

Analysis and Handling of Dynamic Problem Changes in Open-Ended Optimization

Johannes Karder, Bernhard Werth, Andreas Beham, Stefan Wagner, Michael Affenzeller 21.02.2022

eurocast 2022

Open-Ended Optimization

Crane Scheduling Animation

HEURISTIC AND EVOLUTIONARY ALGORITHMS LABORATORY

Simulated Real World

- Sim# Simulation
 - Simulates a warehouse with 2 cranes
 - Hosts multiple pickup, dropoff and storage locations
 - New moves (pickups, dropoffs, relocations) are generated over time
 - Periodically publishes world state
 - Active moves
 - Planned moves (obsolete + new)
 - Operational cranes
 - Locations (pickup, dropoff, storage)

•••

Warehouse Hotspots

2/24/2022

Analysis and Handling of Dynamic Problem Changes in Open-Ended Optimization

HEURISTIC AND EVOLUTIONARY ALGORITHMS LABORATORY

Related Literature

- Related Literature
 - Various publications on crane scheduling
 - Multiple problem formulations
 - Surveys by Boysen et al. [1, 2]
 - Only 5 publications deal with dynamic set of jobs
 - No dynamic adaption to changing process conditions
- Scientific contribution
 - Analyze effects of events on algorithm state
 - Algorithm extension to update algorithm convergence
 - [1] Boysen, N., Stephan, K., 2016. A survey on single crane scheduling in automated storage/retrieval systems. European Journal of Operational Research 254, 691–704.
 - [2] Boysen, N., Briskorn, D., Meisel, F., 2017. A generalized classification scheme for crane scheduling with interference. European Journal of Operational Research 258, 343–357.

Motivation for Self-Adaption

- Static algorithm parameterization
 - Tradeoff between fast response time and solution quality
- System is dynamic
 - Calm system state, i.e. no disruptive changes
 - Try to achieve higher solution quality
 - Disruptive changes
 - Adapt to changes fast
 - Yield good, adapted solutions fast
- Adaptive algorithm parameterization
 - Fast response time via higher selection pressure and reduced effort
 - Better solution quality via lower selection pressure and higher effort

RAPGA

- Relevant Alleles Preserving Genetic Algorithm (RAPGA) [3]
 - Offspring Selection (OS) [4]
 - Elitism
 - Population size varies and is bounded
- Only accepts successful and diverse offspring
 - Relevant offspring becomes new population
 - OS criterion for minimization:

 $\mathcal{S}(c, p_1, p_2, \phi) = \begin{cases} \texttt{true}, & \text{if } f(c) < \max(f(p_1), f(p_2)) - \phi |f(p_1) - f(p_2)| \\ \texttt{false}, & \text{otherwise} \end{cases}$

- Termination criteria
 - Maximum generations
 - Population size lower bound

- [3] Affenzeller, M., Wagner, S., Winkler, S., 2007. Self-adaptive population size adjustment for genetic algorithms. In International Conference on Computer Aided Systems Theory (pp. 820-828). Springer, Berlin, Heidelberg.
- [4] Affenzeller, M., Wagner, S., 2005. Offspring selection: A new self-adaptive selection scheme for genetic algorithms. In Adaptive and natural computing algorithms (pp. 218-221). Springer, Vienna.

Self-Adaptive Open-Ended RAPGA (SAOERAPGA)

- Open-Ended
 - Problem data and solutions are updated in between generations
 - Population is reseeded once algorithm converges
- Self-Adaptive
 - Effort increases over time
 - Disruptive events influence parameters
 - Switches between two basic algorithm configurations
 - Explorative mode
 - Proportional selection, weak OS, increasing effort
 - Lower selection pressure
 - Exploitative mode
 - Tournament selection, strict OS, static effort
 - Higher selection pressure

SAOERAPGA

• Adds three new steps to evolutionary cycle

- 1. Synchronization
 - Applies update procedures
 - Applies repair procedures
 - Communicates best solution
- 2. Self-Adaption
 - Switches between algorithm modes
 - Adjusts parameters
- 3. Population Reseeding
 - No relevant offspring found

Update and Repair Procedures

- Update Procedures
 - Problem is updated with new world state
 - New moves are inserted randomly
 - New moves are assigned random (operational) cranes
- Repair Procedures
 - Applied after each update procedure, crossover (and mutation) operation
 - Fix violated precedence constraints
 - Fix violated operational crane constraints

Explorative: Proportional Sel, CF 0.0,

Behavior: Self-Adaptive Config 1

2/24/2022

Analysis and Handling of Dynamic Problem Changes in Open-Ended Optimization

Explorative: Proportional Sel, CF 0.0, Effort 500-1000 (step 50) Exploitative: Tournament Sel, CF 1.0, Effort 500 (const)

Conclusions & Outlook

- Behavior analysis of static OERAGPA (baseline) and SAOERAPGA
- SAOERAPGA able to quickly adapt to changes
 - Exploitative mode: converges faster than OERAPGA
 - Explorative mode: converges as fast as OERAPGA
 - Increased effort does not cause significantly different behavior
- Dynamic scenarios are hard to compare
 - Time-Linkage: Decisions affect problem state
 - Systems diverge over time
- More experiments necessary
 - Compare more parameter configurations and scenarios
 - Problem: CranesChangedEvent (1 \rightarrow 2)
 - New genetic material only introduced after reseeding or mutation
 - Possible solution approach: Adaptive mutation rate
- We need to implement and test more open-ended versions of algorithms, e.g.
 - ALPS
 - MemPR

