (0.82) 0.37-0.17-(0.41) 0.24 (0.35) powerConsumption1 x27 x28 x29 x30 x31 x26 0.11 (0.0714 (0.0714 (0.0615 (0.10))8 (0.0614 (0.0749 (0.30))0 (0.0947 (0.32) 0.14 (0.25) "Hotpath" Heuristic gridDiff1 x20 x21 x22 1. De-cycle graph: iteratively remove weakest link on 0.43 (0.:0331 (0.:0126 (0.21) next shortest cycle 2. Generate all paths from source to target nodes (DFS) gridDiff 3. Highlight path with highest change sum

Take-Home Messages and Outlook

Variable Interaction Networks (VIN)

- enable holistic system analysis (also on streaming data)
- enable knowledge integration (i.e. network structure)
- currently underrepresented in the field Explainable / Interpretable AI

	Evaluation	Precision	Stability	Data Access
– based on PFI:	fast	high	mediocre	input, true outcome
– based on SV:	slow (bulk), fast (streaming)	high	high	input

Further leads: extend root-cause analysis

- "Hotpath" improvement, e.g. add memory (find most stable over time)
- Classification approach

Q & A Shapley Value based Variable Interaction Networks for Data Stream Analysis

Eurocast 2022 // 2022-02-23

Jan Zenisek, Sebastian Dorl, Stephan Winkler and Michael Affenzeller

Heuristic and Evolutionary Algorithms Laboratory
University of Applied Sciences Upper Austria

Institute for Symbolic Artificial Intelligence Johannes Kepler University Linz

References and Acknowlegdements

[1] Kronberger et al. Genetic Programming: Current Trends and Applications in Computational Finance, Nova Science Publishers, 2013

[2] Hooker, Giles. Discovering additive structure in black box functions. Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, 2004

[3] Zenisek, J., Kronberger, G., Wolfartsberger, J., Wild, N., & Affenzeller, M. Concept Drift Detection with Variable Interaction Networks. In International Conference on Computer Aided Systems Theory (pp. 296-303). Springer, Cham, 2020.

[4] Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)

[5] Shapley, Lloyd S. "A value for n-person games." Contributions to the Theory of Games 2.28 (1953): 307-317

Funding thankfully received from:

Europäische Union Investitionen in Wachstum & Beschäftigung. Österreich.

Weather data provided by:

