

Dynamic Fitness Landscape Analysis

Erik Pitzer, Bernhard Werth and Johannes Karder 22.2.2022

Introduction

- many real-world tasks are actually dynamic problems
- can contain time-linkage
- require more robust algorithms
- could benefit from additional insights in dynamics
- apply and adapt fitness landscape analysis for this purpose

Fitness Landscape Analysis

- problem-independent analysis
- Definition of a Fitness Landscape ${\mathcal F}$
 - Solution Space e.g. S
 - fitness function e.g. $f: S \to \mathbb{R}$
 - neighborhood e.g. $N: S \to P(S)$ or distance e.g. $d: S \times S \to \mathbb{R}$

FLA Goals

- deep insights into problem class or instance
 - determine inner structure and understanding
 - often complex and time-consuming

- problem class/instance characterization
 - comparison and contrasting with other (known) problem classes and instances
 - often faster and easier heuristic measures

• Sampling-Based Approaches

- Sampling-Based Approaches
 - random sampling, spaced sampling

- Sampling-Based Approaches
 - random sampling, spaced sampling
 - walk-based analysis

- Sampling-Based Approaches
 - random sampling, spaced sampling
 - walk-based analysis
 - random walk

- Sampling-Based Approaches
 - random sampling, spaced sampling
 - walk-based analysis
 - random walk
 - up-down walk

- Sampling-Based Approaches
 - random sampling, spaced sampling
 - walk-based analysis
 - random walk
 - up-down walk
 - neutral walk

- Sampling-Based Approaches
 - random sampling, spaced sampling
 - walk-based analysis
 - random walk
 - up-down walk
 - neutral walk
 - optimization-based sampling

- Sampling-Based Approaches
 - random sampling, spaced sampling
 - walk-based analysis
 - random walk
 - up-down walk
 - neutral walk
 - optimization-based sampling
- Exhaustive Analysis
 - e.g. local optima network analysis

- Sampling-Based Approaches
 - random sampling, spaced sampling
 - walk-based analysis
 - random walk
 - up-down walk
 - neutral walk
 - optimization-based sampling
- Exhaustive Analysis
 - e.g. local optima network analysis
- (Repeated) Local Analysis
 - on-the-fly near current search algorithm
 - Isotropy estimation

- Ruggedness
 - Autocorrelation, Correlation Length
 - Information Analysis (Information Content)
- Diversity
- Up/Down Walk Length/Variance
- Neutral Neighbor Fraction
- Neutral Walk Length

Dynamic Optimization Problem

- problem can change during optimization
 - series of different problems over time
 - previous decisions influence the future (time-linkage)
- reuse previous fair solutions (parts)
- Dynamic Vehicle Routing
 - · artificial problem with controllable characteristics
 - servicing of power grid facilities, e.g. transformers, generators
 - · locations are temporarily active until serviced
 - discrete event simulation
 - hypothetical time between events is used as evaluation budget
 - quality is cumulative "active" time of all cities

more realistic artificial scenario using geo data

- queried from open street map with overpass API
- largest power station in Upper Austria and around Vienna

```
area[name="Oberösterreich"]->.a;
(
    way(area.a)[power=station];
    way(area.a)[power=substation];
    way(area.a)[power=generator];
    way(area.a)[power=plant];
);
```

more realistic artificial scenario using real geo data

- distance matrix calculated with Open Routing Service
 - local instance ORS (docker)
 - Open Street Map data from geofabrik.de

Experimental Setup and Implementation

- varying "difficulty" by changing failure probability
- Simulation and Optimization implemented in HeuristicLab
- intermediate problem "snapshots" at every problem change
 - reduced memory consumption with the help of persistent data structures
- FLA on all snapshots
- further analysis using iPython and Pandas

Erik Pitzer et al., EuroCAST 2022

T-distributed stochastic neighbor embedding

Conclusions & Future Work

- Conclusions
 - fast & simple analysis provides good insights
 - clearly observable boundaries
 - problem is: "too easy" / "interesting" / "too hard"
 - promising foundation for
 - parameter tuning
 - algorithm switching
- Future Work
 - more complex dynamic aspects
 - varying probabilities over time
 - increased coupling of probabilities, e.g. one outage leads to another
 - different optimization algorithms
 - isotropy of FLA measures