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Problem Formulation
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Problem Formulation
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Problem Formulation

- Constant slope of 471077 (permeability of vacuum)
2nd derivative is negative

Magnetic polarization (J) has an upper limit (saturation polarization)
— Material dependent

Relative permeability (u,) has a lower limit of one
Peak of relative permeability (u,) is contained inside the measurements
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Shape Constraints

Previous Work

* Introduces additional domain knowledge in Symbolic Regression [1,2]
 Define constraints for

— the shape of the function

— derivations of any order of the function
- Each constraint can be limited to specific ranges for each input variable
« Examples:

-y €[l 3]

dy .

-~ € [0, inf. ] where x € [0,100]

[1]  Kronberger, G., de France, F.O., Burlacu, B., Haider, C., Kommenda, M.: Shape- [2]  Haider, C., de Franca, F.O., Burlacu, B., Kronberger, G.: Using shape constraints
constrained Symbolic Regression — Improving Extrapolation with Prior for improving symbolic regression models. arXiv preprint arXiv:2107.09458
Knowledge. Evolutionary Computation pp. 1-24 (04 2021) (2021)
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Shape Constraints

User Inputs
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Shape Constraints
Difficulties

* Information about the magnetic polarization (J) and relative permeability (u,)
cannot be utilized
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Motivation

» Utilize additional information about the
system for the algorithmic search

J=B — (4m10~7) « H
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Extended Constraints

- An additional way to define a broader spectrum of domain knowledge

« Has an expression to transform the estimated values of a model into a new
temporary data

Inputs Estimated Values
(%) (y)
Expression
z=y *sin(x)
Transformed Estimated Values
(2)

* Has a set of shape constraints
« Shape constraints are applied onto the transformed estimated values
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Extended Constraints
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Shape Constraints
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Extended Constraints
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Experiment Configuration

Defined shape constraints for
— B-H-Function
—J-H-Function J = B — (41m10~7) * H)

AB
—U.- i — _AH
H-Function (u, = — =

Tested with three different types of GA's

— Genetic Algorithm (GA)
— Offspring Selection Genetic Algorithm (OSGA) [1]
— Age-Layered Population Structure Genetic Algorithm (ALPS GA) [2]

Executed with and without extended constraints for comparison

30 runs per combination

[2]  Hornby, G. S.: The age-layered population structure (ALPS) evolutionary
algorithm. Proceedings of the 9th annual conference on Genetic and
evolutionary computation. (2009)

[1]  Affenzeller, M., Wagner, S.: Offspring Selection: A New Self-Adaptive Selection
Scheme for Genetic Algorithms. Adaptive and natural Computing Algorithms

pp. 218-221 (2005)
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Applied Constraints

0B
30 € [4m1077,4m1077] where H € [800000, 1000000]
dB?
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Applied Constraints
J-H-Graph
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Applied Constraints
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Preliminary Results

GA MSE Test Comparison

GA Execution Time Comparison [h]
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Preliminary Results

OSGA MSE Test Comparison
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Preliminary Results

ALPS MSE Test Comparison ALPS Execution Time Comparison [h]
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Conclusion & Outlook

« With extended constraints is it possible to utilize a broader spectrum of
domain knowledge

- Additional knowledge leads to better test qualities

« A promising way to reduce human calculation effort for extrapolating
magnetization curves

« Experiments with additional materials for final paper
- Combination of extended shape constraints with structure template GP
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Problem Formulation

Fit magnetization curves of ferromagnetic materials

— Describes the relation between magnetic flux density B and magnetic field
strength H

Only small number of measured data points
Manually extended with the Frohlich-Kennelly extrapolation

Goal: Find an automated way to search robust models, which fit the
characteristics of magnetization curves with only the measured data points
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Applied Algorithms

« Genetic Algorithm

+ Offspring Selection Genetic Algorithm [1]
— Additional selection mechanism after reproduction
— Offspring must outperform its parents
— Self-adaptive control of selection pressure
— Terminates when maximum selection pressure is reached
— Supports creation of larger building blocks in the population

- Age-Layered Population Structure Genetic Algorithm [2]
— Population is split into different age layers
— Each age-layer is a separate GA run
— Each age-layer has its own maximum age for individuals
— Continuous flow of new genetic material to prevent premature convergence

[1]  Affenzeller, M., Wagner, S.: Offspring Selection: A New Self-Adaptive Selection [2]  Hornby, G. S.: The age-layered population structure (ALPS) evolutionary

Scheme for Genetic Algorithms. Adaptive and natural Computing Algorithms algorithm. Proceedings of the 9th annual conference on Genetic and
pp. 218-221 (2005) evolutionary computation. (2009)
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J-H-Graph

J=B —(4n10~7) « H

J [Vs/m?]
5

B-H-Graph
0.75
3.0 050
2.5 0.25
:E 2.04 102 103 104 10° 108
I H [A/m]
2 154
) u-Graph
14000
1.0 4
12000
0.5
10000
0.0 : : . . ;
102 103 104 10° 108 8000 A
H [A/m] N
6000 A
4000 -
AB 2000 4
0. = AH 0
r T -7 102 10° 104 105 106
477:1 O H [A/m]

23.02.2022 Improving the F|§X|b|I|'.cy of Shape—Constralr?ed Symbolic 24 } ‘ £
Regression with Extended Constraints . ‘



Problem Formulation

fit magnetization curves of ferromagnetic materials

— describes the relation between magnetic flux density B and magnetic field
strength H

— at a specific point (saturation point) B is growing linearly
only small number of measured data points
the measured data points are far below the saturation polarization

Goal: find a way to search robust models, which fit the characteristics of
magnetization curves with only a few data points
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Problem Formulation

+ Goal: find an automated way to search robust models, which fit the
characteristics of magnetization curves with only the measured data points
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Problem Formulation
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Shape Constraints - Previous Work

introduces additional domain knowledge in Symbolic Regression [1,2]
uses interval notation for definition

—e.g..yin[0, 5]
uses interval arithmetic for calculation and validation

— inputs are intervals

— output is an interval which needs to fit inside the target interval of the
shape constraint

possible to constrain the model output as well as the shape of the function
using derivations of any order

each constraint can be limited to specific ranges for each input variable

—e.g..yin [0, 5] for xin [10, 20]

[1]  Kronberger, G., de France, F.O., Burlacu, B., Haider, C., Kommenda, M.: Shape-constrained Symbolic
Regression — Improving Extrapolation with Prior Knowledge. Evolutionary Computation pp. 1-24 (04 2021)

[2] Haider, C., de Franca, F.O., Burlacu, B., Kronberger, G.: Using shape constraints for improving symbolic
regression models. arXiv preprint arXiv:2107.09458 (2021)
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Shape Constraints - Previous Work

- there exist hard and soft constraints for single-objective problems
— hard constraints: each violation leads to a fixed fitness (NMSE = 1.0)
— soft constraints:
= for each interval bound exists a predefined threshold
= the error is capped to 1.0 if the violation exceeds the threshold

= if the violation is inside the range of the interval bound and the
corresponding threshold, the error is linear between 0 and 1

Interval Threshold Example

1.0 -
| -
2 0.5
L
0'0 E | | T T T I T
-3 -2 -1 0 1 2 3
Interval
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Shape Constraints - Previous Work

- each constraint can be limited to specific ranges for each input variable
—e.g..yin [0, 5] for xin [10, 20]
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Shape Constraints - Previous Work

introduces additional domain knowledge in Symbolic Regression
uses interval arithmetic to describe the additional knowledge

possible to constrain the model output as well as the shape of the function

[lf]sing derivations of any order

Kronberger, G., de France, F.O., Burlacu,
B., Haider, C., Kommenda, M.: Shape-
constrained Symbolic Regression —
Improving Extrapolation with Prior
Knowledge. Evolutionary Computation
pp. 1-24 (04 2021)

[2] Haider, C., de Franca, F.O., Burlacu, B.,
Haider, C., de Frankpoisardiiyl@cul BinKepabergenstraidsing shape constraints for
improving symbolifpragipseingroatie | g rreisint arXiv:2107.09458 (2021)
[1] Kronberger, G.ndedetsnesX@rdanitdcar By, AEde09d.58ommenda, M.: Shape-
constrained Symb@2i@RBgression — Improving Extrapolation with Prior Knowledge.
Evolutionary Computation pp. 1-24 (04 2021)
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Extended Constraints

- adds a way (on top of existing shape constraints) to define a broader
spectrum of domain knowledge

- defines an expression to convert the estimated outputs of a model into a new
symbol

- a set of defined constraints are applied onto the new symbol

Target = y Expression = y / (x*x)
Input = x Target = z

Model = Symbolic Regression Solution Input REA

Shape Constraints: Cons?ralnts:

~ v in [0; 5] - z 1n [0; 5]

- y" in [0;1inf.] -y’ in [0;inf.]
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Extended Constraints

- adds a way (on top of existing shape constraints) to define a broader
spectrum of domain knowledge

- defines an expression to convert the estimated outputs of a model into a new
symbol
— has access to all inputs and the calculated model estimations
— calculated line-by-line
— uniformly distributed samples are generated if ranges are used

- a set of defined constraints are applied onto the new symbol
— Calculation
— interval arithmetic is used
— evaluated by calculating

Improving the Flexibility of Shape-Constrained Symbolic 'F‘L ‘L‘g"p
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Experiment Configuration

Parameter Value

maximum Tree Size 50
maximum Tree Depth 25
allowed Symbols +, -, *, tanh, number, variable
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Results
OSGA Training Qualities
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