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Crane Scheduling Animation
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Simulated Real World

« Sim# Simulation
— Simulates a warehouse with 2 cranes
— Hosts multiple pickup, dropoff and storage locations
— New moves (pickups, dropoffs, relocations) are generated over time
— Periodically publishes world state
= Active moves
Planned moves (obsolete + new)
Operational cranes
Locations (pickup, dropoff, storage)
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Warehouse Hotspots
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Related Literature

 Related Literature
— Various publications on crane scheduling
— Multiple problem formulations
— Surveys by Boysen et al. [1, 2]
— Only 5 publications deal with dynamic set of jobs
— No dynamic adaption to changing process conditions

- Scientific contribution
— Analyze effects of events on algorithm state
— Algorithm extension to update algorithm convergence

[1] Boysen, N., Stephan, K., 2016. A survey on single crane scheduling in automated
storage/retrieval systems. European Journal of Operational Research 254, 691-704.

[2] Boysen, N., Briskorn, D., Meisel, F., 2017. A generalized classification scheme for crane
scheduling with interference. European Journal of Operational Research 258, 343-357.
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Motivation for Selt-Adaption

» Static algorithm parameterization
— Tradeoff between fast response time and solution quality

 System is dynamic
— Calm system state, i.e. no disruptive changes
= Try to achieve higher solution quality
— Disruptive changes
= Adapt to changes fast
= Yield good, adapted solutions fast

 Adaptive algorithm parameterization
— Fast response time via higher selection pressure and reduced effort
— Better solution quality via lower selection pressure and higher effort
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RAPGA

+ Relevant Alleles Preserving Genetic Algorithm (RAPGA) [3]
— Offspring Selection (OS) [4]
— Elitism
— Population size varies and is bounded

+ Only accepts successful and diverse offspring
— Relevant offspring becomes new population
— OS criterion for minimization:

if f(c) < max(f(p1), f(p2)) — ¢lf (1) — F(p2)l

otherwise

true,

false,

S(Ca P1,P2, ¢) = {

« Termination criteria
— Maximum generations
— Population size lower bound
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[3] Affenzeller, M., Wagner, S., Winkler, S., 2007. Self-adaptive population size adjustment
for genetic algorithms. In International Conference on Computer Aided Systems Theory
(pp. 820-828). Springer, Berlin, Heidelberg.

[4] Affenzeller, M., Wagner, S., 2005. Offspring selection: A new self-adaptive selection
scheme for genetic algorithms. In Adaptive and natural computing algorithms (pp. 218-
221). Springer, Vienna.
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Self-Adaptive Open-Ended RAPGA (SAOERAPGA)

« Open-Ended
— Problem data and solutions are updated in between generations
— Population is reseeded once algorithm converges

- Self-Adaptive
— Effort increases over time
— Disruptive events influence parameters
— Switches between two basic algorithm configurations
= Explorative mode
— Proportional selection, weak OS, increasing effort
— Lower selection pressure
= Exploitative mode
— Tournament selection, strict OS, static effort
— Higher selection pressure
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SAOERAPGA

 Adds three new steps to evolutionary cycle .
)
1. Synchronization [—’ Parent Setecion
= Applies update procedures s et C¢
= Applies repair procedures D—— T
= Communicates best solution Selt.Adaption Mutaton
| | v
2. Self-Adaption Sy““““]"‘z‘"‘““ S““"‘l““‘” R
= Switches between algorithm modes — |
= Adjusts parameters L y |
3. Population Reseeding i e

= No relevant offspring found
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Update and Repair Procedures

- Update Procedures
— Problem is updated with new world state
— New moves are inserted randomly
— New moves are assigned random (operational) cranes

 Repair Procedures
— Applied after each update procedure, crossover (and mutation) operation

— Fix violated precedence constraints
— Fix violated operational crane constraints
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Explorative: Proportional Sel, CF 0.0,

Behavior: Self-Adaptive Config 1 ffort 1000 (cont)
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Explorative: Proportional Sel, CF 0.0,

Behavior: Self-Adaptive Config 2 ffort 500-1000 (step 50

o Exploitative: T tSel CF 1.0
Preliminary Results xploitative. fournament Sel, '
— Best Effort 500 (const)

4750

\J%a

2550 ' ' . un . ' 1010/ | i 1y 1 1110 1213 ‘ 11 12
15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345 360 375
Realtime Duration [s]

~——— Population Size —— Effort —— Selection Pressure
| - 10°
E | | '
[}
e | g
%] L102 B
Q | E10 @
N | ’ a
wn , =
c ] - )
'.g [ / I 1203
i I 0% 9
a f\\k4 1 I &
. \ #-X1 ]
o | \ J
\ : 111:J 1 1 1$ - J #* 100
0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315 330 345 360 375

Realtime Duration [s]

2/24/2022 Analysis and Handling of Dynamic Problem Changes in Open-Ended Optimization 14 *FAL » s



Conclusions & Outlook

« Behavior analysis of static OERAGPA (baseline) and SAOERAPGA

+ SAOERAPGA able to quickly adapt to changes
— Exploitative mode: converges faster than OERAPGA
— Explorative mode: converges as fast as OERAPGA
= Increased effort does not cause significantly different behavior

« Dynamic scenarios are hard to compare
— Time-Linkage: Decisions affect problem state
— Systems diverge over time

« More experiments necessary
— Compare more parameter configurations and scenarios
— Problem: CranesChangedEvent (1 > 2)
= New genetic material only introduced after reseeding or mutation
= Possible solution approach: Adaptive mutation rate

+ We need to implement and test more open-ended versions of algorithms, e.g.
— ALPS
- MemPR
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