

Measuring Features of Dynamic and Time-Linked Optimization Problems

Bernhard Werth, Erik Pitzer, Johannes Karder, Stefan Wagner, Michael Affenzeller

Time-Linked Dynamic Optimization Literature

- Time-Linkage:
 Optimizer decisions influence problem state
- Citerature sparse or highly domain specific
- **C** DynOpt often "Tracking the Optimum" [1]
- Practical Time-Linked DynOpt often: "Avoid Systemic Failure" [2]
- Comparing Metaheuristics often difficult

HERE BE DRAGONS

Problem: Dynamic Servicing

- Vehicle routing
- Vehicles service locations
- **Fully connected distance graph**
- No central depot
- Cities activate at random (no prior information)
- ♥ Target: cumulative active time

Problem Instances

Q 2 Maps: Vienna and Upper Austria

§ 51 Locations

- **Q** Mean-time-to-activation ~ $N(\mu_l, \sigma_l) * d$
- Constant
 Constant
- S Vehicles
- Optimization target: Cumulative Active-Time (assuming no new activations)

Simulation

Content Simulation

© "Decision Points"

- Vehicle v finished servicing
- Location I activates and at least one Vehicle idle
- No en-route-Reconsideration

Content Conten

- Best-evaluated solution since last decision
- Reevaluated last elite

Stochastic and hidden Information

- **©** Time-Linkage: Algorithm influences future problem states
 - Active/Inactive Locations
 - Vehicle positions

Encoding

Solution: (1,2,4,#,3,6,5,#,#) (Permutation)

Vehicle positions (5, 6, 5)

- V1 drives to 2, then idles
- V2 drives to 5, then 3, then idles
- V3 idles (although it is on an active city)
- Encoding length does not change
- Any solution always feasible

Domain-Measures

© Trivial

• Active sites

Contraction Contractica Con

- Mean distance between active sites
- Mean distance between vehicles
- Mean distance to nearest vehicle
- Nearest neighbor disparity

Clustering

- Inter cluster distance
- Intra cluster distance

Contracting Con

- Activations
- Deactivations
- Average Move Distance
- Average Path Distance

Cutilization

- Travel Utilization
- Service Utilization
- Waiting Utilization

Algorithmic

• Non-Greediness

Time Line

Measuring Features of Dynamic and Time-Linked Optimization Problems

Average Move Distance

Comparing Timelines - Mean Distance

Measuring Features of Dynamic and Time-Linked Optimization Problems

Visual Data Exploration

© Use all features

- Except difficulty & time
- Normalize time-correlated features

C TSNE: 2d embedding

Colored by time

Clustering

K-means (k =2)

- C Blue: "good" states
- Red: "bad" state

- Control Con
- Time of "control loss"
- Contract Provide the second second

Critical Border for Comparing Algorithms

- 1/100 the execution budget
- **Critical border earlier & at lower difficulties**
- **©** "Point of no Supervision"
 - Difficulty-component of the Border function for time = ∞
 - Appears to be similar

Conclusion

C Analysis of time-linked problems

- Gain insight
- Compare algorithms
- Estimate optimizer/problem limits
- (Predict) state deterioration

© Domain specific features

- Cheap to calculate
- Mixed usefulness

Sneak Peak: Critical Border (FLA)

Measuring Features of Dynamic and Time-Linked Optimization Problems

- [1] Nguyen, T. T., Yang, S., & Branke, J. (2012). Evolutionary dynamic optimization: A survey of the state of the art. Swarm and Evolutionary Computation, 6, 1-24.
- [2] Werth, B., Karder, J., Beham, A., & Wagner, S. (2021, July). Dynamic landscape analysis for openended stacking. In *Proceedings of the Genetic and Evolutionary Computation Conference Companion* (pp. 1700-1707).