

Shape-constrained Symbolic Regression with NSGA-III

EuroCAST 2022 - Theory and Applications of Metaheuristic Algorithms

Christian Haider – University of Applied Sciences Upper Austria 23.02.2022

Agenda

- Motivation
- Shape-constrained symbolic regression
- Many-objective approach
- Results
- Conclusion

- Data-based modeling approach
 - Allow to include knowledge about the system
- Restrict the function's shape
 - Positivity/negativity of model output
 - Concavity/convexity or monotonicity of model's output

23.02.2022

Shape-constrained Symbolic Regression with NSGA-III

Shape-constrained Symbolic Regression

- Model is a function mapping real-valued inputs to real-valued outputs

 Constraints refer to the shape of the function
- Constraints are expressed by partial derivatives of the model
- Mathematical formulation of shape-constrained regression:

$$f^*(x) = \underset{f(x) \in M}{\operatorname{argmin}} L(f(x), y), \qquad x \in \Omega$$

subject to shape constraints $c_i(X_i)$, $X_i \subseteq \Omega$

Shape-constrained Symbolic Regression Constraints

Property	Mathematical formulation
Non-negativity	$f(x) \ge 0$
Non-positivity	$f(x) \le 0$
Image inside a boundary	$l \leq f(x) \leq u$
Monotonically non-decreasing	$\frac{\partial}{\partial x_i} f(x) \ge 0$
Monotonically non-increasing	$\frac{\partial}{\partial x_i} f(x) \le 0$
Convexity	$\frac{\partial^2}{\partial x_i^2} f(x) \ge 0$
Concavity	$\frac{\partial^2}{\partial x_i^2} f(x) \le 0$

Shape-constrained Symbolic Regression Constraints

- Shape-constraints need approximation methods for evaluation
- E.g.: non-decreasing monotonicity constraint
 - Partial derivative of the model w.r.t the variable needs to be equal or greater than zero for the whole input domain → minimum value of partial derivative in the given domain has to be found
 - If model is non-linear
 non-linear optimization problem (NP-hard)
 - Therefore approximation methods are useful
- One option: interval arithmetic

Interval Arithmetic

- Allows to apply arithmetic operations on intervals
 - Variables are bounded or unbounded intervals
- Intervals are described as [a, b] a set of values $\{x \mid a \le x \le b\}$
- For a multivariate function f(x) an exact interval can be estimated when:
 - Only a single occurrence of every variable x_i is given
 - The function is monotonic w.r.t any multiple occurring variable
- Small extra computational cost for evaluation compared to e.g. sampling
- Biggest disadvantage is the potential high overestimation if none of the exact interval estimation criteria is met
 - Occurring cause of dependency problem of multiple occurring variables

Shape-constrained Symbolic Regression Many-objectives

- Performs well on instances with many objectives
 - ≥ 3 Objectives
- "The performance of NSGA-III has been compared with several versions of a recently proposed MOEA/D procedure. Although different MOEA/Ds have shown their working on different problems, no single version is able to solve all problems efficiently. Having solved all problems well by the proposed NSGA-III procedure, there is another advantage of it that is worth mentioning here. Unlike MOEA/D versions, NSGA-III procedure does not require any additional parameter to be set."¹

¹Showed promising results in K. Deb and H. Jain, "An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints," in IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 577-601, Aug. 2014, doi: 10.1109/TEVC.2013.2281535.

23.02.2022

Research Question

Can the many-objective algorithm NSGA-III help to improve the quality/speed of shape-constrained symbolic regression?

Methodology

- Compare NSGA-II to NSGA-III
- Both algorithms are implemented in HeuristicLab
- The same number of evaluations is used in both algorithms

Shape-constrained Symbolic Regression Many-objective

1+n objective approach:

- Data-base loss function → minimizing NMSE
- Constraint loss functions → minimize violations:

$$P_{i} = P_{i}^{\inf} + P_{i}^{\sup}$$

$$P_{i}^{\inf} = \left|\min\left(\inf(f_{i}(x)) - \inf(c_{i}), 0\right)\right|$$

$$P_{i}^{\sup} = \left|\max\left(\sup(f_{i}(x)) - \sup(c_{i}), 0\right)\right|$$

Problem Instances

Instance	Expression	
I.6.20	$\exp\left(\frac{-\left(\frac{\theta}{\sigma}\right)^2}{2}\right)\frac{1}{\sqrt{2\pi\sigma}}$	
I.9.18	$\frac{G m1 m2}{(x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2}$	
I.30.5	$\operatorname{asin}\left(\frac{lambd}{nd}\right)$	
I.32.17	$\frac{1}{2}\epsilon c E f^2 \frac{8\pi r^2}{3} \frac{\omega^4}{(\omega^2 - \omega_0^2)^2}$	
I.41.16	$\frac{h\omega^3}{\pi^2c^2\left(\exp\left(\frac{h\omega}{kbT}\right)-1\right)}$	
I.48.20	$\frac{m c^2}{\sqrt{1 - \frac{v^2}{c^2}}}$	
II.35.21	$n_{rho} mom \tanh\left(\frac{momB}{kbT}\right)$	
III.9.52	$\frac{p_d Eft}{h} \sin\left(\frac{(\omega-\omega_0)t}{2}\right)^2$	
III.10.19	$mom \sqrt{Bx^2 + By^2 + Bz^2}$	
Pagie-1	$\frac{1}{1+x^{-4}} + \frac{1}{1+y^{-4}}$	

Shape-constrained Symbolic Regression with NSGA-III

Problem Instances

Instance	Input space	Constraints
I.6.20	$(\sigma, \theta) \in [13]^2$	$([0\infty],0,-1)$
I.9.18	(x1,y1,z1,m1,m2,G,x2,y2,z2)	$([0\infty], -1, -1, -1, 1, 1, 1, 1, 1, 1)$
	$\in [34]^3 \times [12]^6$	
I.30.5	$(lambd, n, d) \in [15]^2 \times [25]$	$([0\infty], 1, -1, -1)$
I.32.17	$(\epsilon, c, Ef, r, \omega, \omega_0) \in [12]^5 \times [35]$	$([0\infty], 1, 1, 1, 1, 1, -1)$
I.41.16	$(\omega, T, h, kb, c) \in [15]^5$	$([0\infty], 0, 1, -1, 1, -1)$
I.48.20	$(m, v, c) \in [15] \times [12] \times [320]$	$([0\infty], 1, 1, 1)$
II.35.21	$(n_{rho}, mom, B, kb, T) \in [15]^5$	$([0\infty], 1, 1, 1, -1, -1)$
III.9.52	$(p_d, Ef, t, h, \omega, \omega_0) \in [13]^4 \times [15]^2$	$([0\infty], 1, 1, 0, -1, 0, 0)$
III.10.19	$(mom, Bx, By, Bz) \in [15]^4$	$([0\infty], 1, 1, 1, 1)$
Pagie-1	$(x, y) \in [-55]^2$	([02], -1(x < 0), 1(x > 0), -1(y < 0), 1(y > 0))

Algorithm Configurations

Parameters	Value
Function set	$+, \times, -, AQ(x, y) = x\sqrt{1+x^2}, \log, \exp, \sin, \tanh$
Terminal set	parameters
Max. tree length	50 nodes
Tree initialization	Probabilistic tree creator (PTC2)
Max. evaluated solutions	500000
Population size	1000 individuals
Selection	Tournament selection with group size 5 (NSGA2)
	Random selection (NSGA3)
Mutation rate	15%

Results: Median Runtime [sec]

Results: Median Test Error (NMSE in %)

	NSGA2	NSGA3
I.6.20	20.88	19.14
I.30.5	7.32	6.24
I.41.16	18.50	15.21
I.48.20	24.19	22.58
II.32.17	7.17	6.38
II.35.21	14.60	14.54
III.9.52	89.03	89.00
III.10.19	11.30	10.62
Pagie-1	46.41	40.71

NMSE
$$(y, \hat{y}) = \frac{100}{\operatorname{var}(y)N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Summary

- NSGA-III decreased runtime of experiments by about 60%
- Equal or slightly improved model quality

Outlook:

- Further tests on more instances
- Hyperparameter optimization for both algorithms

Shape-constrained Symbolic Regression with NSGA-III

EuroCAST 2022 - Theory and Applications of Metaheuristic Algorithms

Christian Haider – University of Applied Sciences Upper Austria 23.02.2022

