Symbolic Regression with Fast Function Extraction and Nonlinear Least Squares Optimization

Lukas Kammerer, Gabriel Kronberger, Michael Kommenda

Motivation

Symbolic Regression with GP

Motivation

Symbolic Regression with GP

Previous Work

Trent McConaghy. "FFX: Fast, Scalable, Deterministic Symbolic Regression Technology." *GPTP IX*. 2011

Tony Worm and Kenneth Chiu. "Prioritized Grammar Enumeration: Symbolic Regression by Dynamic Programming." *Proceedings of the 15th GECCO*. 2013.

Lukas Kammerer et al. "Symbolic Regression by Exhaustive Search" GPTP XVII. 2019

Michael Kommenda. "Parameter Identification for Symbolic Regression using Nonlinear Least Squares." *Genetic Programming and Evolvable Machines 21.3*. 2020

Fast Function Extraction (FFX)

Trent McConaghy. "FFX: Fast, Scalable, Deterministic Symbolic Regression Technology." GPTP IX. 2011

Example: Given features x_1, x_2, x_3

Step 1: Generate Base Functions

- Univariate: $x_1, x_1^2, \log(x_1), \log(x_1^2), \exp(x_1), \exp(x_1^2), abs(x_1), \dots x_2, x_2^2, \log(x_2) \dots$
- Bivariate: x_1x_2 , $x_1^2x_2$, $\log(x_1)x_2$, ...

Step 2: Run ElasticNet Regression with Base Functions as Features:

$$c_1 x_1 + c_2 x_1^2 + c_3 \log(x_1) + \dots + c_n$$

ElasticNet Regression

Hastie, Trevor, et al. The elements of statistical learning: data mining, inference, and prediction. Vol. 2. New York: springer, 2009.

Given a linear Model: $\hat{f}(X, c) = Xc$ with X as features.Find c where $||y - Xc||^2 + \lambda (\alpha ||c||_1 + \frac{1}{2}(1 - \alpha) ||c||^2)$ is minimal.Mean Squared ErrorRegularization Term

Fast Function Extraction with Nonlinear Least Squares Optimization

Example: Given features x_1, x_2, x_3

Step 1: Generate Base Functions

$$x_1, x_1^2, \log(x_1 + c_1), \log(x_1^2 + c_2), \exp(c_3 * x_1), \dots x_2, \dots$$

Step 2: Optimize linear and nonlinear parameters *p* with NLS Optimization

$$p_1x_1 + p_2x_1^2 + p_3\log(x_1 + p_4) + p_5\exp(p_6x_1) + \dots + p_n$$

Fast Function Extraction with Nonlinear Least Squares Optimization

Example: Given features x_1, x_2, x_3

Step 1: Generate Base Functions

 $x_1, x_1^2, \log(x_1 + c_1), \log(x_1^2 + c_2), \exp(c_3 * x_1), \dots x_2, \dots$

Step 2: Optimize linear and nonlinear parameters *p* with NLS Optimization

$$p_1 x_1 + p_2 x_1^2 + p_3 \log(x_1 + p_4) + p_5 \exp(p_6 x_1) + \dots + p_n$$

NLS with Regularized Variable Projection

cf. Chen, Guang-Yong, et al. "A regularized variable projection algorithm for separable nonlinear least-squares problems." IEEE Transactions on Automatic Control 64.2 (2018)

Example: Given model

$$p_1 x_1 + p_2 x_1^2 + p_3 \log(x_1 + p_4) + p_5 \exp(p_6 x_1) + \dots + p_n$$

with linear and nonlinear parameters.

- 1. Optimize nonlinear parameters with gradient descent while linear parameters are given by regularized linear least squares optimization.
- 2. Sparsification of linear parameters by removing terms with least variance.

Experimental Setup

cf. Olson, Randal S., et al. "PMLB: a large benchmark suite for machine learning evaluation and comparison." BioData mining 10.1 (2017)

• Workflow for each problem instance:

- Hyperparameter for FFX and FFX VarPro:
 - Max. number of terms ∈ [3, 5, 10, 20, 30]
 - Allow bivariate base functions ∈ [true, false]
 - FFX only: Ratio of L1 Regularization \in [0.0, 0.5, 1.0]

Results with Artificial Data

cf. Chen, Chen, et al. "A multilevel block building algorithm for fast modeling generalized separable systems." Expert Systems with Applications 109 (2018)

Aircraft Lift Coefficient:

$$C_L = C_{L\alpha} \left(\alpha - \alpha_0 \right) + C_{L\delta_e} \delta_e \frac{S_{HT}}{S_{ref}},$$

• Aircraft Maximum Lift Coeff.

$$C_{L\max} = C_{L\max,W} - C_{L\alpha,WF} \cdot \Delta \alpha_{W/c} + C_{L\alpha,H} \left(\frac{S_H}{S}\right) \left[\alpha_{CL\max} \left(1 - \frac{\partial \varepsilon}{\partial \alpha}\right) - \varepsilon_{0,H} + \psi_H\right] + C_{L\alpha,c} \left(\frac{S_c}{S}\right) \left[\alpha_{CL\max} \left(1 + \frac{\partial \varepsilon_c}{\partial \alpha}\right) + \varepsilon_{0,c} + \psi_H\right]$$

Rocket Fuel Flow

$$\dot{m} = \frac{p_0 A^*}{\sqrt{T_0}}$$

• Spinning Cylinder Flow

$$\psi = \left(V_{\infty}r\sin\theta\right)\left(1 - \frac{R^2}{r^2}\right) + \frac{\Gamma}{2\pi}\ln\frac{r}{R}$$

200 instances per dataset; Normal distributed Noise

Results with Artificial Data

→ Higher Accuracy and/or less complex models with FFX VarPro

Results with Real-World Data

- PennML-Benchmark Suite
 - Comparison of many common regression algorithms
 - 94 regression benchmark problems
 - Accuracy ranking per Problem

Results – Training Accuracy

cf. Michael Kommenda. "Parameter Identification for Symbolic Regression using Nonlinear Least Squares." Genetic Programming and Evolvable Machines 21.3. 2020

Results – Test Accuracy

cf. Michael Kommenda. "Parameter Identification for Symbolic Regression using Nonlinear Least Squares." Genetic Programming and Evolvable Machines 21.3. 2020

Results – Runtime

cf. Michael Kommenda. "Parameter Identification for Symbolic Regression using Nonlinear Least Squares." Genetic Programming and Evolvable Machines 21.3. 2020

Results – Complexity

17

Conclusion and Outlook

- Higher Accuracy and/or less complex Models
- Much higher Runtime

- \rightarrow Implementation of more nonlinear functions
- →More robustness against overfitting